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Abstract

We present a novel method for representing “extruded” distributions. An extruded distribution is an M -dimensional
manifold in the parameter space of the component distribution. Representations of that manifold are “continuous mixture
models”. We present a method for forming one-dimensional continuous Gaussian mixture models of sampled extruded
Gaussian distributions via ridges of goodness-of-#t. Using Monte Carlo simulations and ROC analysis, we explore
the utility of a variety of binning techniques and goodness-of-#t functions. We demonstrate that extruded Gaussian
distributions are more accurately and consistently represented by continuous Gaussian mixture models than by #nite
Gaussian mixture models formed via maximum likelihood expectation maximization. ? 2002 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A critical aspect of data analysis and statistical pattern
recognition is the accurate modeling of the distributions
of data. When the shape, e.g., Normal, of a sampled dis-
tribution is matched by the mathematical function used
to model it, e.g., Gaussian, the subsequent data analyses
and classi#cations are accurate. When the shape of a dis-
tribution is unknown, the accurate and consistent model-
ing of the data is problematic.
The shapes of the distributions associated with medical

images, speech, handwriting, and RGB color spaces are
generally not known; the accurate and consistent model-
ing of these data has been di<cult. We propose that these
distributions are instances of a single class of shapes
that we designate “extruded” Gaussian distributions
[1,2].
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E-mail address: aylward@unc.edu (S.R. Aylward).

Traditionally, #nite Gaussian mixture models
(FGMMs) de#ned via maximum likelihood expectation
maximization (MLEM) have been used to represent
extruded Gaussian distributions. We will show that ex-
truded Gaussian distributions are more accurately and
consistently represented by continua of means and vari-
ances; continuous Gaussian mixture models (CGMMs).
The continua of means and variances of a CGMM form
(possibly multidimensional) “traces” in the parameter
space of a Gaussian. We will show that these traces
can be extracted as multidimensional height ridges of
Gaussian-goodness-of-#t functions.
CGMMs are just one type of continuous mixture model

that can be formed by traces of goodness-of-#t functions.
Continuous mixture models utilizing other component
distributions, e.g., log–normal distributions, may be ap-
propriate for other classi#cation problems. Adaptation of
the techniques presented in this paper to other continuous
mixture models is accomplished by changing the shape
of the goodness-of-#t function’s expected distribution.
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Fig. 1. (a) Proton density MR image. (b) Estimated intensity
inhomogeneity.

Fig. 2. Scatter plot of hand-labeled gray and white matter pixels
(PD value versus estimated inhomogeneity value).

Section 2 discusses the existence of extruded Gaus-
sian distribution in real-world data. Section 3 de#nes the
methods by which we will assess a model’s accuracy
and consistency. Section 4 introduces #nite and con-
tinuous Gaussian mixture modeling. Section 5 presents
Gaussian-goodness-of-#t functions that respond maxi-
mally when their parameters (�′ and �′) match those of
the distribution that generated the samples being tested.
Section 5 also discusses how maximum curvature height
ridges of Gaussian-goodness-of-#t functions de#ne
traces in the parameter space of a Gaussian, and, in turn,
how those traces de#ne CGMMs. Section 6 uses ex-
truded Gaussian distributions, Monte Carlo simulations,
and ROC analysis to compare FGMMs with CGMMs.
Section 7 demonstrates the generation of an accurate
representation of a tri-variate extruded Gaussian. Sec-
tion 8 demonstrates the CGMM-based classi#cation of
tissues in an inhomogeneous MR image.

2. Extruded Gaussian distributions in real-world data

Extruded Gaussians occur frequently in “real-world”
data. For example, they exist in the data associated with
medical images, speech, and handwriting.

