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Principal Component Analysis (PCA) is an important tool of di-
mension reduction especially when the dimension (or the number of
variables) is very high. Asymptotic studies where the sample size is
fixed, and the dimension grows (i.e. High Dimension, Low Sample
Size (HDLSS)) are becoming increasingly relevant. We investigate
the asymptotic behavior of the Principal Component (PC) directions.
HDLSS asymptotics are used to study consistency, strong inconsis-
tency and subspace consistency. We show that if the first few eigen-
values of a population covariance matrix are large enough compared
to the others, then the corresponding estimated PC directions are
consistent or converge to the appropriate subspace (subspace consis-
tency) and most other PC directions are strongly inconsistent. Broad
sets of sufficient conditions for each of these cases are specified and the
main theorem gives a catalogue of possible combinations. In prepa-
ration for these results, we show that the geometric representation
of HDLSS data holds under general conditions, which includes a ρ-
mixing condition and a broad range of sphericity measures of the
covariance matrix.

1. Introduction and summary. The High Dimension, Low Sample
Size (HDLSS) data situation occurs in many areas of modern science and the
asymptotic studies of this type of data are becoming increasingly relevant.
We will focus on the case that the dimension d increases while the sample
size n is fixed as done in Hall et al. [7] and Ahn et al. [1]. The d-dimensional
covariance matrix is challenging to analyze in general since the number of
parameters is d(d+1)

2 , which increases even faster than d. Instead of assessing
all of the parameter estimates, the covariance matrix is usually analyzed
by Principal Component Analysis (PCA). PCA is often used to visualize
important structure in the data and also used to reduce dimensionality by
approximating the data with the first few principal components. Thus the
asymptotic behavior of Principal Component (PC) directions is important.
In this paper, we study the covariance matrix in terms of PC directions.
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2 S. JUNG AND J. S. MARRON

Our focus is on the underlying mechanism which determines when the
sample PC directions converge to their population counterparts as d →∞.
In general we assume d > n. Since the size of the covariance matrix depends
on d, the population covariance matrix is denoted as Σd and similarly the
sample covariance matrix, Sd, so that their dependency on the dimension
is emphasized. PCA is done by eigen-decomposition of a covariance matrix.
The eigen-decomposition of Σd is

Σd = UdΛdU
′
d,

where Λd is a diagonal matrix of eigenvalues λ1,d ≥ λ2,d ≥ · · · ≥ λd,d and Ud

is a matrix of corresponding eigenvectors so that Ud = [u1,d, u2,d, . . . , ud,d].
Sd is similarly decomposed as

Sd = ÛdΛ̂dÛ
′
d.

Ahn et al. [1] showed that HDLSS consistency is a very illuminating
asymptotic property. Our main results are formulated in terms of three
related concepts:

1. consistency : The direction ûi,d is consistent with its population coun-
terpart ui,d if Angle(ui,d, ûi,d) −→ 0 as d → ∞. The growth of di-
mension can be understood as adding more variation. The consistency
of sample eigenvectors occurs when the added variation supports the
existing structure in the covariance or is small enough to be ignored.

2. strong inconsistency : In situations where ûi,d is not consistent, a per-
haps counter-intuitive HDLSS phenomenon frequently occurs. In par-
ticular, ûi,d is said to be strongly inconsistent with its population coun-
terpart ui,d in the sense that it tends to be as far away from ui,d as pos-
sible, that is, Angle(ui,d, ûi,d) −→ π

2 as d → ∞. Strong inconsistency
occurs when the added variation obscures the underlying structure of
the population covariance matrix.

3. subspace consistency : When several population eigenvalues indexed by
j ∈ J are similar, the corresponding sample eigenvectors may not be
distinguishable. In this case, ûj,d will not be consistent for uj,d but
will tend to lie in the linear span, span{uj,d : j ∈ J}. This motivates
the definition of convergence of a direction ûi,d to a subspace, called
subspace consistency ;

Angle(ûi,d, span{uj,d : j ∈ J}) −→ 0

as d →∞. This definition essentially comes from the theory of canon-
ical angles discussed by Gaydos [6]. That theory also gives a notion of
convergence of subspaces, that could be developed here.
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In recent years, substantial work has been done on the asymptotic behav-
ior of eigenvalues of the sample covariance matrix in the limit as d →∞, see
Baik et al. [2], Johnstone [10] and Paul [13] for Gaussian assumptions and
Baik and Silverstein [3] for non-Gaussian results when d and n increase at
the same rate, i.e. n

d → c > 0. Many of these focus on the spiked covariance
model, introduced by Johnstone [10]. The spiked covariance model assumes
that the first few eigenvalues of the population covariance matrix are greater
than 1 and the rest are set to be 1 for all d. HDLSS asymptotics, where only
d → ∞ while n is fixed, have been studied by Hall et al. [7] and Ahn et
al. [1]. They explored conditions which give the geometric representation of
HDLSS data (i.e. modulo rotation, data tend to lie at vertices of a regular
simplex.) as well as strong inconsistency of eigenvectors. Strong inconsis-
tency is also found in the context of n

d → c, in the study of phase transition,
see e.g. Paul [13], Johnstone and Lu [11], and Baik et al. [2].

In this paper, a broad and general set of conditions for consistency and
strong inconsistency are provided. Section 2 develops conditions that guar-
antee the non-zero eigenvalues of the sample covariance matrix tend to a
increasing constant, which are much more general than those of Hall et al.
[7] and Ahn et al. [1]. This asymptotic behavior of the sample covariance ma-
trix is the basis of the geometric representation of HDLSS data. Our result
gives broad new insight into this representation as discussed in section 3.
The central issue of consistency and strong inconsistency is developed in
section 4, as a series of theorems. For a fixed number κ, we assume the first
κ eigenvalues are much larger than the others. We show that when κ = 1,
the first sample eigenvector is consistent and the others are strongly incon-
sistent. We also generalize to the κ > 1 case, featuring two different types of
results (consistency and subspace consistency) according to the asymptotic
behaviors of the first κ eigenvalues. All results are combined and generalized
in the main theorem (Theorem 2). Proofs of theorems are given in section 5.

1.1. General setting. Suppose we have a d × n data matrix X(d) =
[X1,(d), . . . , Xn,(d)] with d > n, where the d-dimensional random vectors
X1,(d), . . . , Xn,(d) are independent and identically distributed. We assume
that each Xi,(d) follows a multivariate distribution (which does not have to
be Gaussian) with mean zero and covariance matrix Σd. Define the sphered

data matrix Z(d) = Λ
− 1

2
d U ′

dX(d). Then the components of the d × n ma-
trix Z(d) have univariate variances, and are uncorrelated with each other.
We shall regulate the dependency (recall for non-Gaussian data, uncorre-
lated variables can still be dependent) of the random variables in Z(d) by
a ρ-mixing condition. This allows serious weakening of the assumptions of
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4 S. JUNG AND J. S. MARRON

Gaussianity while still enabling the law of large numbers that lie behind the
geometric representation results of Hall et al. [7].

The concept of ρ-mixing was first developed by Kolmogorov and Rozanov
[12]. See Bradley [4] for a clear and insightful discussion. For −∞ ≤ J ≤ L ≤
∞, let FL

J denote the σ-field of events generated by the random variables
(Zi, J ≤ i ≤ L). For any σ-field A, let L2(A) denote the space of square-
integrable, A measurable (real-valued) random variables. For each m ≥ 1,
define the maximal correlation coefficient

ρ(m) := sup |corr(f, g)|, f ∈ L2(F j
−∞), g ∈ L2(F∞

j+m),

where sup is over all f , g and j ∈ Z. The sequence {Zi} is said to be ρ-mixing
if ρ(m) → 0 as m →∞.

