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SUMMARY

A general framework for a novel non-geodesic decomposition of high dimensional spheres or
high dimensional shape spaces for planar landmarks is discussed. The decomposition, Principal
Nested Spheres, finds a sequence of submanifolds with decreasing intrinsic dimensions, which
can be interpreted as an analogue of Principal Component Analysis (PCA). In a number of real
datasets, an apparent one dimensional mode of variation curving through more than one geodesic
component is captured in the lowest dimensional Principal Nest Sphere (PNS). While analysis
of PNS provides intuitive and flexible decomposition of the high dimensional sphere, an inter-
esting special case of PNS results in finding principal geodesics, similar to those from previous
approaches to manifold PCA. An adaptation of PNS to Kendall’s shape space is discussed, and
a computational algorithm for fitting PNS is proposed. The result of PNS provides a coordinate
system to visualize the data structure, and an intuitive summary of principal modes of variation,
as exemplified by several interesting spherical and shape data sets.

Some key words: dimension reduction; Kendall’s shape space; manifold; principal arc; principal component analysis;
spherical data.

1. INTRODUCTION

This paper proposes a general framework for a novel decomposition of a high dimensional
sphere, which is the sample space of directions (Fisher (1993), Fisher et al. (1993), Mardia &
Jupp (2000)) and pre-shapes in Kendall’s statistical theory of landmark shapes (Kendall (1984),
Dryden & Mardia (1998)). The proposed decomposition method, Principal Nested Spheres
(PNS), is a flexible extension of Principal Component Analysis (PCA) for curved manifolds.
PCA provides an effective means of analyzing the main modes of variation of the dataset and
also gives a basis for dimension reduction. There have been a number of extensions of PCA to



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
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manifold-valued data, most of which find principal geodesics (Fletcher et al. (2004), Huckemann
& Ziezold (2006), Huckemann et al. (2010), Kenobi et al. (2010)).

A geodesic on a manifold is a shortest path between two points and can be understood as
analogues of straight lines in Euclidean space. In particular, a geodesic on a sphere is a great
circle path. The precise definition of geodesics on a sphere can be found in Eq. (A1), Appendix 8.

There has been a concern that when non-geodesic variation is major and apparent, the geodesic
based PCA does not give a fully effective decomposition of the space. As an example, a dataset
of shapes representing human movements, discussed later in Section 6·3 and introduced in Kume
et al. (2007), is plotted in Fig. 1, using the first two principal component directions. In this dataset
and many other interesting real data sets, the major one dimensional variation of the data curves
through at least two components, and thus at least two dimensions are needed to explain the major
variation. PNS decomposes the data space in a way that the major one dimensional variation is
linearly represented, as shown in the bottom of Fig. 1.

For a unit d-sphere Sd, which is the set of unit vectors in Rd+1, PNS gives a decomposition
of Sd that captures the non-geodesic variation in a lower dimensional sub-manifold. The de-
composition sequentially provides the best k-dimensional approximation Ak of the data for each
k = 0, 1, . . . , d− 1. Ak is called the k-dimensional PNS, since it is essentially a sphere and is
nested within (i.e. a sub-manifold of) the higher dimensional PNS. The sequence of PNS is then

A0 ⊂ A1 ⊂ · · · ⊂ Ad−1 ⊂ Sd.

Since the preshape space of two dimensional landmark based shapes is also a hypersphere, the
method can be readily applied to shape data, with some modifications (see Section 5). The analy-
sis of PNS provides intuitive approximations of the directional or shape data for every dimension,
captures the non-geodesic variation, and provides intuitive visualization of the major variability
in terms of shape changes.

The procedure of fitting PNS involves iterative reduction of the dimensionality of the data. We
first fit a d− 1 dimensional subsphere Ad−1 of Sd that best approximates the data. This subsphere
is not necessarily a great sphere (i.e. a sphere with radius 1, analogous to the great circle for
S2), which makes the resulting decomposition non-geodesic. Nevertheless, Ad−1 can be treated
as if it was the unit (d− 1)-sphere by some geometric facts discussed in Section 2·1 and in
Appendix 8 in greater detail. Each data point has an associated residual, which is the geodesic
distance to its projection on Ad−1. Then for the data projected onto the subsphere, we continue
to search for the best fitting d− 2 dimensional subsphere. These steps are iterated to find lower
dimensional PNS. A detailed discussion of the procedure is in Section 2. For visualization and
further analysis, we obtain an Euclidean-type representation of the data, essentially consisting of
the residuals of each level. The first two coordinates of this representation, related to the one and
two dimensional PNS, applied to the human movement data are plotted in Fig. 1.

In Fig. 1, PNS (bottom panel) has less curving variation. The proportion of variance in the 1-d
PNS is almost the proportion of the sum of the first two geodesic component variances. That is,
the variation explained by two geodesic components is attained in only one component of the
PNS. Moreover, the graph in the top panel is indeed obtained by a special case of PNS analysis,
which is similar to the geodesic-based PCA, as discussed in Section 2·6.

The procedure of PNS tends to find smaller spheres than the great sphere. Since this may
cause an overfitting of the data, we developed a test procedure that can be applied to each layer
to prevent the overfitting (see Section 3). A computational scheme for fitting PNS is proposed
in Section 4. Necessary considerations and modifications for planar shape data are discussed in
Section 5. In Section 6, we describe applications of the method to several interesting real datasets.
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Fig. 1. Human movement data: (top) Scatter plot of two
major geodesic components, where the different symbols
represent different tasks, and samples for each task are in-
terpolated. (bottom) Scatter plot of the first two PNS. The
number% is the percent variance explained. The first PNS

captures more of the interesting variation.

We conclude with discussions. Appendix (Sections 8 & 9) contains some geometric background
to help define PNS, and proofs of the theorems.

2. PRINCIPAL NESTED SPHERES

2·1. Geometry of Nested Spheres
We begin with describing essential geometric background for nested spheres. More detailed

discussion of the arguments in this section can be found in Appendix 8.
For a unit sphere Sd, a geodesic joining any two points is a great circle joining the two points.

A natural distance function on Sd is the Riemannian (geodesic) distance function ρd(·, ·) defined
as the length of the shortest great circle segment joining x,y ∈ Sd, ρd(x,y) = cos−1(xTy).

A sequence of nested spheres of Sd is roughly a set of lower dimensional submanifolds that
are essentially spheres. In the following, the precise form of nested spheres is introduced. We
first define a subsphere of Sd, which induces the nested spheres.

DEFINITION 1. A subsphere Ad−1 of Sd is defined by an orthogonal axis v ∈ Sd and a dis-
tance r ∈ (0, π/2], as follows:

Ad−1(v, r) = {x ∈ Sd : ρd(v,x) = r},

where ρd(·, ·) is the geodesic distance function on Sd, d > 2.

The subsphere Ad−1 can be viewed as an intersection of Sd ⊂ Rd+1 and an affine d dimen-
sional hyperplane, {x ∈ Rd+1 : vTx− cos(r) = 0}. In other words, Ad−1 is identified with a
“slicing” of Sd with the affine hyperplane, an example of which is illustrated as a shaded plane
in Fig 2. A subsphere Ad−1 is indeed a d− 1 dimensional nested sphere Ad−1 of Sd.

The subsphere Ad−1 is isomorphic to Sd−1, as shown in Proposition 1, so we can treat the
subsphere as a unit sphere Sd−1. This is done by an isomorphism f1 : Ad−1 → Sd−1 and its
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4 S. JUNG, I. L. DRYDEN, AND J. S. MARRON

Fig. 2. The subsphere Ad−1(v1, r1) in Sd and its rela-
tion to Sd−1, through the isomorphism f1. Recursively,
Ad−2(v2, r2) is found in Sd−1, and is isomorphic to Sd−2

with the isomorphism f2.

inverse f−1
1 , defined in Eq. 1 below and also depicted in Fig. 2. Now a subsphere Ad−2 of Sd−1

can be obtained by applying Def. 1 with dimension d reduced by 1. For a general subsphere Ad−k

of Sd−k+1, where k = 1, . . . , d− 1 , we also use the isomorphic transformation fk : Ad−k →
Sd−k and its inverse f−1

k . Let m = d− k + 1, so that the subsphere Ad−k ∈ Sm ⊂ Rm+1. The
transformations are defined by vk ∈ Sm and rk ∈ (0, π/2] as

fk(x) =
1

sin(rk)
R−(vk)x, x ∈ Ad−k,

f−1
k (x†) = RT (vk)

[
sin(rk) · x†

cos(rk)

]
, x† ∈ Sd−k,

(1)

where R(vk) is the (m+ 1)× (m+ 1) rotation matrix that moves vk to the north pole (see
Appendix 8), and R−(vk) is the m× (m+ 1) matrix consisting of the first m rows of R(vk).