Within small, “localized” regions of an MR image, the
intensities associated with a particular tissue type will be
Gaussian distributed, yet MR intensity inhomogeneities
cause the mean and variance of a tissue’s localized in-
tensities (i.e., the parameters of the localized Gaussian
distributions) to change throughout the MR image. The
proton density (PD) MR image in Fig. 1a was acquired
and converted to byte pixel values as described in
Ref. [3]. It contains an intensity inhomogeneity that is
visible as a large scale dimming in the inferior cerebel-
lum. The inhomogeneity can be quanti#ed (Fig. 1b) by
blurring the image at a scale of 15 pixels (∼ 13 mm) us-
ing only those pixels having PD values between 100 and
200. These intensity limits correspond to the range of
PD values associated with gray and white matter. More
exact methods for measuring the inhomogeneity exist
[4–6], but the stated approach is su<cient for this
demonstration. A scatter plot reveals the non-linear
correlation between PD value and inhomogeneity mag-
nitude; Fig. 2 is formed from 984 hand-labeled white
matter and 788 hand-labeled gray matter pixels from
these images. In Fig. 2, localized collections of a tissue’s
intensities have Gaussian distributions, but a continuum
of Gaussians is needed to represent each tissue’s entire
distribution; the tissue distributions are extruded Gaus-
sians. Other research supports the existence of extruded
Gaussians in X-ray CT images due to beam hardening
and in SPECT images due to de#ciencies in attenuation
compensation.
In speech recognition, it is commonly accepted that

hidden Markov models using Gaussian distributions can
represent certain aspects of the speech of a single person
in a controlled situation, e.g., given a #xed level of stress.
Smooth warpings can be applied to the parameters of
those Gaussians to transition them to new situations and
speakers [7]. That is, to account for such variations in
speaker and situation, multiple Gaussians are needed; the
distributions resemble extruded Gaussians.

3. Assessing model accuracy and consistency

For this paper, the accuracy and consistency of the dis-
tribution models are quanti#ed and compared based on
the accuracy and consistency of the classi#ers they de-
#ne. That is, when a model � of a class i is used to pro-
vide class conditional probability estimates P(x|�(i)) to
a classi#er, the accuracy and consistency of the labelings
produced by that classi#er determine the accuracy and
consistency of the model. Assuming equal class priors
P(�(i)) and Bayesian classi#cation, then

Label(x) = argmax
i=1:::# of classes

[
P(�(i)|x)

=
P(�(i))P(x|�(i))

P(x)
=P(x|�(i))

]
: (1)
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A classi#er’s labeling accuracy is quanti#ed by its true
positive and false positive rates. A classi#er’s labeling
consistency is the standard error of those rates.

4. Mixture modeling

When the shape of a sampled distribution is not known,
multiple “component” distributions can be combined to
model the sampled distribution. Such modeling is called
direct mixture modeling. For example, in a Gaussian mix-
ture model the component distributions are multivariate
(N -dimensional) normal densities that are parameterized
by 
.

F(x;
) =
1

(2�)N=2|�|(1=2) e
−(1=2)(x−�)′�−1(x−�);

where 
= {�; �}: (2)

4.1. Finite mixture modeling

If the number of components K is bounded, the mix-
ture model is a #nite mixture model �. It provides a
probability for a sample x via

P(x|�) =
K∑

j=1

!(j)F(x; 
(j)); where 1=
K∑

j=1

!(j)

and �= {{!;
}(j) | j=1 : : : K}: (3)

Most investigations involving mixture models use
#nite mixture models trained via maximum likelihood
expectation maximization (MLEM). While no #nite
mixture model training algorithm is best in all situations,
MLEM is easy to implement and provides several de-
sirable convergence properties: monotonic convergence
and nearly quadratic convergence rates [8–11].
MLEM, however, is an approximate gradient ascent

algorithm, and it is subject to non-optimal local maxima.
While MLEM is relatively robust to these non-optimal
maxima [9,11,12], it will be shown that the component
parameterizations produced via MLEM can vary greatly
and can be far from optimal given diMerent sets of sam-
ples from the same distribution; #nite mixture models
developed using MLEM do not perform consistently.
This inconsistency is aggravated by the reliance on the
user to specify the number of components. While much
research has focused on algorithms for automatically
determining an appropriate number of components for a
given problem, a generally applicable approach has not
been found [11,13]. A #nite mixture model’s expected
accuracy does not vary monotonically as a function of the
number of components. Additionally, the non-optimal
maxima associated with likelihood maximization can
lead to poorly utilized components; the eMective number
of components in a #nite mixture model may be less
than the user-speci#ed number of components. Since

extruded Gaussian distributions are comprised of an in#-
nite number of components, determining an appropriate
#nite number of components to approximate them can
be especially di<cult.