While the concept of ρ-mixing is useful as a mild condition for the de-
velopment of laws of large numbers, its formulation is critically dependent
on the ordering of variables. For many interesting data types, such as mi-
croarray data, there is clear dependence but no natural ordering of the vari-
ables. Hence we assume that there is some permutation of the data which
is ρ-mixing. In particular, let {Zij,(d)}d

i=1 be the components of the jth col-
umn vector of Z(d). We assume that for each d, there exists a permutation
πd : {1, . . . , d} 7−→ {1, . . . , d} so that the sequence {Zπd(i)j,(d) : i = 1, . . . , d}
is ρ-mixing.

In the following, all the quantities depend on d, but the subscript d will be
omitted for the sake of simplicity when it does not cause any confusion. The
sample covariance matrix is defined as S = n−1XX ′. We do not subtract the
sample mean vector because the population mean is assumed to be 0. Since
the dimension of the sample covariance matrix S grows, it is challenging to
deal with S directly. A useful approach is to work with the dual of S. The
dual approach switches the role of columns and rows of the data matrix, by
replacing X by X ′. The n × n dual sample covariance matrix is defined as
SD = n−1X ′X. An advantage of this dual approach is that SD and S share
non-zero eigenvalues. If we write X as UΛ

1
2 Z and use the fact that U is a

unitary matrix,

(1.1) nSD = (Z ′Λ
1
2 U ′)(UΛ

1
2 Z) = Z ′ΛZ =

d∑
i=1

λi,dz
′
izi,

where the zi’s, i = 1, . . . , d, are the row vectors of the matrix Z.

2. HDLSS asymptotic behavior of the sample covariance ma-
trix. In this section, we investigate the behavior of the sample covariance
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matrix S when d →∞ and n is fixed. Under mild and broad conditions, the
eigenvalues of S, or the dual SD, behave asymptotically as if they are from
the identity matrix. That is, the set of sample eigenvectors tends to be an
arbitrary choice. This lies at the heart of the geometric representation results
of Hall et al. [7] and Ahn et al. [1] which are studied more deeply in section
3. We will see that this condition readily implies the strong inconsistency of
sample eigenvectors, see Theorem 2.

The conditions for the theorem are conveniently formulated in terms of a
measure of sphericity

ε ≡ tr2(Σ)
dtr(Σ2)

=
(
∑d

i=1 λi,d)2

d
∑d

i=1 λ2
i,d

,

proposed and used by John [8, 9] as the basis of a hypothesis test for equality
of eigenvalues. Note that these inequalities always hold:

1
d
≤ ε ≤ 1.

Also note that perfect sphericity of the distribution (i.e. equality of eigen-
values) occurs only when ε = 1. The other end of the ε range is the most
singular case where in the limit as the first eigenvalue dominates all others.

Ahn et al. [1] claimed that if ε � 1
d , in the sense that ε−1 = o(d), then

the eigenvalues of SD tend to be identical in probability as d → ∞. How-
ever, they needed an additional assumption (e.g. a Gaussian assumption
on X(d)) to have independence among components of Z(d), as described in
example 3.1. In this paper, we extend this result to the case of arbitrary
distributions with dependency regulated by the ρ-mixing condition as in
section 1.1, which is much more general than either a Gaussian or an inde-
pendence assumption. We also explore convergence in the almost sure sense
with stronger assumptions. Our results use a measure of sphericity for part
of the eigenvalues for conditions of a.s. convergence and also for later use in
section 4. In particular, define the measure of sphericity for {λk,d, . . . , λd,d}
as

εk ≡
(
∑d

i=k λi,d)2

d
∑d

i=k λ2
i,d

.

For convenience, we name several assumptions used in this paper made
about the measure of sphericity ε:

• The ε-condition: ε � 1
d , i.e.

(2.1) (dε)−1 =
∑d

i=1 λ2
i,d

(
∑d

i=1 λi,d)2
→ 0 as d →∞.
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6 S. JUNG AND J. S. MARRON

• The εk-condition: εk � 1
d , i.e.

(2.2) (dεk)−1 =
∑d

i=k λ2
i,d

(
∑d

i=k λi,d)2
→ 0 as d →∞.

• The strong εk-condition: For some fixed l ≥ k, εl � 1√
d
, i.e.

(2.3) d−
1
2 ε−1

l =
d

1
2
∑d

i=l λ
2
i,d

(
∑d

i=l λi,d)2
→ 0 as d →∞.

Remark. Note that the εk-condition is identical to the ε-condition when
k = 1. Similarly, the strong εk-condition is also called the strong ε-condition
when k = 1. The strong εk-condition is stronger than the εk condition if the
minimum of l’s which satisfy (2.3), lo, is as small as k. But, if lo > k, then
this is not necessarily true. We will use the strong εk-condition combined
with the εk-condition.

Note that the ε-condition is quite broad in the spectrum of possible values
of ε: It only avoids the most singular case. The strong ε-condition further
restricts εl to essentially in the range ( 1√

d
, 1].

The following theorem states that if the (strong) ε-condition holds for
Σd, then the sample eigenvalues behave as if they are from a scaled identity
matrix. It uses the notation In for the n× n identity matrix.

Theorem 1. For a fixed n, let Σd = UdΛdU
′
d, d = n + 1, n + 2, . . . be

a sequence of covariance matrices. Let X(d) be a d × n data matrix from a
d-variate distribution with mean zero and covariance matrix Σd. Let Sd =
ÛdΛ̂dÛ

′
d be the sample covariance matrix estimated from X(d) for each d and

let SD,d be its dual.

(1) Assume that the components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly
bounded fourth moments and are ρ-mixing under some permutation. If (2.1)
holds, then

(2.4) c−1
d SD,d −→ In,

in probability as d →∞, where cd = n−1∑d
i=1 λi,d.

(2) Assume that the components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly
bounded eighth moments and are independent to each other. If both (2.1)
and (2.3) hold, then c−1

d SD,d → In almost surely as d →∞.
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The (strong) ε-condition holds for quite general settings. The strong ε-
condition combined with the ε-condition holds under;

(a) Null case: All eigenvalues are the same.
(b) Mild spiked model: The first m eigenvalues are moderately larger than

the others, for example, λ1,d = · · · = λm,d = C1 · dα and λm+1,d =
· · · = λd,d = C2, where m < d, α < 1 and C1, C2 > 0.

The ε-condition fails when;

(c) Singular case: Only the first few eigenvalues are non-zero.
(d) Exponential decrease: λi,d = c−i for some c > 1.
(e) Sharp spiked model: The first m eigenvalues are much larger than the

others. One example is the same as (b) but α ≥ 1.

The polynomially decreasing case, λi,d = i−β, is interesting because it
depends on the power β;

(f-1) The strong ε-condition holds when 0 ≤ β < 3
4 .

(f-2) The ε-condition holds but the strong ε-condition fails when 3
4 ≤ β ≤ 1.

(f-3) The ε-condition fails when β > 1.

Another family of examples that includes all three cases is the spiked
model with the number of spikes increasing, for example, λ1,d = · · · = λm,d =
C1 · dα and λm+1,d = · · · = λd,d = C2, where m = bdβc, 0 < β < 1 and
C1, C2 > 0;

(g-1) The strong ε-condition holds when 0 ≤ 2α + β < 3
2 ;

(g-2) The ε-condition holds but the strong ε-condition fails when 3
2 ≤ 2α +

β < 2;
(g-3) The ε-condition fails when 2α + β ≥ 2.

3. Geometric representation of HDLSS data. Suppose X ∼ Nd(0, Id).
When the dimension d is small, most of the mass of the data lies near origin.
However with a large d, Hall et al. [7] showed that Euclidean distance of X
to the origin is described as

(3.1) ‖X‖ =
√

d + op(
√

d).

Moreover the distance between two samples is also rather deterministic, i.e.

(3.2) ‖X1 −X2‖ =
√

2d + op(
√

d).