The subspheres Ad−k are defined in different spaces (in Sd−k+1 for each k). A nested sphere
is defined by the subsphere located in the original space Sd.

DEFINITION 2. A d− k dimensional nested sphere Ad−k of Sd is defined as

Ad−k =

{
f−1
1 ◦ · · · ◦ f−1

k−1(Ad−k) if k = 2, . . . , d− 1
Ad−1 if k = 1

A d− k dimensional nested sphere Ad−k is indeed identified with a slicing of Sd by a d− k +
1 dimensional affine hyperplane. Note that, however, we work with each Sd−k, as it is logically
simple in terms of dimensionality reduction as described in Section 2·3.

2·2. The Best Fitting Subsphere
Let x1, . . . ,xn be samples in Sd, d > 2. We first define the residual ξ of x from a subsphere

Ad−1(v1, r1) of Sd as the signed length of the minimal geodesic that joins x to Ad−1. Then ξ =
ρd(x,v1)− r1. The sign of ξ is negative if x is in the interior of the geodesic ball corresponding
to Ad−1, and is positive if x is in the exterior.

The best fitting subsphere Âd−1 ≡ Ad−1(v̂1, r̂1) is found by minimizing the sum of squares
of residuals of the data points to Âd−1. In other words, v̂1 and r̂1 minimize

n∑
i=1

ξi(v1, r1)
2 =

n∑
i=1

{ρd(xi,v1)− r1}2, (2)
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Principal Nested Spheres 5

among all v1 ∈ Sd, r1 ∈ (0, π/2].
Note that the method can be extended using other objective functions, e.g. sum of absolute

deviations for more robust fitting.
Each xi can be projected on Âd−1 along the minimal geodesic that joins x to Âd−1. The

projection of x onto Ad−1 is defined as

P (x;Ad−1(v, r)) =
sin(r)x+ sin(ρd(x,v)− r)v

sin{ρd(x,v)}
. (3)

Denote xP = P (x; Âd−1) ∈ Âd−1 for the projected x. We use the isomorphism f̂1 ≡
f(v̂1, r̂1), as defined in Eq. (1), to transform Âd−1 to Sd−1 so that f̂1(xP

i ) ∈ Sd−1.

2·3. The sequence of Principal Nested Spheres
The sequence of PNS are fully meaningful when they are in the same space. On the other hand,

utilizing the isomorphic spaces of the nested spheres, i.e. the unit spheres, makes the process
simpler. Therefore the procedure to find the sample PNS consists of iteratively finding the best
fitting subsphere and mapping to the original space.

The d− 1 dimensional sample PNS Âd−1 is the same as the best fitting subsphere
Ad−1(v̂1, r̂1) because both are in the original space Sd. The second layer, the d− 2 dimen-
sional sample PNS, is obtained from the subsphere that best fits f̂1(xP

i ) ∈ Sd−1. The best fitting
subsphere Ad−2(v̂2, r̂2) is then mapped to Sd by the relevant isomorphism f−1

1 and becomes
Âd−2.

In general, we recursively find the sequence of best fitting subspheres from the projected and
transformed samples, i.e. x 7→ f̂k(P (x; Âd−k)). In the ‘kth level’, where we fit a subsphere
from Sd−k+1, we denote the best fitting subsphere as Âd−k ≡ Ad−k(v̂k, r̂k) and keep residuals
ξi ≡ ξi,d−k, i = 1, . . . , n, for later use as analogs of principal component scores.

The lowest level best fitting subsphere Â1 is then a small circle isomorphic to S1. No further
sphere or circle can be used to reduce the dimensionality. Instead, we find the Fréchet mean
(Fréchet (1944, 1948) and Karcher (1977)) Â0 of x†

1, . . . ,x
†
n (the projected and transformed

samples in S1) which can be thought of as a best 0-dimensional representation of the data in the
framework of PNS. The Fréchet mean Â0 is defined as the minimizer of the squared distances to
the x†

i s, i.e.

Â0 = argmin
x∈S1

n∑
i=1

ρ1(x,x
†
i )

2.

The Fréchet mean is unique when the support of x†
i is a proper subset of a half circle in S1, which

is often satisfied in practice. If there are multiple Fréchet means, then careful inspection of the
data must be followed. A typical case for having multiple means is that the data are uniformly
distributed on the circle. If this is the case, then Â0 can be chosen to be any solution of the above
criterion, and since it does not summarize the data well we may not lay much emphasis on Â0.

The sequence of best fitting subspheres including the Â0 can be located in the original space
Sd, as follows.

DEFINITION 3. The sequence of sample Principal Nested Spheres in Sd is then
{Â0, Â1, . . . , Âd−1}, where

Âd−k =

{
f̂−1
1 ◦ · · · ◦ f̂−1

k−1(Âd−k) if k = 2, . . . , d,

Âd−1 if k = 1.
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We call Â0 the PNSmean.

2·4. Euclidean-type representation
We wish to represent the data in an Euclidean space for visualization and further analysis.
Recall that in the kth level of the procedure, we have collected the signed residuals which we

denote by ξi,d−k, i = 1, . . . , n. These were measured by the metric ρd−k in a space different from
Sd. Therefore we scale these residuals by multiplying

∏k−1
i=1 sin(r̂i) which makes the magnitude

of residuals commensurate (see Proposition 2). We put the scaled residuals in a row vector

Ξ(d− k)1×n
.
=

k−1∏
i=1

sin(r̂i)[ξ1,d−k, . . . , ξn,d−k].

We further define ξi,0 as the ith sample’s signed deviation from Â0 measured by ρ1. Similar
to before, rescale the deviations and let

Ξ(0)1×n
.
=

d−1∏
i=1

sin(r̂i)[ξ1,0, . . . , ξn,0].

These commensurate residuals are combined into a d× n data matrix

X̂PNS =


Ξ(0)
Ξ(1)

...
Ξ(d− 1)

 ,

where each column is the corresponding sample’s coordinates in terms of the sample PNS. Each
entry in row k works like the kth principal component score.

The data matrix X̂PNS can be used to visualize the structure of the data. For example, the
graph in Fig. 1 is a scatterplot of Ξ(0) and Ξ(1). The variance of each component is defined by
the variance of the corresponding residuals. Moreover, conventional multivariate statistics based
on Euclidean space can be applied to X̂PNS for further analysis (e.g. PCA and classification
methods).

2·5. Principal Arcs
In analogy to the principal component directions in Euclidean space, or the manifold exten-

sion principal geodesics, the principal arcs that represent the direction of major variations are
defined by PNS. These arcs are space curves lying in the manifold Sd, which frequently are not
equivalent to any geodesic.

Given a sequence of PNS {Â0, Â1, . . . , Âd − 1}, the first principal arc coincides with the 1-
d PNS Â1. This arc may be parameterized by the signed distance from the PNSmean Â0. In
the space of the Euclidean-type representation X̂PNS , the first principal arc coincides with the
direction e1 = (1, 0, . . . , 0)T .

The second principal arc lies in Â2 and is orthogonal to the first principal arc at all points in
common. The first and second arcs cross at Â0 and also at the farthest point from Â0 on Â1.
The second arc is in general a small cirle in Sd but is identified with a great circle in S2, the
isomorphic space of Â2. The second principal arc in S2 must pass through the axis vd−1 in order
to be orthogonal to the first. This arc may be parameterized by the signed distance from Â0, and
coincides with the direction e2 in the space of X̂PNS .
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The higher order principal arcs are defined in the same manner. The kth principal arc can be
defined and identified with the direction ek in the space of X̂PNS . The kth arc is then orthogonal
to the principal arcs of order 1, . . . , k − 1, and passes through the PNSmean.

In addition, a space curve in Sd may be parameterized by the coordinates of the Euclidean-type
representation. Fitting a space curve that further smooths the data is a separate issue.

2·6. Principal Nested Spheres restricted to Great Spheres
An important special case of the PNS is obtained by setting r = π/2 for each subsphere fitting.

This restriction leads to the nested spheres being great spheres, and the principal arcs become
geodesics. In all data sets we tested, the resulting principal geodesics are similar to the previous
geodesic-based PCA methods. In the following, we indicate this special case as Principal Nested
Great spheres (PNG).

We conjecture that the principal geodesics, found by PNG, are more similar to the Geodesic
Principal Component of Huckemann et al. (2010) than the usual tangent space projection meth-
ods. This is mainly because any pre-determined mean (either geodesic mean or Procrustes mean)
is not used in PNG nor Huckemann’s. The PNSmean in this special case is similar to the notion
of mean of Huckemann, and is identical when the sphere has dimension d = 2. Although we
have not yet found a significant difference of PNG than previous methods, we point out that the
PCA extension approach of PNG (and PNS) is different from those methods. See Section 7 for
discussion on this.