4.2. Continuous mixture modeling

A continuous mixture model consists of an uncount-
ably in#nite number of components whose parameters �
span Nt traces T ( j) through the parameter space of its
components, i.e., the domain of 
. For this paper, we
de#ne that a continuous mixture model provides a like-
lihood estimate via

P(x|�)= max
{!;
}∈�

(!F(x;
)); where

�=

{
{!;
}

∣∣∣∣∣
∃ j∈ 1 : : : Nt s:t: 
∈T ( j)

and !=P(
)

}
: (4)

This equation follows the simplifying assumptions made
by Dempster et al. for MLEM [8]. That is, we assume
that since the underlying distribution is assumed to be a
mixture, each multivariate sample x is, in fact, generated
by just one of the mixture’s components; the generating
component is determined via maximum likelihood; and
the generating component estimates the sample’s likeli-
hood, P(x|�). In actuality, the probability at a point is an
integration of the weighted probabilities provided by the
continuum of component distributions. We have, how-
ever, found the above likelihood implementation to be
expedient and su<cient for classi#cation.
The function F(x;�) can be interpreted as providing

a trace-point conditional sample probability, and ! as
providing a trace point a priori probability. Eq. (3) can
therefore be rewritten as

P(x|�)= max
{
}∈T ( j)|j=1:::Nt

(P(
)P(x|
)): (5)

The focus of this paper is the de#nition of the
traces T ( j) via height ridges of goodness-of-#t func-
tions. CGMMs parameterized via such traces can ac-
curately and consistently model the continua of means
and variances that form an extruded Gaussian dis-
tribution. For this paper, analysis is limited to ex-
truded Gaussians having one-dimensional traces; that is,
CGMMs de#ned via one-dimensional height ridges in
Gaussian-goodness-of-#t space.

5. Height ridges in goodness-of-"t space

A method has already been developed for representing
objects in images as continua of centers and widths, i.e.,
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Fig. 3. (a) 2700 samples distributed so as to best match a Gaussian distribution. (b) The GGoF space of the samples in Fig. 3a.
(Gaussian’s actual parameter values are indicated by the X.)

medialness cores [14]. In medialness cores, the centers
and widths of an object are approximated using multi-
dimensional height ridges of a medialness function.
Medialness cores have been proven to be invariant to
rotation, translation, intensity, and scale and insensi-
tive to a wide variety of image and boundary noise
[14]. To apply medialness core methods to the repre-
sentation of distributions, we substitute goodness-of-#t
functions for medialness functions since the relevant
property to be measured is sample density rather than
boundariness. In certain situations, goodness-of-#t func-
tions can be thought of as localizers of a distribution’s
means and variances instead of an object’s centers and
widths.

5.1. Univariate goodness-of-8t

One class of goodness-of-#t functions is the univari-
ate chi-squared measure. This class includes Pearson’s
statistic �2P, Read and Cressie’s power divergent statis-
tic �2R&C, and the log likelihood ratio �2LLR [15]. These
univariate statistics are binned, omnibus, and smooth
statistical measures. That is, the expected distribution
E and the observed samples O must be binned, the
shape of the expected distributions is arbitrary, and the
change in the measure’s value will be smooth given
small changes in the parameters of the expected dis-
tribution. We have modi#ed these GGoF functions so
as to be maximal when the parameters of the expected
distribution best match the parameters of the population
from which the samples originated. This is achieved
by subtracting the standard goodness-of-#t functions
from �26−1(�=0:99)=15:09 and then normalizing by
that value. Since our goal in this paper is to develop
mixture models using Gaussian components, the ex-
pected distribution is de#ned as a univariate Gaussian.
The parameters of these functions are therefore �′ and

�′, the mean and standard deviation to be tested. This
paper uses six bins B=6 centered at �′ and clipped so
as to capture samples within ±1:645�′ of �′. We refer
to these functions as Gaussian-goodness-of-#t (GGoF)
functions.