These results can be derived by the law of large numbers. Hall et al. [7]
generalized those results under the assumptions that d−1∑d

i=1 Var(Xi) → 1
and {Xi} is ρ-mixing.
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8 S. JUNG AND J. S. MARRON

Application of part (1) of Theorem 1 generalizes these results. Let X1,(d),
X2,(d) be two samples that satisfy the assumptions of Theorem 1 part (1).
Assume without loss of generality that limd→∞ d−1∑d

i=1 λi,d = 1. The scaled
squared distance between two data points is

‖X1,(d) −X2,(d)‖2∑d
i=1 λi,d

=
d∑

i=1

λ̃i,dz
2
i1 +

d∑
i=1

λ̃i,dz
2
i2 +

d∑
i=1

λ̃i,dzi1zi2,

where λ̃i,d = λi,d∑d

i=1
λi,d

. Note that by (1.1), the first two terms are diagonal

elements of c−1
d SD,d in Theorem 1 and the third term is an off-diagonal

element. Since c−1
d SD,d → In, we have (3.2). (3.1) is derived similarly.

Remark. If limd→∞ d−1∑d
i=1 λi,d = 1, then the conclusion (2.4) of The-

orem 1 part (1) holds if and only if the representations (3.1) and (3.2) hold
under the same assumptions in the theorem.

In this representation, the ρ-mixing assumption plays a very important
role. The following example, due to John Kent, shows that some type of
mixing condition is important.

Example 3.1 (Strong dependency via a scale mixture of Gaussian). Let
X = Y1U +σY2(1−U), where Y1, Y2 are two independent Nd(0, Id) random
variables, U = 0 or 1 with probability 1

2 and independent of Y1, Y2, and
σ > 1. Then,

‖X‖ =

{
d

1
2 + Op(1) w.p. 1

2

σd
1
2 + Op(1) w.p. 1

2

Thus, (3.1) does not hold. Note that since Cov(X) = 1+σ2

2 Id, the ε-condition
holds and the variables are uncorrelated. However, there is strong depen-
dency, i.e. Cov(z2

i , z2
j ) = (1+σ2

2 )−2Cov(x2
i , x

2
j ) = (1−σ2

1+σ2 )2 for all i 6= j which
implies that ρ(m) > c for some c > 0, for all m. Thus, the ρ-mixing condi-
tion does not hold for all permutation. Note that, however, under Gaussian
assumption, given any covariance matrix Σ, Z = Σ− 1

2 X has independent
components.

Note that in the case X = (X1, . . . , Xd) is a sequence of i.i.d. random
variables, the results (3.1) and (3.2) can be considerably strengthened to
‖X‖ =

√
d + Op(1), and ‖X1 −X2‖ =

√
2d + Op(1). The following example

shows that strong results are beyond the reach of reasonable assumption.
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Example 3.2 (Varying sphericity). Let X ∼ Nd(0,Σd), where Σd =

diag(dα, 1, . . . , 1) and α ∈ (0, 1). Define Z = Σ
− 1

2
d X. Then the components

of Z, zi’s, are independent standard Gaussian random variables. We get
‖X‖2 = dαz2

1 +
∑d

i=2 z2
i . Now for 0 < α < 1

2 , d−
1
2 (‖X‖2 − d) ⇒ N (0, 1)

and for 1
2 < α < 1, d−α(‖X‖2 − d) ⇒ z2

1 , where ⇒ denotes convergence in
distribution. Thus by the delta-method, we get

‖X‖ =

{ √
d + Op(1), if 0 < α < 1

2 ,√
d + Op(dα− 1

2 ), if 1
2 < α < 1.

In both cases, the representation (3.1) holds.

4. Consistency and strong inconsistency of PC directions. In
this section, conditions for consistency or strong inconsistency of the sample
PC direction vectors are investigated, in the general setting of section 1.1.
The generic eigen-structure of the covariance matrix that we assume is the
following. For a fixed number κ, we assume the first κ eigenvalues are much
larger than others. (The precise meaning of large will be addressed shortly.)
The rest of eigenvalues are assumed to satisfy the ε-condition, which is very
broad in the range of sphericity. We begin with the case κ = 1 and generalize
the result for κ > 1 in two distinct ways. The main theorem (Theorem 2)
contains and combines those previous results and also embraces various cases
according to the magnitude of the first κ eigenvalues. We also investigate
the sufficient conditions for a stronger result, i.e. almost sure convergence,
which involves use of the strong ε-condition.

4.1. Criteria for consistency or strong inconsistency of the first PC di-
rection. Consider the simplest case that only the first PC direction of S
is of interest. Section 3 gives some preliminary indication of this. As an il-
lustration, consider a spiked model as in Example 3.2 but now let α > 1.
Let {ui} be the set of eigenvectors of Σd and Vd−1 be the subspace of all
eigenvectors except the first one. Then the projection of X onto u1 has a
norm ‖Proju1

X‖ = ‖X1‖ = Op(d
α
2 ). The projection of X onto Vd−1 has a

norm
√

d + op(
√

d) by (3.1). Thus when α > 1, if we scale the whole data
space Rd by dividing by d

α
2 , then ProjVd−1

X becomes negligible compared to
Proju1

X. (See Figure 1.) Thus for a large d, Σd ≈ λ1u1u
′
1 and the variation

of X is mostly along u1. Therefore the sample eigenvector corresponding to
the largest eigenvalue, û1, will be similar to u1.

To generalize this, suppose all eigenvalues except the first one satisfy
the ε-condition, i.e. ε2 � 1

d . The following proposition states that under the
general setting in section 1.1, the first sample eigenvector û1 converges to its
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10 S. JUNG AND J. S. MARRON

Fig 1. Projection of a d-dimensional random variable X onto u1 and Vd−1. If α > 1, then
the subspace Vd−1 becomes negligible compared to u1 when d→∞

population counterpart u1 (consistency) or tends to be perpendicular to u1

(strong inconsistency) according to the magnitude of the first eigenvalue λ1,
while all the other sample eigenvectors are strongly inconsistent regardless
of the magnitude λ1.

Proposition 1. For a fixed n, let Σd = UdΛdU
′
d, d = n + 1, n + 2, . . .

be a sequence of covariance matrices. Let X(d) be a d× n data matrix from
a d-variate distribution with mean zero and covariance matrix Σd. Let Sd =
ÛdΛ̂dÛ

′
d be the sample covariance matrix estimated from X(d) for each d.

Assume the following:

(a) The components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded fourth
moments and are ρ-mixing for some permutation.

For an α1 > 0,

(b)
λ1,d

dα1
−→ c1 for some c1 > 0,

(c) The ε2-condition holds and
∑d

i=2 λi,d = O(d).

If α1 > 1, then the first sample eigenvector is consistent and the others are
strongly inconsistent in the sense that

Angle(û1, u1)
p−→ 0 as d →∞,

Angle(ûi, ui)
p−→ π

2
as d →∞ ∀i = 2, . . . , n.

imsart-aos ver. 2007/12/10 file: PCAconsistency.tex date: June 26, 2008



PCA CONSISTENCY IN HDLSS CONTEXT 11

If α1 ∈ (0, 1), then all sample eigenvectors are strongly inconsistent, i.e.

Angle(ûi, ui)
p−→ π

2
as d →∞ ∀i = 1, . . . , n.

Note that the gap between consistency and strong inconsistency is very
thin, i.e. if we avoid α1 = 1, then we have either consistency or strong incon-
sistency. Thus in the HDLSS context, asymptotic behavior of PC directions
is mostly captured by consistency and strong inconsistency. Now it makes
sense to say λ1 is much larger than the others when α1 > 1, which results
in consistency. Also note that if α1 < 1, then the ε-condition holds, which is
in fact the condition for Theorem 1.

4.2. Generalizations. In this section, we generalize Proposition 1 to the
case that multiple eigenvalues are much larger than the others. This leads
to two different types of result.