3. PREVENTION OF OVERFITTING BY SEQUENTIAL TESTS

3·1. Significance of small sphere fitting
In this section, the significance of small spheres against the great sphere is discussed. We

propose a test procedure consisting of two different tests for each level of subsphere fitting.
Similar to the backward regression procedure, sequentially testing small spheres at each layer
may prevent overfitting.

There are two cases where a great sphere provides more appropriate fit to the data, yet the
sum of squared residuals is minimized by a small sphere. The first case is where a true major
variation is along a great sphere, an example of which on S2 is illustrated in Fig 3a. The second
case is when the underlying distribution is isotropic with a single mode, so that there is no major
variation along any direction. An example of such a distribution is N(0, Ik) (in linear space), or
the von Mises–Fisher distribution on Sd (Fisher (1953), Mardia & Jupp (2000)), as illustrated in
Fig 3b. In this situation, small spheres centered at the point of isotropy are frequently obtained,
which do not give a useful decomposition.

We have developed two different tests to handle these cases. The first is a likelihood ratio
test (LRT) for the detection of the first case above (Fig 3a), which tests the significance of the
reduction of residual variances. The second is a parametric bootstrap test aimed at the second case
above(Fig 3b), which tests the isotropy of the underlying distribution. A detailed description of
the tests is given in the following subsections. A procedure to apply these tests to PNS fitting is
then discussed in Section 3·4.

3·2. Likelihood ratio test
We define a likelihood ratio statistic for each level to sequentially test the significance of small

sphere fitting against the great sphere.
For the kth level of the procedure, where Ad−k is fitted to x1, . . . ,xn ∈ Sd−k+1, we assume

that the deviations of the samples xi from the subsphere Ad−k(v, r) are independent N(0, σ2).
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Fig. 3. Simulated data examples on S2 projected by an
equal area projection, and the fitted best small (solid) and
great (dotted) spheres, which are arcs in this two dimen-
sional case. (a) The LRT gives the p-value 0.565, while p-
value of the bootstrap test is 0. The LRT detects the overfit-
ting. (b) The LRT leads to p-value ≈ 0), and the bootstrap
p-value is 0.82. The bootstrap test detects the overfitting.
(c) When the fitted small sphere (circle) is not overfitted,
both tests give very small p-values (≈ 0). This assures that

the small sphere is not overly fitted.

It makes more sense when a truncated Normal distribution on a range [−π/2, π/2] is assumed.
However unless the data spread too widely (e.g. Uniform on the sphere), the distribution will be
approximately Normal. Thus we use the approximate likelihood function of (v, r, σ2), given by

L(v, r, σ2|xn
1 ) =

1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(ρ(xi,v)− r)2

)
,

where ρ is the geodesic distance function on Sd−k+1. The approximate maximum likelihood
estimator (m.l.e.) of (v, r) coincides with (v̂, r̂), the solution of Eq. (2), and the approximate
m.l.e. of σ2 is given by σ̂2 = n−1

∑n
i=1 ξi(v̂, r̂)

2, which is obtained by differentiating the log-
likelihood function and setting the derivative equal to zero.

We can test H0a : r = π/2 (i.e. the great sphere), versus H1a : r < π/2 (i.e. some small
sphere), using a likelihood ratio test. The m.l.e. of (v, r, σ2) under H0a is given by (v̂0, π/2, σ̂2

0),
where v̂0 minimizes the sum of squared residuals of Eq. (2) with r = π/2, and σ̂2

0 =
n−1

∑n
i=1 ξi(v̂

0, π/2)2. The log-likelihood ratio is (σ̂2/σ̂2
0)

−n/2. Then using Wilks’ theorem,
for large samples n log(σ̂2/σ̂2

0) ≈ χ2
1 under H0a, and the test rejects H0a in favor of H1a for

large values of n log(σ̂2/σ̂2
0).

3·3. Parametric bootstrap test
For each level of PNS fitting, suppose X ∈ Sm has a distribution function FX. We wish to

test for the underlying distribution FX, H0b : FX is an isotropic distribution with a single mode,
versus H1b : not H0b (i.e. anisotropic). We develop a parametric bootstrap test with an assump-
tion of the von Mises-Fisher distribution. The von Mises-Fisher distribution is an analogue of
Normal distribution on the unit sphere with concentration parameter κ and directional parameter
µ, denoted as vMF(µ, κ).

We build a test statistic that is large when FX is neither isotropic nor having a single mode.
For this purpose, we derive the following test statistic. Given x1, . . . ,xn ∈ Sm, estimate the
best fitting subsphere A(v̂, r̂) as done in Eq. (2). Let ζi = ρd(xi, v̂) = cos−1(xT

i v̂) be the radial
distances from the axis of the subsphere. Then the test statistic to use is the coefficient of variation
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of ζ,

Z = Z(x1, . . . ,xn) =
ζ̄

std(ζ)
=

1
n

∑n
i=1 ζi√

1
n−1

∑n
i=1(ζi − ζ̄)2

.

The next step is to estimate a null distribution of this statistic. We have assumed that under
H0b, FX is vMF(µ, κ). The unknown parameters are estimated from the data. µ is estimated by
a standard likelihood approach, see Mardia & Jupp (2000). For an estimate of κ, Banerjee et al.
(2005) empirically derived an approximation of the m.l.e. of κ. The estimates are

µ̂MLE =
r

∥r∥
=

∑n
i=1 xi

∥
∑n

i=1 xi∥
, κ̂MLE ≈ r̄(d+ 1)− r̄3

1− r̄2
,

where r̄ = ∥r∥
n . Then we generate B > 100 random samples of size n from vMF(µ̂MLE , κ̂MLE)

and calculate Z1, . . . , ZB . The test rejects H0b with a significance level α if

1

B

B∑
i=1

1{Zi>Z} < α.

3·4. Application procedure
As discussed in section 2·3, a sequence of sample PNS is obtained by iterative fitting of sub-

spheres. In each layer of subsphere fitting, both of the tests developed in this section will be used,
due to the observation in Fig. 3. We first illustrate how these tests are applied to the examples in
Fig. 3, then propose a procedure to apply the tests to the PNS fitting procedure.

Some typical data examples on the 2-sphere and the results of the two tests are illustrated in
Fig. 3. When the true major variation is along a great circle, as in Fig. 3a, the LRT works well
and accepts H0a (great sphere) but the bootstrap test rejects H0b. On the other hand, when the
underlying distribution is von Mises–Fisher, the LRT rejects H0a in favor of H1a: small sphere.
However, the best fitting small sphere is frequently inappropriate, as shown in Fig. 3b. The boot-
strap test accepts H0b and thus can be used to detect such a case. Therefore, in order to prevent
an overfitting, we proposed to sequentially apply both tests in each level of subsphere fitting. In
a case where a true variation is along a small sphere, both tests reject the null hypotheses, and
we assure that the small subsphere is not overfitting.

In each level of subsphere fitting, we use the following testing procedure to test the significance
of “small” subsphere fitting.

1. Test H0a versus H1a by the likelihood ratio test. If H0a is accepted, then fit a great sphere
with r = π/2 and proceed to the next layer.

2. If H0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test. If
H0b is accepted, then use great spheres for ‘all’ further subsphere fittings.

3. If both tests do not reject the null hypotheses, then use the fitted small sphere for decomposi-
tion.

Note that in step 2, when H0b is accepted, we use great sphere fitting not only for the level,
but also for all further levels with smaller dimensions. This is because once H0b is accepted, the
underlying distribution at the level is assumed to be a von Mises-Fisher. An analogy in Euclidean
space is N(0, Ik) where a non-linear mode of variation is meaningless. Therefore, great spheres
are used for all further nested spheres, without further application of tests.

Note that for Sd, we test at most 2(d− 1) hypotheses. This brings us a multiple testing prob-
lem, i.e. using significance level α = 0.05 for every test may result in a larger overall type I
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error. This phenomenon can be treated by, for example, using Bonferroni’s correction. Deeper
discussion of more advanced treatments, such as False Discovery Rate, is beyond the scope of
this paper.

4. COMPUTATIONAL ALGORITHM

The computation of sample PNS involves iterative applications of minimization, projection
and transformation. We have given explicit formulas for the projection (Eq. 3) and the trans-
formation (Eq. 1). The least squares problem (Eq. 2) is a constrained non-linear minimization
problem. It can be solved by the doubly iterative algorithm described in Jung et al. (2010) with
some modifications. The algorithm is best understood in two iterative steps: The outer loop finds
the point of tangency to approximate Sd by a tangent space; the inner loop solves an optimization
problem in the linear space.