�2P =

(
15:09−

B∑
i=1

(O(i) − E(i))2

E(i)

)/
15:09; (6)

�2R&C

=

(
15:09− 9

5

B∑
i=1

O(i)

((
O(i)

E(i)

)2=3
− 1

))/
15:09;

(7)

�2LLR =

(
15:09− 2

B∑
i=1

O(i) ln
(

O(i)

E(i)

))/
15:09: (8)

The value of these goodness-of-#t functions will be
greater than zero for 99% of the sets of samples
that originate from a population parameterized by �′
and �′.
The behavior of these GGoF functions for the data in

Fig. 3a is illustrated in Fig. 3b. Speci#cally, Fig. 3a is a
histogram of 2700 samples distributed so as to best match
a Gaussian distribution. When the �2LLR GGoF function
is evaluated for a range of means �′ and standard de-
viations �′ given the data in Fig. 3a, then the GGoF
function values shown in Fig. 3b result. The maximum
of the GGoF function corresponds to the parameters of
the Gaussian that the samples represent. This maximum
is a zero-dimensional height ridge of GGoF; it accurately
represents the zero-dimensional trace of the sampled
(extruded) Gaussian.
Although these functions are smooth, we have found

that the binning technique aMects their realized smooth-
ness and hence the consistency with which a data set’s op-
timal local maximum can be found. We have studied four
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Fig. 4. (a) Equirange binning. (b) Overlapped-equiprobable
binning; shades of gray indicate the weighting of samples near
bin edges.

diMerent binning techniques: equirange, equiprobable,
overlapped-equirange, and overlapped-equiprobable [1].
Equirange binning refers to the use of non-overlapping
bins which span equal sized ranges of values (Fig. 4a).
Equirange binning is performed independent of the ex-
pected distribution. In equiprobable binning, each bin
spans a value range such that the expected number of
samples within each bin is equal (Fig. 4b). Equiprobable
binning is therefore driven by the expected distribution.
Overlapped binning techniques weight the allocation
of a sample to a bin based on its distance from the
bins’ edges. Such weights, for example, can be based
on a sigmoidal function as in Eq. (9). The variable y
represents the normalized distance from a sample to
the bin’s edge. That normalization is with respect to
half of the shorter range of the two bins that form the
edge. The parameter � controls the amount of over-
lap. For all overlapped-binning work presented in this

Fig. 5. (a) 5000 maxima from �2P with equirange binning using 20 samples. (b) 5000 maxima from �2P with equirange binning using
160 samples.

paper, �=0:75.

W (y;�)=
1

1 + e−(y=ln(1+0:1∗�)) : (9)

The accuracy and consistency of the local maxima of
the �2P; �2R&C, and �2LLR GGoF functions were evaluated
using 96 Monte Carlo simulations. Each simulation con-
sisted of 5000 runs. The simulations considered four dif-
ferent training set sizes (20; 40; 80; 160 samples) from
two distributions (a Gaussian with �=128 and �=16
and a log–normal distribution using a log base of 1.6) and
the four mentioned binning techniques. For each Monte
Carlo run, the local maximum of the GGoF function was
found via gradient ascent through the (�′; �′) parameter
space. The starting points for gradient ascent were se-
lected from a 2D Gaussian distribution centered at each
population’s ideal parameter values (�, �) having a stan-
dard deviation of 5% of those values. Figs. 5a and b il-
lustrate the estimated parameter values (�′; �′) of 5000
local maxima in GGoF from two of the Monte Carlo
simulations.
These scatterplots reveal improved accuracy when ad-

ditional samples are used to calculate the GGoF values.
Although the resolution of non-optimal local maxima
occurs even when 160 samples are used, the GGoF val-
ues associated with the non-optimal points are generally
negative and often are below −10. Such low values im-
mediately suggest that a suboptimal local maxima has
been found, and appropriate actions can then be taken to
reject such maxima.
The accuracy of a local GGoF maximum is de#ned