First is the case that the first p eigenvectors are each consistent. Consider
a covariance structure with multiple spikes, that is, p eigenvalues, p > 1,
which are much larger than the others. In order to have consistency of the
first p eigenvectors, we require that each of p eigenvalues has a distinct order
of magnitude, for example, λ1,d = d3, λ2,d = d2 and sum of the rest is order
of d.

Proposition 2. For a fixed n, let Σd, X(d), and Sd be as before. Assume
(a) of Proposition 1. Let α1 > α2 > · · · > αp > 1 for some p < n. Suppose
the following conditions hold:

(b)
λi,d

dαi
−→ ci for some ci > 0, ∀i = 1, . . . , p

(c) The εp+1-condition holds and
∑d

i=p+1 λi,d = O(d).

Then, the first p sample eigenvectors are consistent and the others are
strongly inconsistent in the sense that

Angle(ûi, ui)
p−→ 0 as d →∞ ∀i = 1, . . . , p,

Angle(ûi, ui)
p−→ π

2
as d →∞ ∀i = p + 1, . . . , n.

Consider now a distribution having a covariance structure with multiple
spikes as before. Let k be the number of spikes. An interesting phenomenon
happens when the first k eigenvalues are of the same order of magnitude,
i.e. limd→∞

λ1,d

λk,d
= c > 1 for some fixed constant c. Then the first k sample

eigenvectors are neither consistent nor strongly inconsistent. However, all
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12 S. JUNG AND J. S. MARRON

of those random directions converge to the subspace spanned by the first k
population eigenvectors. Essentially, when eigenvalues are of the same order,
the eigen-directions can not be separated but are subspace consistent with
the proper subspace.

Proposition 3. For a fixed n, let Σd, X(d), and Sd be as before. Assume
(a) of Proposition 1. Let α1 > 1 and k < n. Suppose the following conditions
hold:

(b)
λi,d

dα1
−→ ci for some ci > 0, ∀i = 1, . . . , k

(c) The εk+1-condition holds and
∑d

i=k+1 λi,d = O(d).

Then, the first k sample eigenvectors are subspace-consistent with the
subspace spanned by the first k population eigenvectors and the others are
strongly inconsistent in the sense that

Angle(ûi, span{u1, . . . , uk})
p−→ 0 as d →∞ ∀i = 1, . . . , k,

Angle(ûi, ui)
p−→ π

2
as d →∞ ∀i = k + 1, . . . , n.

4.3. Main theorem. Propositions 1 - 3 are combined and generalized in
the main theorem. Consider p groups of eigenvalues, which grow at the same
rate within each group as in Proposition 3. Each group has a finite number of
eigenvalues and the number of eigenvalues in all groups, κ, does not exceed
n. Also similar to Proposition 2, let the orders of magnitude of the p groups
be different to each other. We require that the εκ+1-condition holds. The
following theorem states that a sample eigenvector of a group converges to
the subspace of population eigenvectors of the group.

Theorem 2 (Main theorem). For a fixed n, let Σd, X(d), and Sd be as
before. Assume (a) of Proposition 1. Let α1, . . . , αp be such that α1 > α2 >
· · · > αp > 1 for some p < n. Let k1, . . . , kp be nonnegative integers such
that

∑p
j=1 kj

.= κ < n. Let k0 = 0 and kp+1 = d−κ. Let J1, . . . , Jp+1 be sets
of indices such that

Jl =


l−1∑
j=0

kj + 1,
l−1∑
j=0

kj + 2, . . . ,
l−1∑
j=0

kj + kl

 , l = 1, . . . , p + 1.

Suppose the following conditions hold:

(b)
λi,d

dαl
−→ ci for some ci > 0, ∀i ∈ Jl,

∀l = 1, . . . , p

(c) The εκ+1-condition holds and
∑

i∈Jp+1
λi,d = O(d).
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Then, the sample eigenvectors whose label is in the group Jl, for l = 1, . . . , p,
are subspace-consistent with the space spanned by the population eigenvectors
whose labels are in Jl and the others are strongly inconsistent in the sense
that

(4.1) Angle(ûi, span{uj : j ∈ Jl})
p−→ 0 as d →∞ ∀i ∈ Jl,

∀l = 1, . . . p,

and

(4.2) Angle(ûi, ui)
p−→ π

2
as d →∞ ∀i = κ + 1, . . . , n.

Remark. If the cardinality of Jl, kl, is 1, then (4.1) implies ûi is con-
sistent for i ∈ Jl.

Note that the formulation of the theorem is similar to the spiked co-
variance model but much more general. The uniform assumption on the
underlying eigenvalues, i.e. λi = 1 for all i > κ, is relaxed to the ε-condition.
We also have catalogued a large collection of specific results according to
the various sizes of spikes.

These results are now illustrated for some classes of covariance matrices
that are of special interest. These covariance matrices are easily represented

in factor form, i.e. in terms of Fd = Σ
1
2
d .

Example 4.1. Consider a series of covariance matrices {Σd}d. Let Σd =
FdF

′
d, where Fd is a d× d symmetric matrix such that

Fd = (1− ρd)Id + ρdJd =


1 ρd · · · ρd

ρd 1
. . .

...
...

. . . . . . ρd

ρd · · · ρd 1

 ,

where Jd is the d × d matrix of ones and ρd ∈ (0, 1) depends on d. The
eigenvalues of Σd are λ1,d = (dρd + 1 − ρd)2, λ2,d = · · · = λd,d = (1 − ρd)2.
The first eigenvector is u1 = 1√

d
(1, 1, . . . , 1)′, while {u2, . . . , ud} are any or-

thogonal sets of direction vectors perpendicular to u1. Note that
∑d

i=2 λi,d =
d(1− ρd)2 = O(d) and the ε2-condition holds. Let Xd ∼ Nd(0,Σd). By The-
orem 2, if ρd ∈ (0, 1) is a fixed constant or decreases to 0 slowly so that
ρd � d−

1
2 , then the first PC direction û1 is consistent. Else if ρd decreases

to 0 so quickly that ρd � d−
1
2 , then û1 is strongly inconsistent. In both

cases all the other sample PC directions are strongly inconsistent.
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14 S. JUNG AND J. S. MARRON

Example 4.2. Consider now a 2d × 2d covariance matrix Σd = FdF
′
d,

where Fd is a block diagonal matrix such that

Fd =

(
F1,d O
O F2,d

)
,

where F1,d = (1−ρ1,d)Id+ρ1,dJd and F2,d = (1−ρ2,d)Id+ρ2,dJd. Suppose 0 <
ρ2,d ≤ ρ1,d < 1. Note that λ1,d = (dρ1,d +1−ρ1,d)2 , λ2,d = (dρ2,d +1−ρ2,d)2

and the ε3-condition holds. Let X2d ∼ N2d(0,Σd). Application of Theorem 2
for various conditions on ρ1,d, ρ2,d is summarized as follows. Denote, for two
non-increasing sequences µd, νd ∈ (0, 1), µd � νd for νd = o(µd) and µd � νd

for limd→∞
µd
νd

= c ∈ [1,∞).

1. ρ1,d � ρ2,d � d−
1
2 : Both û1,û2 consistent.

2. ρ1,d � ρ2,d � d−
1
2 : Both û1,û2 subspace-consistent to span{u1, u2}.

3. ρ1,d � d−
1
2 � ρ2,d : û1 consistent, û2 strongly inconsistent.

4. d−
1
2 � ρ1,d � ρ2,d : Both û1,û2 strongly inconsistent.

4.4. Corollaries to the main theorem. The result can be extended for
special cases.

First of all, consider constructing X(d) from Zd by X(d) ≡ UdΛ
1
2
d Zd where

Zd is a truncated set from an infinite sequence of independent random vari-
ables with mean zero and variance 1. This assumption makes it possible
to have convergence in the almost sure sense. This is mainly because the
triangular array {Z1i,(d)}i,d becomes the single sequence {Z1i}i.