We make use of the exponential map and its inverse for mappings between the manifold and
tangent spaces (see Helgason (2001) and Buss & Fillmore (2001)). A tangent space at p ∈ Sm,
TpS

m, is an affine m-dimensional vector space and can be identified by Rm. Without loss of
generality set the point of tangency p = em+1 = (0, . . . , 0, 1), because one can use the rotation
operator R(p) to transform p to em+1 while preserving all data structure. The exponential map
Expp : TpS

m −→ Sm is defined for z ∈ Rm ∼= TpS
m,

Expp(z) =
(
sin(∥z∥)

∥z∥
zT , cos(∥z∥)

)T

∈ Sm.

The inverse exponential map (log map) Logp : Sm −→ TpS
m is defined for x =

(x1, . . . , xm+1)
T ∈ Sm,

Logp(x) =
θ

sin(θ)
(x1, . . . , xm)T ∈ Rm,

where cos(θ) = xm+1. These mappings preserve the distances to the point of tangency. By us-
ing the exponential mapping and its inverse, a hypersphere with radius r in the tangent space
corresponds to a subsphere in Sm with distance r. In particular, Am−1(v, r) is equivalent to the
image of {x ∈ Rm : ∥x∥ = r} by Expv.

The algorithm finds a suitable point of tangency v, which is also the center of the fitted sub-
sphere. Given a candidate v0, the data are mapped to the tangent space Tv0S

m by the log map.
Write x†

i = Logv0
(xi), then the inner loop finds the minimizer of

min
v†,r

n∑
i=1

(∥x†
i − v†∥ − r)2,

which is a non-linear least-squares problem and can be solved numerically by e.g. the Levenberg-
Marquardt algorithm (see e.g. Ch.4 of Scales (1985)). The solution v† is then mapped to Sm by
the exponential map, and becomes the v1. This procedure is repeated until v converges.

A main advantage of this approach is the reduced difficulty of the optimization task. The inner
loop solves an unconstrained problem in a vector space, which is much simpler than the original
constrained problem on manifolds. Experience has shown that with a carefully chosen initial
value, the algorithm has worked well in a wide range of simulated and real applications.

It becomes increasingly common in modern applied problems that the sample size is less than
the dimension of the manifold, i.e. x1, . . . ,xn ∈ Sd with n 6 d, which is frequently referred
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to as the high dimension, low sample size situation (Hall et al. (2005), Dryden (2005)). In Eu-
clidean space, the dimensionality of the data can be reduced to n without losing any information.
Likewise, the intrinsic dimensionality of the data on the hypersphere can be reduced to n− 1,
where additional reduction of 1 occurs because there is no ‘origin’ in Sd. For the simplest yet
intuitive example, let n = 2. Then there is a geodesic joining the two points, which is the sub-
manifold containing all information. A generalization of this fact can be made for any n > 2, by
the following theorem.

THEOREM 1. There exists an n− 1 dimensional nested sphere An−1 of Sd satisfying xi ∈
An−1 for all i = 1, . . . , n. Moreover, there exist Ad−1 ⊃ · · · ⊃ An−1, all of which are great
spheres (i.e. with radius 1).

As can be seen in the proof of the theorem in the Appendix, the singular value decomposition
of the data matrix [x1 · · ·xn] gives the appropriate An−1. Let Ln

1 be the vector space of dimension
n that all data points span. Then, the intersection of Ln

1 and Sd is the n− 1 dimensional manifold
An−1.

For a faster computation (when n < d), we reduce the dimensionality to An−1 by the singular
value decomposition, and use the proposed algorithm to fit An−2, and so on.

5. APPLICATION TO PLANAR SHAPE SPACE

5·1. Planar shape space
The shape of an object is what is left after removing location, scale, and rotation. The classical

approach in shape analysis (see e.g. Dryden & Mardia (1998)) is to work with (biological) land-
marks of the objects. Each shape determined by a set of landmarks can be represented by a point
in Kendall’s (1984) shape space. A useful approach to understanding the non-Euclidean shape
space is through preshape space, which is a high dimensional sphere. We begin by summarizing
the Kendall’s framework for shape data, followed by a discussion of necessary considerations to
apply PNS to shape space through the preshape space.

Consider a set of k > 2 landmarks in R2 and the corresponding configuration matrix X, which
is a k × 2 matrix of Cartesian coordinates of landmarks. The preshape of the configuration X
is invariant under translation and scale, which is given by Z = HX/ ∥HX∥, where H is the
(k − 1)× k Helmert sub-matrix (Dryden & Mardia, 1998, p. 34). Provided that ∥HX∥ > 0,
Z ∈ S2(k−1)−1. The unit sphere S2(k−1)−1 in R2(k−1) is the space of all possible preshapes, and
is called the preshape space.

The shape of a configuration matrix X can be represented by the equivalence set under rota-
tion, [Z] = {ZΓ : Γ ∈ SO(2)}, where SO(2) is the set of all 2× 2 rotation matrices. The space
of all possible shapes is then a non-Euclidean space called the shape space and is denoted by Σk

2 .
We also write the preshape Z as a vectorized version z = vec(ZT ), where vec(A) is obtain

by stacking the columns of the matrix A on top of one another. Then the following facts are
well-known (see e.g. Kume et al. (2007) and Dryden & Mardia (1998)).

Suppose that v,w ∈ S2(k−1)−1 are preshapes satisfying vTw > 0 and vTMw = 0, where
M is the 2(k − 1)× 2(k − 1) skew-symmetric matrix consisting of k − 1 diagonal blocks[

0 −1
1 0

]
.

Then the geodesic that joins v to w, Q(v → w, θ)v, θ ∈ [0, π/2] is said to be a horizontal
geodesic, and the Riemannian distance between v,w is the same as the Riemannian distance
between the corresponding shapes [v] and [w] in Σk

2 .
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For the preshapes w, z1, z2, . . . , zn, as long as the shapes of those are of interest, we assume
without loss of generality that wTvi > 0 and wTMvi = 0.

5·2. Principal Nested Spheres for planar shapes
The intrinsic dimension of the shape space is 2k − 4, since the degrees of freedom are reduced

from 2k (of the set of landmarks) by 2 for translation, 1 for scale, and 1 for rotation. This is less
than the dimension of the preshape space d = 2k − 3. It is thus desired that the d− 1 dimensional
PNS of Sd leaves no residuals. This is achieved by the theory and practical modifications in this
section. In short, Procrustes fit of configurations or preshapes to a common alignment base (e.g.
the Procrustes mean) results in the desired decomposition of the shape space.

THEOREM 2. Suppose the preshapes w, z1, z2, . . . , zn ∈ Sd satisfy wTzi > 0
and wTMzi = 0 for all i = 1, . . . , n. Let w∗ = Mw for M defined above. Then
w, zi ∈ Ad−1(w

∗, π/2). Moreover, define hAd−1 = {z ∈ Ad−1 : z
Tw > 0} as a hyper-

hemisphere. Then w, zi ∈ hAd−1(w
∗, π/2).

We have the following comments:r The dimension of preshape space can be reduced by 1 without loss of any shape information.r For the nested hemisphere hAd−1,

1. the intrinsic distance ρ∗d−1(w, z) defined on hAd−1 (see Proposition 1(b) in Appendix
8) is the same as the Riemannian distance ρ([w], [z]) in Σk

2 for any z ∈ hAd−1.
2. the tangent space of hAd−1 at w is in fact identical to the horizontal subspace of the

tangent space of Sd at w.r The hAd−1 is closely related to Σk
2 , but is not identical.

When k = 3, the preshape space has dimension d = 2(k − 1)− 1 = 3. The corresponding
shape space of planar triangles Σ3

2 is S2(12). hA2 obtained from some w ∈ S3 is isometric to
a unit hemisphere in R3. A geodesic in Σ3

2 may or not be identified with a geodesic in hA2. A
geodesic in Σ3

2 through [w] is identified with a geodesic in hA2 through w. On the other hand,
a set of points in distance π/4 from [w] in Σ3

2 is a geodesic, but is identified with a small circle
with center w and radius π/4 in hA2.

The choice of the alignment base w is an important issue because the Riemannian distance in
hAd−1 is the same as the Riemannian distance in the shape space Σk

2 when compared to w, i.e.

ρd(w, z) = ρΣ([w], [z]), for z ∈ hAd−1.

Moreover, ρd(z1, z2) for z1, z2 ∈ hAd−1 is closer to ρΣ([z1], [z2]) when z1, z2 are close to w.
In general, we wish to set the alignment base w as a center of the data. Among many rea-

sonable options of w, we recommend to use the preshape of the Procrustes mean of the data.
Other reasonable candidates for w are the geodesic mean and the PNSmean. We have tested
these options to a number of real and simulation datasets. Setting w as the PNSmean or the
geodesic mean usually takes longer computation time than using the full Procrustes mean, and
the resulting decompositions are virtually the same in most cases.

In the following, we describe all candidates of w in more detail, giving the advantages and
disadvantages of each option.