Corollary 1. Suppose all the assumptions in Theorem 2, with the as-
sumption (a) replaced by the following:

(a′) The components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded eighth
moments and are independent to each other. Let Z1i,(d) ≡ Z1i for all
i, d.

If the strong εκ+1-condition (2.3) holds, then the mode of convergence of
(4.1) and (4.2) is almost sure.

Second, consider the case that both d, n tend to infinity. Under the setting
of Theorem 2, we can separate PC directions better when the eigenvalues
are distinct. When d → ∞, we have subspace consistency of ûi with the
proper subspace, which includes ui. Now letting n → ∞ makes it possible
for ûi to be consistent.
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Corollary 2. Let Σd, X(d), and Sd be as before. Under the assumptions
(a), (b) and (c) in Theorem 2, assume further that the first κ eigenvalues
are distinct, i.e. λi,d > λi+1,d for 1 ≤ i < κ, for all d. Then for all i ≤ κ,

(4.3) Angle(ûi, ui)
p−→ 0 as d →∞, n →∞.

If the assumption (a) is replaced by the assumption (a′) of Corollary 1,
then the mode of convergence of (4.3) is almost sure.

4.5. Limiting distributions of corresponding eigenvalues. The study of
asymptotic behavior of the sample eigenvalues is an important part in the
proof of Theorem 2, and also could be of independent interest. The following
lemma states that the large sample eigenvalues increase at the same speed
as their population counterpart and the relatively small eigenvalues tend to
be of order of d as d tends to infinity.

Lemma 1. If the assumptions of Theorem 2 hold, then

(4.4) λ̂i =

{
Op(dαl), if i ∈ Jl,

∀l = 1, . . . , p,
Op(d), if i = κ + 1, . . . , n.

If the data matrix X(d) is Gaussian, then the first κ sample eigenvalues
converge in distribution to some quantities, which have known distributions.

Corollary 3. Under all the assumptions of Theorem 2, assume further
that X(d) ∼ Nd(0,Σd) for each d. Then,

λ̂i

dαl
=⇒ ϕ

i−
∑l−1

j=1
kl

(n−1Wkl
(n, Cl)) as d →∞ ∀i ∈ Jl,

∀l = 1, . . . p,

where Wkl
(n, Cl) denotes a kl×kl random matrix distributed as the Wishart

distribution with degree of freedom n and covariance Cl, and ϕi(A) denotes
the ith largest eigenvalue of the square matrix A.

If kl = 1 for some l, then for i ∈ Jl

λ̂i

λi
=⇒ χ2

n

n
as d →∞,

where χ2
n denotes a random variable distributed as the χ2 distribution with

degree of freedom n.

This generalizes the results in section 4.2 of Ahn et al. [1].
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16 S. JUNG AND J. S. MARRON

5. Proofs.

5.1. Proof of Theorem 1. First we give the proof of part (1). By (1.1),
the mth diagonal entry of nSD can be expressed as

∑d
i=1 λi,dz

2
im,d where

zim,d is the (i,m)th entry of the matrix Z(d). Define the relative eigenvalues

λ̃i,d as λ̃i,d ≡
λi,d∑d

i=1
λi,d

. Let πd denote the given permutation for each d and

let Yi = z2
πd(i)m,d− 1. Then the Yi’s are ρ-mixing, E(Yi) = 0 and E(Y 2

i ) ≤ B

for all i for some B < ∞. Let ρ(m) = sup |corr(Yi, Yi+m)| where the sup is
over all i. We shall use the following lemma.

Lemma 2. For any permutation π∗d,

lim
d→∞

d∑
i=1

λ̃π∗
d
(i),dρ(i) = 0.

Proof. For any δ > 0, since limi→∞ ρ(i) = 0, we can choose N such that
ρ(i) < δ

2 for all i > N . Since limd→∞
∑d

i=1 λ̃2
π∗

d
(i),d = 0, we get limd→∞

∑N
i=1 λ̃π∗

d
(i),d =

0. Thus we can choose d0 satisfying
∑N

i=1 λ̃π∗
d
(i),d < δ

2 for all d > d0. With
the fact

∑d
i=1 λ̃i,d = 1 for all d and ρ(i) < 1, we get for all d > d0,

d∑
i=1

λ̃π∗
d
(i),dρ(i) =

N∑
i=1

λ̃π∗
d
(i),dρ(i) +

d∑
i=N+1

λ̃π∗
d
(i),dρ(i) < δ.

Now let π−1
d be the inverse permutation of πd. Then by Lemma 2 and the

ε-condition, there exists a permutation π∗d such that

E(
d∑

i=1

λ̃π−1
d

(i),dYi)2 =
d∑

i=1

λ̃2
π−1

d
(i),d

EY 2
i + 2

d∑
i=1

λ̃π−1
d

(i),d

d∑
j=i+1

λ̃π−1
d

(j),dEYiYj

≤
d∑

i=1

λ̃2
i,dB + 2

d∑
i=1

λ̃i,d

d∑
j=1

λ̃π∗
d
(j),dρ(j)B2 → 0,

as d →∞. Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz
2
ij − 1

∣∣∣∣∣ > τ

]
≤

E
(∑d

i=1 λ̃π−1
d

(i),dYi

)2

τ2
→ 0,

as d → ∞. Thus we conclude that the diagonal elements of nSD converge
to 1 in probability.
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The off-diagonal elements of nSD can be expressed as
∑d

i=1 λi,dzimzil.
Similar arguments to those used in the diagonal case, together with the fact
that zim and zil are independent, gives that

E(
d∑

i=1

λ̃i,dzimzil)2 ≤
d∑

i=1

λ̃2
i,d + 2

d∑
i=1

λ̃i,d

d∑
j=i+1

λ̃π−1
d

(j),dρ
2(j − i) → 0,

as d →∞. Thus by Chebyshev’s inequality, the off-diagonal elements of nSD

converge to 0 in probability.
Now, we give the proof for part(2). We begin with the mth diagonal entry

of nSD,
∑d

i=1 λi,dz
2
ij . Note that since

∑k−1
i=1 λ̃i,d → 0 by the ε-condition, we

assume k = 1 in (2.3) without loss of generality.
Let Yi = z2

im − 1. Note that the Yi’s are independent, E(Yi) = 0 and
E(Y 4

i ) ≤ B for all i for some B < ∞. Now

(5.1) E

(
d∑

i=1

λ̃i,dYi

)4

= E
d∑

i,j,k,l=1

λ̃i,dλ̃j,dλ̃k,dλ̃l,dYiYjYkYl.

Note that terms in the sum of the form EYiYjYkYl, EY 2
i YjYk, and EY 3

i Yj

are 0 if i, j, k, l are distinct. The only terms that do not vanish are those
of the form EY 4

i , EY 2
i Y 2

j , both of which are bounded by B. Note that by
applying the Cauchy-Schwartz inequality repeatedly, we get

d∑
i=1

λ̃4
i,d ≤ (

d∑
i=1

λ̃2
i,d)

2

Also note that by the strong ε-condition,
∑d

i=1 λ̃2
i,d = (dε)−1 = o(d−

1
2 ). Thus

(5.1) is bounded as

E

(
d∑

i=1

λ̃i,dYi

)4

≤
d∑

i=1

λ̃4
i,dB +

∑
i=j 6=k=l

λ̃i,dλ̃k,dB

≤ (
d∑

i=1

λ̃2
i,d)

2B +

(
4
2

)
(

d∑
i=1

λ̃2
i,d)

2B

= o(d−1)

Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz
2
ij − 1

∣∣∣∣∣ > τ

]
≤

E
(∑d

i=1 λ̃i,dYi

)4

τ4
≤ o(d−1)

τ4
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Summing over d gives
∑∞

d=1 P
[∣∣∣∑d

i=1 λ̃i,dz
2
ij − 1

∣∣∣ > τ
]

< ∞ and by Borel-

Cantelli Lemma, we conclude that a diagonal element
∑d

i=1 λ̃i,dz
2
ij converges

to 1 almost surely.
The off-diagonal elements of nSD can be expressed as

∑d
i=1 λi,dzimzil.