We have first considered use of the PNSmean A0 as the alignment base. A0 is identified with
the origin of the coordinate system for the Euclidean representation of data X̂PNS . Since the
PNSmean is estimated from the data, we begin with the preshape of the full Procrustes mean as
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an initial guess for A0 and recursively update Â0 on which preshapes are aligned. The algorithm
consists of the following steps.

1. Initialize w as the preshape of the Procrustes mean of zi.
2. Align z1, . . . , zn to w and compute the sample PNSmean Â0 of aligned zi.
3. If ρd(w, Â0) < ϵ, then set w = Â0 and stop. Otherwise update w = Â0 and go to Step 2.
Note that in practice, there is no guarantee that this algorithm should converge.
Other candidates of w are the full Procrustes mean preshape and the geodesic mean of the

preshapes. These are relevant to the Fréchet mean, where the geodesic mean is the Fréchet mean
with the intrinsic (Riemannian) distance and the Procrustes mean is using the full Procrustes
distance which is extrinsic to Sd. Recently, it has been observed that the curvature of the manifold
Sd sometimes makes the Fréchet mean inadequate, see e.g. Huckemann et al. (2010). When the
Fréchet mean is indeed a useful representation of the data, the PNSmean is usually found at a
point close to the Fréchet mean. Note that even if the Fréchet mean is far from the data, the
PNSmean is nevertheless located at the appropriate center of the data.

Finally, the tests for overfitting discussed in Section 3 can be applied for the planar shapes
case too, as the residuals are all obtained after optimal procrustes rotation.

6. REAL DATA ANALYSIS

6·1. Migration path of an elephant seal
As a simplest example, consider a dataset on the usual sphere S2. The dataset consists of

n = 73 daily location measurements of a migrating female elephant seal, presented in Brillinger
& Stewart (1998) and also discussed in Rivest (1999). The seal migrates from the southern Cali-
fornia coast to the eastern mid-north Pacific Ocean. Of interest is to investigate whether the seal
migrates along a great circle path, i.e. the shortest distance path. Note that Brillinger & Stewart
(1998) and Rivest (1999) have analyzed this dataset in greater detail. We briefly re-analyze this
data set with our hypothesis test.

Fig. 4 shows the path of the migration, including both forward journey and return trip. Since
the dataset in the latitude-longitude coordinates can be converted to points on the unit sphere,
it is viewed as a set of points on S2 and we fitted PNS, with only one nested sphere (circle in
this case). We fit the best fitting great circle and small circle with fitted distance r̂ = 75.45◦. The
likelihood ratio test developed in Section 3·2 results in p-value 0.0851 (with H0a : r = 90◦, the
great circle). Therefore, the migration is not significantly different at the level α = 0.05 from a
great circle path, which is consistent with the results from Brillinger & Stewart (1998) and Rivest
(1999).

6·2. River and sea sand grains
We consider sand grain outlines that can be parameterized as a set of points in a hypersphere.

The dataset was originally analyzed in Kent et al. (2000), and consists of outlines of sand grains
in two dimensional view. There are n1 = 25 river and n2 = 24 sea sand grains. We illustrate an
application of PNS, and use of the Euclidean-type representation to test for group mean differ-
ence.

The outline of each sand grain is represented in polar coordinates (r1, . . . , rk) at each equally
spaced angle (θ1, . . . , θk), with k = 20. The scale is removed so that

∑k
i=1 r

2
i = 1. The origin

for each sand grain is its center of gravity, and we keep the grains fixed in the orientation that they
were recorded, rather than removing rotation as in the shape analysis of Kent et al. (2000). With
θi fixed throughout the samples (as θi = (i− 1)2π/k), r = (r1, . . . , rk) on the unit (k-1)-sphere
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Fig. 4. Daily observations of migration path of an elephant
seal, in the latitude-longitude coordinates, and the great cir-

cle and small circle fit of the data.

represents the scale invariant profile of a registered sand grain. Note that the size of river sand
grains are typically larger than that of sea sand (see Kent et al. (2000)), but this analysis focuses
on the variability in the scale invariant profiles of sand grains.

To the 49 (= n1 + n2) data points on the 19-sphere, we have applied the procedure of sample
PNS, with significance level α = 0.05 for every test applied. The small sphere is significant for
only three layers of the procedure, when fitting A18, A17 and A11, with both p-values less than
0.05. The smallest dimension nested sphere A1 has radius 0.8738, suggesting that the captured
principal variation is not so much curved than geodesics. The PNS leads to the Euclidean-type
representation XPNS of the dataset, in a way that the curved principal arcs are flattened. The
first three coordinates in XPNS are used for visualization of major variation as in Fig. 5.

To test the group mean difference between river and sea sand grains, we can use any Eu-
clidean space based test procedure applied to XPNS . Since we do not have any prior information
on the underlying distribution, it makes sense to use a nonparametric permutation test. In partic-
ular, we use the DiProPerm test (Direction-Projection-Permutation), described in Wichers et al.
(2007). The test finds a direction vector pointing from one group to the other, and computes a
t-statistic of the projected values onto the direction. The null distribution of the t-statistic is found
by permutation of group labels. We have used the DiProPerm test with the Distance Weighted
Discrimination (DWD) direction (Marron et al. (2007)). The DWD is a classification tool that
separates two groups with more generalizability than e.g. the popular SVM (Vapnik (1995)).
The subspace found by the DWD direction and first three coordinates of XPNS is illustrated
as a scatterplot matrix in Fig. 5. Although the first three coordinates of XPNS do not give a
visual separation between the groups, XPNS turns out to be a useful Euclidean space for linear
classification methods such as DWD.

DiProPerm tests the null hypothesis of equal group means. In our analysis, the test with 1000
permutations rejects the null hypothesis with p-value 0.0292. The difference of shapes in the
overlay of the outlines of sand grains (Fig. 6) is statistically significant.
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Fig. 5. Scatterplot matrix of sand grain data set, by the
DWD direction and the first three coordinates of XPNS .
(+: river sand grains, ◦: sea sand grains) Diagonal entries
are jitter plots of one dimensional projections with kernel
density estimates for each group. The DWD direction sep-
arating the two groups is found in the Euclidean space,

XPNS .

Fig. 6. Overlaid outlines of 25 river sand grains (+) and
24 sea sand grains (◦) with the group means (thick out-
lines) identified with the geodesic mean of each group. The
DiProPerm test rejects a null hypothesis of equal group

means with p-value 0.0292
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Fig. 7. (left) Procrusted fitted human data, (center) The first
principal mode of variation by PNS, showing ±2 standard
deviation from PNSmean. (right) The first principal mode
of variation by Principal Nested Great sphere (PNG). PNS
allows to capture curving variation. In particular, the varia-
tion in the bottom left landmark is more precisely captured

in PNS than PNG.

6·3. Human movement
A human movement dataset, introduced in Kume et al. (2007), contains 50 samples of k = 4

landmarks (lower back, shoulder, wrist, and index finger). The dataset consists of shape configu-
rations in the plane of a table, of one person performing five different tasks, each observed at ten
different time points. The raw data are plotted in Fig. 7.

In the left panel of Fig. 7, overlaid are 50 quadrilaterals, each of which is a shape configuration.
Vertices of the quadrilateral are the locations of the landmarks. These 50 samples are Procrustes
fitted to each other, i.e. translated, scaled, and rotated to each other so that they are as close as
possible.

We have applied PNG and PNS. The fitted nested spheres of PNS have radii 1, 0.7019, 0.3967,
and 0.2473 (from the 4-sphere to the 1-sphere, respectively). Note that since the dimension of
the corresponding shape space is 4, the 4-d PNS is a great sphere and leaves no residuals, as
expected. P-values of the sequential LRT are at most 0.0013, supporting the significance of the
fitted PNS. The quadratic form of variation in the PNG coordinates is captured by the 1-d PNS,
as illustrated in Fig. 1. The principal mode of variation found by PNS is plotted in Fig. 7, where
the four bold dots together represent the shape of the PNSmean, and the curves through the
PNSmean illustrate the shape change captured in the first PNS. The curvy form of variation
apparent in the raw data are well captured.

Each task can be modeled as a 1-d arc, by applying PNS to the samples corresponding to
each task. The results are plotted in Fig. 8. Each task is curving through at least three geodesic
components, and is well approximated by the separately fitted PNS.

6·4. Rat skull growth
The shape and size changes of rat skulls are described in Bookstein (1991) and studied by

several other authors including Kenobi et al. (2010). The data are eight landmark locations for
skulls of 21 laboratory rats observed at eight ages (days 7, 14, 21, 30, 40, 60, 90, and 150). We
discard 4 missing samples, and analyze the remaining 164 samples.

A non-geodesic variation curving through three geodesic components, in Fig. 9(a-b), is cap-
tured in the 2-d PNS (Fig. 9(c)). The first two principal arcs are plotted in PNG coordinates,
showing the non-geodesic variation captured by PNS. The PNS coordinates capture more inter-
esting variability in fewer components and give concise and useful representation of the data. In
particular, the shape change due to the growth of the rat is well captured by the first PNS, which
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Fig. 8. Human movement data—fitted curves (solid curves)
for different tasks labeled a, b, c, d, and e, plotted in PNG

coordinates.

can be checked by inspecting the relation to the size of the rat skulls (Fig. 9(d)). The skull size
is naturally larger for older rats. The first PNS coordinates are strongly associated with the size
with the sample correlation coefficient 0.9705.

The shape change due to the first PNS is illustrated in Fig. 10. The two extreme shape config-
urations are also overlaid, which shows a typical effect of age.

7. DISCUSSION

A classical approach to PCA for manifold data is a tangent plane approach (see e.g. Section
5.5 of Dryden & Mardia (1998) and Fletcher et al. (2004)). The resulting principal geodesics
are then passing through the point of tangency, i.e. the Procrustes mean or the geodesic mean.
In their inspiring paper, Huckemann et al. (2010) pointed out that the pre-determined mean may
not be a good representation of the data due to the curvature of the manifold. They find the best
fitting geodesic that are not necessarily passing through any pre-determined mean. Jung et al.
(2010) proposed to use small circles to fit the non-geodesic modes of variation when the sample
space is essentially S2. Our method builds upon these earlier works, where PNS can be viewed
as a high dimensional extension of Jung et al. (2010), and PNG are close to Huckemann et al.
(2010).

Our method can be viewed as a backward generalization of PCA. A conventional PCA ap-
proach is to begin with lower dimension, e.g. finding the mean first, then a least squares line
through the mean, then the second line which determines the best fitting plane and so on. We, on
the other hand, sequentially reduce the dimensionality from the full data. These two approaches
are equivalent in Euclidean space, but different on manifolds. The backward approach serves as
a natural viewpoint for extension of PCA to manifolds. In fact, Huckemann et al. (2010) partly
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Fig. 9. Rat skull growth: (a-b) data plotted by PNG coordi-
nates. (—) represents the first principal arc, and (· · · ) rep-
resents the second principal arc. (c) data plotted by PNS
coordinates. (d) scatterplot with centroid size and the re-

gression line.

Fig. 10. Rat skull growth: the first principal mode of varia-
tion by PNS, (· · · ) represents the shape of a typical young
skull (at −2 s.d.), and (—) represents the shape of a typical

old rat skull (at +2 s.d.).

used the backward approach, since their notion of mean is post-defined by two geodesic compo-
nents.

Another related area is manifold learning, see e.g. Roweis & Saul (2000) and Tenenbaum
et al. (2000), or Principal curves and Principal surfaces (Hastie & Stuetzle (1989) and LeBlanc
& Tibshirani (1994)). These methods find a low dimensional representation of the data in a non-
parametric way, but there is no notion of nestedness. PNS also finds a non-linear low dimensional
representation, but by a parametric form, and the findings give non-linear approximations of all
dimensions.
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Versions of PNS can be developed further. In particular, the least-squares fitting in Eq. 2 can
be modified to reducing the sum of squared deviations for more robust fitting. Otherwise, instead
of applying the post-hoc test procedure in Section 3, one can think of adding a penalty term to
Eq. 2 and regularize the overfitting. Moreover, a modification to three or more dimensional shape
space will be very useful.

The general idea of PNS can be used to analyze other types of data. For example, analysis
of diffusion tensor images involves a sample space of the symmetric positive definite matrices
(Basser et al. (1994), Pennec et al. (2006), Dryden et al. (2009)). The space of these positive def-
inite matrices is a non-Euclidean, cone-shaped manifold. A tangent space approach in Fletcher
& Joshi (2007) is used as an extension of PCA to this type of manifolds. A backward general-
ization of PCA for diffusion tensors might give a non-geodesic way of dimension reduction. A
backward approach can enhance reliability of dimension reduction when the local approximation
by tangent space fails.

8. GEOMETRY OF NESTED SPHERES

Geometric properties of nested spheres are discussed in this section. Initially it will be necessary to
introduce a particular type of transformation on the sphere in order to help define PNS. Specifically, we
describe a rotation matrix for moving a dataset on a sphere along a particular minimal geodesic which
retains the interpoint geodesic distances after the transformation. We then describe the subsphere and the
sequence of nested spheres as defined in section 2·1, and discuss the geometric properties of these.

8·1. Preliminary Transformations: Rotation matrices
Suppose that a and b are unit vectors in Rm and we wish to “move b to a along the geodesic path

on the unit sphere in Rm which connects b to a.” Amaral et al. (2007) showed that a rotation matrix is
determined in a natural way.

Define c = {b− a(aTb)}/
∥∥b− a(aTb)

∥∥, where ∥·∥ denotes the Euclidean norm on Rm. Provided
that |aTb| < 1, c is well defined. Let A = acT − caT . The following lemma is proved in Amaral et al.
(2007).

LEMMA 1. Assume that a,b ∈ Rm are unit vectors such that |aTb| < 1, and let A and c be defined
as earlier. Then for θ ∈ (0, π], the matrix

Q(θ) = exp(θA) = Id +
∞∑
j=1

θj

j!
Aj

has the following properties:

(a) Q(θ) is an m×m rotation matrix,
(b) Q(θ) can be written as

Q(θ) = Id + sin(θ)A+ (cos(θ)− 1)(aaT + ccT ),

(c) Q(α)b = a for α = cos−1(aTb) and
(d) for any z ∈ Rm such that aT z = 0 and bT z = 0, we have Qz = z.

The path of minimum length on the surface of the unit sphere in Rm connecting b to a is given by
{x(θ) = Q(θ)b : θ ∈ [0, cos−1(aTb)}. We write this Q(θ) as Q(b → a, θ) and denote Q(b → a)

.
=

Q(b → a, cos−1(aTb)) for the rotation matrix that moves b to a. The path defined here is indeed a
minimal geodesic on the sphere. If b and a were orthogonal, then

Q(θ)b = cos(θ)b+ sin(θ)a, −π/2 < θ 6 π/2, (A1)

which corresponds to a definition of the unit speed geodesic (Kendall et al. (1999)).
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We also define R(v), for v ∈ Rm, as a rotation matrix that rotates v to the north pole em =
(0, . . . , 0, 1)T , i.e.

R(v) = Q(v → em).

Note that the last row of R(v) is vT . If v = em, then R(v) = Im.

LEMMA 2. Assume that a,b ∈ Rm are unit vectors such that |aTb| < 1, and let θ ∈ (0, 2π].
(a) Let R be an m×m rotation matrix. Then, Q(Rb → Ra, θ) = RQ(b → a, θ)RT . Equivalently,

Q(RTb → RTa, θ) = RTQ(b → a, θ)R.
(b) Let a′ = (aT , 0)T , b′ = (bT , 0)T . Then the (m+ 1)× (m+ 1) rotation matrix that moves b′ to

a′ is given by

Q(b′ → a′, θ) =

[
Q(b → a, θ) 0m×1

01×m 1

]
,

where 0m×n is the m× n matrix of zeros.

8·2. Geometry of Subsphere
The nested spheres of Sd are lower dimensional submanifolds of Sd, each of which is isomorphic to

the unit spheres in different dimensions. The subsphere Am−1 of Sm, m > 2, (Definition 1) induces the
nested spheres. The Am−1(v, r) is the boundary of the geodesic ball in Sm with center v and radius r.
The v is said to be orthogonal to Am−1 in a sense of the following lemma.

LEMMA 3. (a) For any x,y ∈ Am−1, (x− y)Tv = 0.
(b) x ∈ Am−1 if and only if vT (x− cos(r)v) = 0 and ∥x∥ = 1.

A subsphere Am−1 is essentially an (m− 1) dimensional sphere. The following properties of sub-
spheres give the mathematical background to treat Am−1 as Sm−1.

PROPOSITION 1. Let Am−1(v, r) be a subsphere in Sm. Then

(a) (Am−1, ρm) is isomorphic to (Sm−1, ρm−1) with an isomorphism f : Am−1 −→ Sm−1 defined by

f(x) =
1

sin(r)
R−(v)x, x ∈ Am−1

with inverse

f−1(x†) = RT (v)

[
sin(r) · x†

cos(r)

]
, x† ∈ Sm−1,

where R(v) is the (m+ 1)× (m+ 1) rotation matrix that moves v to the north pole, R−(v) is the
m× (m+ 1) matrix consisting of the first m rows of R(v).

(b) Let ρ∗m−1(x,y) = sin(r)ρm−1(f(x), f(y)). Then ρ∗m−1 is a metric on Am−1.
(c) (Am−1, ρ

∗
m−1) is isometric to (Sm−1, sin(r)ρm−1).