Using similar arguments to those used in the diagonal case, we have

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dzimzil

∣∣∣∣∣ > τ

]
≤

E
(∑d

i=1 λ̃i,dzimzil

)4

τ4
≤ o(d−1)

τ4
,

and again by the Borel-Cantelli Lemma, the off-diagonal elements converge
to 0 almost surely.

5.2. Proofs of Lemma 1 and Theorem 2. The proof of Theorem 2 is
divided in two parts. Since eigenvectors are associated to eigenvalues, at first,
we focus on asymptotic behavior of sample eigenvalues (section 5.2.1) and
then investigate consistency or strong inconsistency of sample eigenvectors
(section 5.2.2).

5.2.1. Proof of Lemma 1. We introduce a few definitions and lemmas
that are useful to prove this lemma. Let Sm be the set of all m×m symmetric
matrices. Let ϕ(A) be a vector of eigenvalues of A for A ∈ Sm arranged in
non-increasing order and let ϕi(A) be the ith largest eigenvalue of A. Let
‖ • ‖2 be the usual 2-norm of vectors, and ‖ • ‖F be the Frobenius norm of
matrices defined by ‖A‖F = (

∑
i,j A2

ij)
1/2.

Lemma 3 (Wielandt-Hoffman inequality). If A, B ∈ Sm, then

‖ϕ(A + B)− ϕ(A)‖2 ≤ ‖ϕ(B)‖2 = ‖B‖F .

This inequality is known as Wielandt-Hoffman inequality. See Wilkinson
[15] for detailed discussion and proof.

Corollary 4 (Continuity of eigenvalues). The mapping of eigenvalues
ϕ : Sm 7−→ Rm is uniformly continuous.

Proof. By Lemma 3, ∀ε > 0, ∀A,B ∈ Sm, ∃δ = ε such that ‖A−B‖F ≤
δ, then

‖ϕ(A)− ϕ(B)‖2 ≤ ‖ϕ(A−B)‖2 ≤ δ = ε.

The proof relies heavily on the following lemma.
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Lemma 4 (Weyl’s inequality). If A, B ∈ Sm, then ∀k = 1, . . . ,m,

ϕk(A) + ϕm(B)
ϕk+1(A) + ϕm−1(B)

...
ϕm(A) + ϕk(B)

 ≤ ϕk(A + B) ≤


ϕk(A) + ϕ1(B)

ϕk−1(A) + ϕ2(B)
...

ϕ1(A) + ϕk(B)

This inequality is discussed in Rao [14] and its use on asymptotic studies
of eigenvalues of a random matrix appeared in Eaton and Tyler [5].

Since the dimension of the sample covariance matrix S grows, it is not
easy to deal with eigenvalues of S directly. One of the main ideas of the
proof is working with SD, dual of S. By our decomposition (1.1),

nSD = (Z ′Λ
1
2 U ′)(UΛ

1
2 Z) = Z ′ΛZ.

We also write Z and Λ as block matrices such that

Z =


Z1

Z2
...

Zp+1

 ,

where Zl is a kl × n matrix for each l = 1, . . . , p + 1 and

Λ =


Λ1 O · · · O
O Λ2 · · · O
...

...
. . .

...
O O · · · Λp+1

 ,

where Λl(≡ Λl,d) is a kl× kl diagonal matrix for each l = 1, . . . , p + 1 and O
denotes a matrix where all elements are zeros. Now we can write

(5.2) nSD = Z ′ΛZ =
p+1∑
l=1

Z ′
lΛlZl.

Note that the kl × kl random matrix Zl depends on d. We will, however,
simplify notation Zl for representing for all d = 1, . . . ,∞.

Note that Theorem 1 implies that when the last term in equation (5.2) is
divided by d, it converges to an identity matrix, namely,

(5.3) d−1Z ′
p+1Λp+1Zp+1

p−→ K · In,
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where K ∈ (0,∞) is such that d−1∑
j∈Jp+1

λi,d → K. Moreover dividing by
dα1 gives us

nd−α1SD = d−α1Z ′
1Λ1Z1 + d−α1

p∑
l=2

Z ′
lΛlZl + d1−α1d−1Z ′

p+1Λp+1Zp+1.

By the assumption (b), the first term on the right hand side converges to
Z ′

1C1Z1 where C1 is the k1×k1 diagonal matrix such that C1 = diag{cj ; j ∈
J1} and the other terms tend to a zero matrix. Thus, we get

nd−α1SD =⇒ Z ′
1C1Z1 as d →∞.

Note that the non-zero eigenvalues of Z ′
1C1Z1 are the same as the nonzero

eigenvalues of C
1
2
1 Z1Z

′
1C

1
2
1 which is a k1 × k1 random matrix with full rank

almost surely. By Corollary 4, we have for i ∈ J1,

ϕi(nd−α1SD) =⇒ ϕi(Z ′
1C1Z1) as d →∞

= ϕi(C
1
2
1 Z1Z

′
1C

1
2
1 ).

Thus, we conclude that for the sample eigenvalues in the group J1, λ̂i =
ϕi(SD) = Op(dα1) for i ∈ J1.

Let us focus on eigenvalues whose indices are in the group J2, . . . , Jp.
Suppose we have λ̂i = Op(dαj ) for all i ∈ Jj , for j = 1, . . . , l − 1. Pick any
i ∈ Jl. We will provide upper and lower bounds on λ̂i by Weyl’s inequality
(Lemma 4). Dividing both sides of (5.2) by dαl , we get

nd−αlSD = d−αl

l−1∑
j=1

Z ′
jΛjZj + d−αl

p+1∑
j=l

Z ′
jΛjZj

and apply Weyl’s inequality for the upper bound,

ϕi(nd−αlSD) ≤ ϕ
1+
∑l−1

j=1
kj

(d−αl

l−1∑
j=1

Z ′
jΛjZj) + ϕ

i−
∑l−1

j=1
kj

(d−αl

p+1∑
j=l

Z ′
jΛjZj)

= ϕ
i−
∑l−1

j=1
kj

(d−αl

p+1∑
j=l

Z ′
jΛjZj).(5.4)

Note that the first term vanishes since the rank of d−αl
∑l−1

j=1 Z ′
jΛjZj is at

most
∑l−1

j=1 kj . Also note that the matrix in the upper bound (5.4) converges
to a simple form

d−αl

p+1∑
j=l

Z ′
jΛjZj = d−αlZ ′

lΛlZl + d−αl

p+1∑
j=l+1

Z ′
jΛjZj

=⇒ Z ′
lClZl as d →∞,
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where Cl is the kl × kl diagonal matrix such that Cl = diag{cj ; j ∈ Jl}.
In order to have a lower bound of λ̂i, Weyl’s inequality is applied to the

expression

d−αl

l∑
j=1

Z ′
jΛjZj + d−αl

p+1∑
j=l+1

Z ′
jΛjZj = nd−αlSD,

so that

(5.5) ϕi(d−αl

l∑
j=1

Z ′
jΛjZj) + ϕn(d−αl

p+1∑
j=l+1

Z ′
jΛjZj) ≤ ϕi(nd−αlSD).