(d) The two metrics ρm and ρ∗m−1 are equivalent, in a sense that the following inequalities

ρm(x,y) 6 ρ∗m−1(x,y) 6
π sin(r)

2r
ρm(x,y)

hold for all x,y ∈ Am−1 and both equalities hold if and only if r = π/2 or x = y.
(e) ρ∗m−1(x,y)− ρm(x,y) 6 π sin(r)− 2r for all x,y ∈ Am−1.

The ρ∗m−1(x,y) can be interpreted as the length of a minimal arc in Am−1 that joins x,y. Precisely, the
minimal arc is the image by f−1 of the minimal geodesic segment joining f(x) and f(y). Let x† = f(x),
y† = f(y). Then the geodesic segment is given by

Γ = {γ(θ) = Q(x† → y†, θ)x† : θ ∈ [0, cos−1(x†Ty†)]}.



961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008

Principal Nested Spheres 21

Fig. 11. Hierarchical structure of the sequence of nested
spheres of the 3-sphere.

By Lemma 2, we have for any θ ∈ [0, cos−1(x†Ty†)],

f−1(γ(θ)) = R(v)T
[
sin(r)Q(x† → y†, θ)x†

cos(r)

]
= R(v)T

[
Q(x† → y†, θ) 01×m

0m×1 1

]
R(v)R(v)T

[
sin(r)x†

cos(r)

]
= Q(xp → yp, θ)x,

where

xp = R(v)T
[
x†

0

]
=

x− cos(r)v

sin(r)
,

and yp is defined similarly. One can check that ρm(xp,yp) = ρm−1(x
†,y†) and Q(xp → yp)x = y.

Thus the arc {Q(xp → yp, θ)x : θ ∈ [0, cos−1(xT
p yp)]} joins x to y and is minimal in Am−1 because it

is isomorphic to the minimal geodesic Γ.
The difference between ρm and ρ∗m−1 is due to the fact that the minimal arc for ρ∗m−1 is not a geodesic

in Sm. If r < π/2, then the geodesic segment joining x,y is always shorter than the minimal arc in Am−1.
Since the difference is relatively small for close points (by Proposition 1(d-e)), this difference does not
obscure much the underlying structure of the points in Sm.

8·3. Geometry of Nested Spheres
We now define a sequence of nested spheres {Ad−1,Ad−2, . . . ,A1} of Sd, d > 2, with decreasing

intrinsic dimensions. We first introduce a sequence of subspheres Ad−1, Ad−2, . . . , A1 of Sd, which are in
different spaces. The d− 1 dimensional subsphere Ad−1 of Sd, defined in Definition 1, is in Sd ∈ Rd+1.
The second subsphere Ad−2 is defined from the isomorphic space Sd−1 of Ad−1. Similarly, the lower
dimensional subspheres are defined recursively.

DEFINITION 4. A sequence {Ad−1, Ad−2, . . . , A1} of subspheres is defined recursively as follows:

(i) Ad−1 is defined as the subsphere with v1 ∈ Rd+1, r ∈ (0, π/2] by Definition 1.
(ii) For each k = 2, . . . , d− 1, Ad−k is the subsphere defined with vk ∈ Rd−k+2, rk ∈ (0, π/2] from

Sd−k+1, which is isomorphic to Ad−k+1.

The nested spheres are defined in Definition 2, with transformations fk (1). The geometric interpreta-
tion and hierarchical structure of the nested spheres are illustrated in Fig. 2 and 11. The nested sphere Ad−k

can be understood as a shifted (d− k)-sphere, which is orthogonal to k orthogonal directions in the sense
of Lemma 4. The following properties summarize some geometric facts of the nested spheres. xp,k in the
lemma can be understood as the projection of x onto the subspace that is orthogonal to v∗

1, . . . ,v
∗
d−k.

LEMMA 4. Let Ad−1, . . . ,A1 be nested spheres of Sd from a sequence of subspheres Ad−k(vk, rk).
Then, there exists an orthogonal basis v∗

1, . . . ,v
∗
d−1 ∈ Rd+1 such that for each k = 1, . . . , d− 1,
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(a) (x− y)Tv∗
i = 0 for all i = 1, . . . , k, x,y ∈ Ad−k,

(b) x ∈ Ad−k if and only if xT
p,kv

∗
j = 0, for all j = 1, . . . , k, and ∥xp,k∥ =

∏k
i=1 sin(ri) where

xp,k = x− cos(r1)v
∗
1 − sin(r1) cos(r2)v

∗
2 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k.

Moreover, an explicit expression for v∗
j can be obtained from v1, . . . ,vj as

v†
j = f−1

1 ◦ · · · ◦ f−1
j−1(vj) ∈ Ad−j+1, (A2)

v∗
j =

j−1∏
i=1

sin−1(ri){v†
j − cos(r1)v

∗
1 − sin(r1) cos(r2)v

∗
2 − · · · −

j−2∏
i=1

sin(ri) cos(rj−1)v
∗
j−1} (A3)

A direct consequence of this lemma is that for any nested sphere Ad−k of Sd can be understood as the
intersection of a hyperplane Hk and Sd. The hyperplane Hk is a d− k dimensional affine subspace that
is orthogonal to v∗

1, . . . ,v
∗
d−k.

PROPOSITION 2. Let Ad−1, . . . ,A1 be nested spheres of Sd from subspheres Ad−k(vk, rk). Then,

(a) A1 ( A2 ( · · · ( Ad−1 ( Sd, where A ( B means that A is a proper subset of B,
(b) Let ρ∗d−k(x,y) =

∏k
i=1 sin(ri)ρd−k(x

′,y′), where x′ = fk ◦ · · · ◦ f1(x). Then ρ∗d−k is a metric on
Ad−k.

(c) (Ad−k, ρ
∗
d−k) is isometric to (Sd−k,

∏k
i=1 sin(ri)ρd−k).

The ρd and ρ∗d−k are indeed equivalent metrics. Moreover, one can show that ρ∗d−k(x,y) is the length of
a minimal arc in Ad−k that joins x and y.

9. PROOFS AND ADDITIONAL LEMMAS

Proofs for Appendix 8 will be given first. We then return to give proofs for the main article.

Proof of Lemma 2. (a) Let a0 = Ra, b0 = Rb and c0 = {b0 − a0(a
T
0 b0)}/

∥∥b0 − a0(a
T
0 b0)

∥∥.
Then c0 = Rc, where c = {b− a(aTb)}/

∥∥b− a(aTb)
∥∥, since RRT = RTR = Im. Then,

Q(Rb → Ra, θ) = R{Id + sin(θ)(acT − caT ) + (cos(θ)− 1)(aaT + ccT )}RT = RQ(b → a, θ)RT .

(b) Let c′ be defined similarly for a′, b′. We have

a′a′T =

[
a
0

] [
aT 0

]
=

[
aaT 0m×1

01×m 0

]
,

and c′c′T ,a′c′T and c′a′T can be expressed in a similar fashion. Then the expression of Q in Lemma 1(b)
gives the desired result. �

Proof of Lemma 3. For x ∈ Rm such that ∥x∥ = 1, x ∈ Am−1 if and only if ρm(v,x) =
cos−1(vTx) = r. This is equivalent to vTx− cos(r)vTv = 0 since vTv = 1. This proves (b). Write
x− y = (x− cos(r)v)− (y − cos(r)v), then the result (a) follows from (b). �

Proof of Proposition 1. We first show that f is a well-defined bijective function. Proofs for (b-e) will
follow. (a) is then given by (c) and (d).

First note that since sin(r) > 0, f is well defined. For any x ∈ Am−1, let x† = f(x). Then x† ∈ Rm,
and since R−(v)TR−(v) = Im+1 − vvT , we get∥∥x†∥∥2 =

1

sin2(r)

∥∥R−(v)x
∥∥2 =

1

sin2(r)
{xTx− (xTv)2} =

1

sin2(r)
{1− cos2(r)} = 1
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Thus, x† ∈ Sm−1. Conversely, for any x† ∈ Sm−1, let x = f−1(x†). Then ∥x∥ = 1 and

vTx = (R(v)v)T
[
sin(r)x†

cos(r)

]
= cos(r).

By Lemma 3(b), x ∈ Am−1. One can easily show that f ◦ f−1(x†) = x†, f−1 ◦ f(x) = x. Therefore, f
is a well defined bijective function.

Since ρm−1 is a metric and sin(r) > 0, the metric ρ∗m−1 is nonnegative and symmetric, and the triangle
inequality holds. In addition, since f is bijective, we have ρ∗m−1(x,y) = 0 if and only if x = y. This
proves (b). With the metric ρ∗m−1, f is an isometry and (c) follows.