It turns out that the first term of the left hand side is not easy to manage,
so we again use Weyl’s inequality to get
(5.6)

ϕ∑l

j=1
kj

(d−αl

l−1∑
j=1

Z ′
jΛjZj) ≤ ϕi(d−αl

l∑
j=1

Z ′
jΛjZj)+ϕ∑l

j=1
kj−i+1

(−d−αlZ ′
lΛlZl),

where the left hand side is 0 since the rank of the matrix inside is at most∑l−1
j=1 kj . Note that since d−αlZ ′

lΛlZl and d−αlΛ
1
2
l ZlZ

′
lΛ

1
2
l share non-zero

eigenvalues, we get

ϕ∑l

j=1
kj−i+1

(−d−αlZ ′
lΛlZl) = ϕ∑l

j=1
kj−i+1

(−d−αlΛ
1
2
l ZlZ

′
lΛ

1
2
l )

= ϕ
kl−i+

∑l−1

j=1
kj+1

(−d−αlΛ
1
2
l ZlZ

′
lΛ

1
2
l )

= −ϕ
i−
∑l−1

j=1
kj

(d−αlΛ
1
2
l ZlZ

′
lΛ

1
2
l )

= −ϕ
i−
∑l−1

j=1
kj

(d−αlZ ′
lΛlZl).(5.7)

Here we use the fact that for any m×m positive definite symmetric matrix
A, ϕi(A) = −ϕm−i+1(−A) for all i = 1, . . . ,m.

Combining (5.5), (5.6), and (5.7) gives the lower bound

(5.8) ϕ
i−
∑l−1

j=1
kj

(d−αlZ ′
lΛlZl) + ϕn(d−αl

p+1∑
j=l+1

Z ′
jΛjZj) ≤ ϕi(nd−αlSD).

Note that the matrix inside of the first term of the lower bound (5.8) con-
verges to Z ′

lClZl in distribution. The second term converges to 0 since the
matrix inside converges to a zero matrix.
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The difference between the upper and lower bounds of ϕi(nd−αlSD) con-
verges to 0 since

ϕ
i−
∑l−1

j=1
kj

(d−αl

p+1∑
j=l

Z ′
jΛjZj)− ϕ

i−
∑l−1

j=1
kj

(d−αlZ ′
lΛlZl) → 0,

as d → ∞. This is because ϕ is a continuous function and the difference
between the two matrices converges to zero matrix. Therefore ϕi(nd−αlSD)
converges to the upper or lower bound as d →∞.

Now since both upper and lower bound of ϕi(nd−αlSD) converge in dis-
tribution to same quantity, we have

ϕi(nd−αlSD) =⇒ ϕ
i−
∑l−1

j=1
kj

(Z ′
lClZl) as d →∞.

= ϕ
i−
∑l−1

j=1
kj

(C
1
2
l ZlZ

′
lC

1
2
l ).(5.9)

Thus, by induction, we have for the ith sample eigenvalue λ̂i = ϕi(SD) =
Op(dαl) for i ∈ Jl, l = 1, . . . , p.

Now let us focus on the rest of the sample eigenvalues λ̂i, i = κ+1, . . . , n.
For any i, again by Weyl’s upper bound inequality we get

ϕi(nd−1SD) ≤ ϕi−κ(d−1Z ′
p+1Λp+1Zp+1) + ϕκ+1(d−1

p∑
j=1

Z ′
jΛjZj)

= ϕi−κ(d−1Z ′
p+1Λp+1Zp+1),

where the second term on the right hand side vanishes since the matrix
inside is of rank at most κ. Also for lower bound, we have

ϕi(nd−1SD) ≥ ϕi(d−1Z ′
p+1Λp+1Zp+1) + ϕn(d−1

p∑
j=1

Z ′
jΛjZj)

= ϕi(d−1Z ′
p+1Λp+1Zp+1),

where the second term vanishes since κ < n. Thus we have complete bounds
for ϕi(nd−1SD) such that

ϕi(d−1Z ′
p+1Λp+1Zp+1) ≤ ϕi(nd−1SD) ≤ ϕi−κ(d−1Z ′

p+1Λp+1Zp+1),

for all i = κ + 1, . . . , n. However, by (5.3), the matrix in both bounds con-
verges to K · In in probability. Thus lower and upper bounds of ϕi(nd−1SD)
converge to K in probability which implies that λ̂i = ϕi(SD) = Op(d) for
all i = κ + 1, . . . , n.

Therefore, we have a complete proof of (4.4).
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5.2.2. Proof of Theorem 2. We begin by defining a standardized version
of the sample covariance matrix as

S̃ = Λ− 1
2 U ′SUΛ− 1

2

= Λ− 1
2 U ′(Û Λ̂Û ′)UΛ− 1

2

= Λ− 1
2 P Λ̂P ′Λ− 1

2 ,(5.10)

where P = U ′Û = {u′iûj}ij ≡ {pij}ij . Note that elements of P are inner
products between population eigenvectors and sample eigenvectors. Since
we also have S = n−1XX ′ and X = UΛ

1
2 Z,

S̃ = n−1Λ− 1
2 U ′XX ′UΛ− 1

2

= n−1Λ− 1
2 U ′UΛ

1
2 ZZ ′Λ

1
2 U ′UΛ− 1

2

= n−1ZZ ′.(5.11)

Note that the angle between the two directions can be formulated as
an inner product of the two direction vectors. Thus we will investigate the
behavior of the inner product matrix P as d →∞, by showing that

(5.12)
∑
j∈Jl

p2
ji

p−→ 1 as d →∞,

for all i ∈ Jl, l = 1, . . . , p, and

(5.13) p2
ii

p−→ 0 as d →∞,

for all i = κ + 1, . . . , n.
Suppose for now we have the result of (5.12) and (5.13). Then for any

i ∈ Jl, l = 1, . . . , p,

Angle(ûi, span{uj : j ∈ Jl}) = arccos(
û′i[Projspan{uj :j∈Jl}ûi]

‖ûi‖2 · ‖[Projspan{uj :j∈Jl}ûi]‖2
)

= arccos(
û′i(
∑

j∈Jl
(u′j ûi)uj)

‖ûi‖2 · ‖
∑

j∈Jl
(u′j ûi)uj‖2

)

= arccos(
∑

j∈Jl
(u′j ûi)2

1 · (
∑

j∈Jl
(u′j ûi)2)

1
2

)

= arccos((
∑
j∈Jl

p2
ji)

1
2 )

p−→ 0 as d →∞,
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by (5.12) and for i = κ + 1, . . . , n,

Angle(ûi, ui) = arccos(|u′iûi|)
= arccos(|pii|)
p−→ π

2
as d →∞,

by (5.13), as desired.
Therefore, it is enough to show (5.12) and (5.13). We begin with taking

jth diagonal entry of S̃, s̃jj , from (5.10) and (5.11),

s̃jj = λ−1
j

n∑
i=1

λ̂ip
2
ji = n−1zjz

′
j ,

where zj denotes the jth row vector of Z. Since

(5.14) λ−1
j λ̂ip

2
ji ≤ n−1zjz

′
j ,

we have at most
p2

ji = Op(
λj

λ̂i

),

for all i = 1, . . . , n, j = 1, . . . , d. Note that by Lemma 1, we have for i ∈ Jl1 ,
j ∈ Jl2 where 1 ≤ l1 < l2 ≤ p + 1,

(5.15) p2
ji = Op(

λj

λ̂i

) =

{
Op(dαl2

−αl1 ), if l1 = 1, . . . , p,
Op(d1−αl1 ), if l2 = p + 2,

so that p2
ji

p→ 0 as d →∞ in both cases.
Note that the inner product matrix P is also a unitary matrix. The norm

of the ith column vector of P must be 1 for all d, i.e.
∑d

j=1 p2
ji = 1. Thus

(5.12) is equivalent to
∑

j∈{1,...,d}/Jl
p2

ji
p−→ 0 as d →∞.

Now for any i ∈ J1,∑
j∈{1,...,d}/J1

p2
ji =

∑
j∈J2∪···∪Jp

p2
ji +

∑
j∈Jp+1

p2
ji.

Since the first term on the right hand side is a finite sum of quantities
converging to 0, it converges to 0 almost surely as d tends to infinity. By
(5.14), we have an upper bound for the second term,∑

j∈Jp+1

p2
ji =

∑
j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

≤
∑

j∈Jp+1
n−1zjz

′
j

d
· λκ+1

d−α1 λ̂i

· d1−α1

≤
∑n

k=1

∑d
j=κ+1 z2

j,k

nd
· λκ+1

d−α1 λ̂i

· d1−α1 ,
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where the zj,k’s are the entries of a row random vector zj . Note that by

applying Theorem 1 with Σd = Id, we have
∑d

j=κ+1
z2
j,k

d

p→ 1 as d →∞. Also
because d−α1 λ̂i = Op(1) and d1−α1 → 0, the upper bound converges to 0 in
probability. Thus we get ∑

j∈{1,...,d}/J1

p2
ji

p−→ 0 as d →∞,

which is equivalent to

(5.16)
∑
j∈J1

p2
ji

p−→ 1 as d →∞.

Let us focus on the group J2, . . . , Jp. For any l = 2, . . . , p, suppose we
have

∑
j∈Jm

p2
ji

p→ 1 as d →∞ for all i ∈ Jm, m = 1, . . . , l − 1. Note that it
implies that for any j ∈ Jm,, m = 1, . . . , l − 1,

(5.17)
∑

i∈{1,...,d}/Jm

p2
ji

p−→ 0 as d →∞,

since

∑
j∈Jm

∑
i∈{1,...,d}/Jm

p2
ji =

∑
j∈Jm

d∑
i=1

p2
ji −

∑
j∈Jm

∑
i∈Jm

p2
ji

p−→
∑

j∈Jm

1−
∑

i∈Jm

1 = 0,

as d →∞.
Now pick i ∈ Jl. We have∑

j∈{1,...,d}/Jl

p2
ji =

∑
j∈J1∪···∪Jl−1

p2
ji +

∑
j∈Jl+1∪···∪Jp

p2
ji +

∑
j∈Jp+1

p2
ji.

Note that the first term is bounded as

∑
j∈J1∪···∪Jl−1

p2
ji ≤

∑
i∈Jl

∑
j∈J1∪···∪Jl−1

p2
ji ≤

l−1∑
m=1

∑
j∈Jm

 ∑
i∈{1,...,d}/Jm

p2
ji

 p−→ 0

by (5.17). The second term also converges to 0 by (5.15). The last term is
also bounded as∑

j∈Jp+1

p2
ji =

∑
j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

≤
∑

j∈Jp+1
n−1zjz

′
j

d
· λm+1

d−αl λ̂i

· d1−αl ,
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so that it also converges to 0 in probability. Thus, we have
∑

j∈{1,...,d}/Jl
p2

ji
p−→

0 as d →∞ which implies that∑
j∈Jl

p2
ji

p−→ 1 as d →∞.

Thus, by induction, (5.12) is proved.
For i = κ + 1, . . . , n, We have λ−1

i λ̂ip
2
ii ≤ n−1ziz

′
i, and so

p2
ii ≤ λ̂−1

i λin
−1ziz

′
i = Op(λ̂−1

i λi) =
op(d)
Op(d)

,

which implies (5.13) and the proof is completed.

5.3. Proof of Corollary 1. The proof follows the same lines as the proof
of Theorem 2, with convergence in probability replaced by almost sure con-
vergence.

5.4. Proof of Corollary 2. From the proof of Theorem 2, write the inner
product matrix P of (5.10) as a block matrix such that

P =


P11 · · · P1p P1,p+1
...

. . .
...

...
Pp1 · · · Ppp Pp,p+1

Pp+1,1 · · · Pp+1,p Pp+1,p+1

 ,

where each Pij is a ki × kj random matrix. In the proof of theorem 2 we
have shown that Pii, i = 1, . . . , p, tends to be a unitary matrix and Pij ,
i 6= j, tends to be a zero matrix as d → ∞. Likewise, Λ and Λ̂ can be
blocked similarly as Λ = diag{Λi : i = 1, . . . , p + 1} and Λ̂ = diag{Λ̂i : i =
1, . . . , p + 1}.

Now pick l ∈ {1, . . . , p}. The lth block diagonal of S̃, S̃ll, is expressed as

S̃ll =
∑p+1

j=1 Λ
− 1

2
l PljΛ̂lP

′
ljΛ

− 1
2

l . Since Pij → 0, i 6= j, we get

‖S̃ll − Λ
− 1

2
l PllΛ̂lP

′
llΛ

− 1
2

l ‖F
p−→ 0

as d →∞.
Note that by (5.11), S̃ll can be replaced by n−1ZlZ

′
l . We also have d−αlΛl →

Cl by the assumption (b) and d−αlΛ̂l
p→ diag{ϕ(n−1C

1
2
l ZlZ

′
lC

1
2
l )} by (5.9).

Thus we get

‖n−1ZlZ
′
l − C

− 1
2

l Plldiag{ϕ(n−1C
1
2
l ZlZ

′
lC

1
2
l )P ′

llC
− 1

2
l ‖F

p−→ 0
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as d →∞.
Also note that since n−1ZlZ

′
l → Ikl

almost surely as n → ∞, we get

n−1C
1
2
l ZlZ

′
lC

1
2
l → Cl and diag{ϕ(n−1C

1
2
l ZlZ

′
lC

1
2
l )} → Cl almost surely as

n → ∞. Using the fact that the Frobenius norm is unitarily invariant and
‖AB‖F ≤ ‖A‖F ‖B‖F for any square matrices A and B, we get

‖P ′
llClPll − Cl‖F ≤ ‖P ′

llClPll − diag{ϕ(n−1C
1
2
l ZlZ

′
lC

1
2
l )‖F + op(1)

(5.18)

= ‖Cl − Plldiag{ϕ(n−1C
1
2
l ZlZ

′
lC

1
2
l )P ′

ll‖F + op(1)

≤ ‖n−1C
1
2
l ZlZ

′
lC

1
2
l − Plldiag{ϕ(n−1C

1
2
l ZlZ

′
lC

1
2
l )P ′

ll‖F + op(1)

≤ ‖C
1
2
l ‖

2
F ‖n−1ZlZ

′
l − C

− 1
2

l Plldiag{ϕ(n−1C
1
2
l ZlZ

′
lC

1
2
l )P ′

llC
− 1

2
l ‖F + op(1)

p−→ 0 as d, n →∞.

Note that in order to have (5.18), Pll must converge to diag{±1,±1, . . . ,±1}
since diagonal entries of Cl are distinct and a spectral decomposition is
unique up to sign changes. Let l = 1 for simplicity. Now suppose for any
δ > 0, limd,n P (p2

m1 > δ) > 0 for m = 2, . . . , k1. Then for any m = 2, . . . , k1,

‖P ′
11C1P11 − C1‖F ≥

k1∑
j=1

(c1 − cj)p2
j1 ≥ (c1 − cm)p2

m1,

which contradicts (5.18) since c1−cm > 0. Thus p2
m1

p→ 0 for all m = 2, . . . , kl

which implies p2
11

p→ 1 as d, n → ∞. Now by induction, p2
ii

p→ 1 for all
i ∈ Jl, l = 1, . . . , p. Therefore Angle(ûi, ui) = arccos(|pii|)

p→ 0 as d, n →∞.
If the assumptions of Corollary 1 also hold, then every convergence in the

proof is replaced by almost sure convergence, which completes the proof.

5.5. Proof of Corollary 3. For any i ∈ Jl, l = 1, . . . , p, (5.9) gives

λ̂i

dαl
=⇒ ϕ

i−
∑l−1

j=1
kl

(n−1C
1
2
l ZlZ

′
lC

1
2
l ) as d →∞.

Noticing C
1
2
l ZlZ

′
lC

1
2
l ∼ Wkl

(n, Cl) gives the result. When kl = 1, The as-

sumption (b) and that C
1
2
l ZlZ

′
lC

1
2
l ∼ ciχ

2
n imply that

λ̂i

λi
=

λ̂i

cidαl
· cid

αl

λi
=⇒ χ2

n

n
as d →∞.
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