To prove (d) and (e), the difference between two metrics for a fixed r ∈ (0, π/2] is given by

ρ∗m−1(x,y)− ρm(x,y) = sin(r) cos−1

(
cos(ρm(x,y))− cos2(r)

sin2(r)

)
− ρm(x,y) := hr{ρm(x,y)},

for any x,y ∈ Am−1. Note that maxx,y ρm(x,y) = 2r. Then hr is a strictly increasing function on [0, 2r]
with minimum hr(0) = 0 and the maximum hr(2r) = π sin(r)− 2r. This proves (e) and leads to the first
inequality of (d). The second inequality is obtained from observing that

π sin(r)

2r
ρm(x,y)− ρ∗m−1(x,y)

is nonnegative and is zero if and only if ρm(x,y) = 0 or 2r. �

The following lemmas are useful to prove Lemma 4 and also could be of independent interest.

LEMMA 5. Let v†
j and v∗

j be as defined in (A2-A3). For any x ∈ Sd and k = 1, . . . , d− 1, the follow-
ing are equivalent:

(i) x ∈ Ad−k.
(ii) vT

k [fk ◦ · · · ◦ f1(x)] = cos(rk).
(iii) For all j = 1, . . . , k,

xTv†
j =

j−1∏
i=1

sin2(ri) cos(rj) +

j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1).

(iv) For all j = 1, . . . , k,

xTv∗
j =

j−1∏
i=1

sin(ri) cos(rj).

Proof of Lemma 5. [(i) ⇔ (ii)] By Definition 2 and since each fi is bijective, x ∈ Ad−k is equivalent
to fk ◦ · · · ◦ f1(x) ∈ Ad−k. By Lemma 3(b), this is also equivalent to (ii).

[(i) ⇔ (iii)] First note that for any k = 1, . . . , d− 1, for y ∈ Sd−k,

f−1
1 ◦ · · · ◦ f−1

k (y) = RT (v1)

[
sin(r1){f−1

2 ◦ · · · ◦ f−1
k (y)}

cos(r1)

]

= [R(v1, . . . ,vk)]
T


∏k

i=1 sin(ri)y∏k−1
i=1 sin(ri) cos(rk−1)

...
cos(r1)

 ,

where R(v1, . . . ,vk) is a rotation matrix defined as

R(v1, . . . ,vk)
T = RT (v1)

[
RT (v2) 0d×1

01×d 1

]
· · ·
[

RT (vk) 0(d+2−k)×1

01×(d+2−k) 1

]
.
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Then

xTv†
j =

(
f−1
1 ◦ · · · ◦ f−1

j−1{fj−1 ◦ · · · ◦ f1(x)}
)T

f−1
1 ◦ · · · ◦ f−1

j−1(vj)

=

j−1∏
i=1

sin2(ri){fj−1 ◦ · · · ◦ f1(x)}Tvj +

j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1)

and the result follows from (ii).
[(i) ⇒ (iv)] Since x ∈ Ad−k, we have xTv∗

1 = cos(r1) by definition. Suppose xTv∗
ȷ =∏ȷ−1

i=1 sin(ri) cos(rȷ) for all ȷ = 1, . . . , j − 1, then (iii) and canceling terms give

xTv∗
j = xT

(
v†
j − cos(r1)v

∗
1 − · · · −

j−2∏
i=1

sin(r1) cos(rj−1)v
∗
j−1

)
j−1∏
i=1

sin−1(ri)

=

j−1∏
i=1

sin(r1) cos(rj).

Thus by induction, (iv) holds.
[(iv) ⇒ (iii)] Suppose (iv) holds, then for j = 1, . . . , k,

xTv∗
j −

j−1∏
i=1

sin(ri) cos(rj)

=

j−1∏
i=1

sin−1(ri)

(
xTv†

j − cos2(r1)− · · · −
j−2∏
i=1

sin2(ri) cos
2(rj−1)−

j−1∏
i=1

sin2(ri) cos(rj)

)
,

which equals to zero if and only if (iii) holds. �

Proof of Lemma 4. We first show that {v∗
i ; i = 1, . . . , d− 1} is an orthonormal basis. Note that v∗

1 =

v1, and v∗
2 = sin−1(r1){v†

2 − cos(r1)v
∗
1}. Since v†

2 ∈ Ad−1, by Lemma 5, we have

v∗T
2 v1 = sin−1(r1){v†T

2 v1 − cos(r1)} = 0,

and

v∗T
2 v∗

2 = sin−1(r1)v
∗T
2 v†

2 = sin−1(r1){v†T
2 v†

2 − cos(r1)v
†
2v

∗
1} = 1.

Suppose v∗T
i v∗

j = 0 and ∥v∗
i ∥ = ∥v∗

i ∥ = 1 for 1 6 i < j 6 k − 1. Since v†
k ∈ Ad−k+1, by Lemma 5,

we have

v∗T
j v∗

k =
k−1∏
i=1

sin−1(ri)v
∗T
j {v†

k −
j−1∏
i=1

sin(ri) cos(rj)v
∗
j } = 0,

and

∥v∗
k∥ =

k−1∏
i=1

sin−1(ri)v
∗T
k v†

k

=
k−1∏
i=1

sin−2(ri)v
†T
k {v†

k − cos(r1)v
∗
1 − · · · −

k−2∏
i=1

sin(ri) cos(rk−1)v
∗
k−1} = 1.

Thus, by induction, v∗
i , i = 1, . . . , d− 1, are orthonormal.

Now for (b), suppose first that x ∈ Ad−k. Then by Lemma 5, we get for all j = 1, . . . , k

xT
p,kv

∗
j = xTv†

j −
j−1∏
i=1

sin(ri) cos(rj) = 0
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and

∥xp,k∥2 = xTxp,k = xT {x− cos(r1)v
∗
1 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k}

= 1− cos2(r1)− · · · −
k−1∏
i=1

sin2(ri) cos
2(rk).

Thus by rearranging terms, ∥xp,k∥ =
∏k

i=1 sin(ri).
Conversely, suppose that xT

p,kv
∗
j = 0 for all j = 1, . . . , k and ∥xp,k∥ =

∏k
i=1 sin(ri). Then since

xp,k,v
∗
1, . . . ,v

∗
k are orthogonal to each other,

∥x∥2 =

∥∥∥∥∥xp,k + cos(r1)v
∗
1 + · · ·+

k−1∏
i=1

sin(ri) cos(rk)v
∗
k

∥∥∥∥∥
2

= xT
p,kxp,k + cos2(r1) + · · ·+

k−1∏
i=1

sin2(ri) cos
2(rk) = 1.

One can check that for all j = 1, . . . , k

xTv∗
j = {xp,k +

j−1∏
i=1

sin(ri) cos(rj)v
∗
j}Tv∗

j =

j−1∏
i=1

sin(ri) cos(rj),

and again by Lemma 5, the result follows. (a) is directly obtained from (b). �
Proof of Proposition 2. (a) is readily derived by either Lemma 4 or the fact that Am−1 ( Sm for all

m = 2, . . . , d.
For (b) and (c), it can be easily checked that fk ◦ · · · ◦ f1 : Ad−k −→ Sd−k is a well defined bijective

function. Since ρd−k is a metric and sin(ri) > 0, the metric ρd−k is nonnegative and symmetric, and the
triangle inequality holds. In addition, since f is a bijection, ρ∗d−k(x, y) = 0 if and only if x = y. This
proves (b). Then by the definition of ρ∗d−k, fk ◦ · · · ◦ f1 is an isometry and (c) follows. �

Proof of Theorem 1. Let the singular value decomposition of the (d+ 1)× n data matrix X =
[x1 · · ·xn] be

X =
n∑

i=1

λiuiv
T
i ,

where λis are the singular values, V = [v1 · · ·vn] is such that VTV = VVT = In, and U =
[u1 · · ·unun+1 · · ·ud+1] is such that UTU = UUT = Id+1. Then U = {un+1, . . . ,ud+1} is a an or-
thogonal basis set that complements {u1, . . . ,un}. For any u ∈ U , uTX = [uTx1 · · ·uTxn] = 0. There-
fore, ρ(u, xi) = cos−1(ux

i ) = π/2 for all i = 1, . . . , n. Write the orthogonal basis U as {v∗1 , . . . , v∗d−n+1}
and let r1 = · · · = rd−n+1 = π/2. Then by Lemma 4(b), there exist Ad−1 ⊃ · · · ⊃ An−1 such that
xi ∈ An−1. �

Proof of Theorem 2. Note that wTw∗ = wTMw = 0, and for all z ∈ Sd such that wT z >
0 and wTMz = 0, zTw∗ = zTMw = wTMz = 0. Thus ρd(w,w∗) = cos−1(wTw∗) = π/2 and
ρd(z,w

∗) = π/2. Moreover, since wT z > 0, we have w, z ∈ hAd−1. �
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