as the diMerence between the GGoF parameters (�′; �′)
of that maximum and the population’s actual parameters
(�; �). The consistency of the maxima from a Monte
Carlo simulation is the standard error associated with
each parameter �′ and �′ of the maxima.
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Conclusions drawn from the 96 simulations include
that (1) the binning method has more inPuence on ac-
curacy and consistency than the GGoF function; (2) the
accuracy and consistency of the estimates of � do not
vary signi#cantly as a function of the number of sam-
ples, the GGoF function, or the binning technique; and
(3) �2LLR with overlapped-equiprobable binning provides
the most accurate and consistent estimates �. As a result,
�2LLR with overlapped-equiprobable binning is used for
all subsequent GGoF ridge calculations.

5.2. Multivariate GGoF via GGoF ridge tangents and
normals

To calculate multivariate GGoF values, the multivari-
ate data within a bounding box about a given �′ are
converted to multiple univariate distributions via projec-
tion onto a set of basis directions normal to the trace
T . The expected variance associated with each of those
projections determines the size of the bounding box;
the expected variance in each direction may diMer. The
multivariate GGoF value is the average �2LLR value from
each of those projections. We hypothesize that for an ex-
truded Gaussian’s trace, neighboring trace points capture
a distribution’s variance in the trace’s tangent direction,
so each of our GGoF ridge points needs only to capture
variance normal to the ridge.
To estimate a ridge’s normal (and tangent) direc-

tions as well as the magnitudes of expected variance
in each of those directions, our algorithm extends the
height ridge work of David Eberly and the concept of
deriving geometric measures from local statistical mo-
ments developed by Yoo [16]. Speci#cally, we suggest
that eigenvectors of the local data’s covariance matrix
�(L) approximate the normal (and tangent) directions of
the GGoF height ridge, and the eigenvalues de#ne ex-
pected variance ratios for each of the normal directions
(Fig. 6).

�(L) is a function of two variables, a mean �′ and a
neighborhood size s′. �(L) is measured using a Gaussian
weighting G(∗) of the samples S about �′ so as to change
smoothly given small changes in �′ or s′.

�(L)
ij
(�′; s′)=

∑
z∈S G(z|�′; 3s′)(zi − �′

i
)(zj − �′

j
)∑

y∈S G(y|�′; 3s′)
:

(10)

De#ne "i for i=1; : : : ; N as the descending ordered
eigenvalues of �(L) and vi as their corresponding eigen-
vectors. In the absence of additional information, it can
be assumed that the maximum eigenvalued eigenvector
v1 approximates the GGoF height ridge’s tangent direc-
tion. The remaining eigenvectors approximate the normal
directions. The magnitude of expected variance in each

Fig. 6. The local data covariance matrix speci#es the directions
of projection and their expected variances for calculating a
multivariate GGoF value.

of the normal directions is speci#ed via eigenvalue ratios;
the magnitude of the expected variance in the eigendi-
rection vi for i=2; : : : ; N , is

(�′
i)

2 = (s′)2"i="2: (11)

By using expected variance ratios, extruded Gaus-
sians composed of anisotropic, yet Gaussian shaped,
cross-sections can be approximated by CGMMs.
To help understand the N + 1 dimensional GGoF

“space” (�′; s′) of an N dimensional distribution,
slices through the three-dimensional GGoF space of a
two-dimensional distribution in the feature space (f0; f1)
can be calculated. Consider the scattergram shown in
Fig. 7a. Those 900 samples were generated from a sim-
ulated extruded Gaussian designated Class A. Class A is
de#ned by three approximating cubic B-splines and four
isotropic control Gaussians. Each spline governs one of
the three parameters of the Gaussians, i.e., �f0 ; �f1 ; �. To
generate a sample, a parametric value t is chosen from
the uniform distribution U [0; 1]. The three splines are
evaluated at that t value. An isotropic Gaussian distribu-
tion is thus de#ned, and from that distribution the sample
is then generated. A one-dimensional GGoF trace exists
along the extent of the distribution. Figs. 7b and c are
volume renderings of GGoF space of the scattergram in
Fig. 7a. The sliced view (Fig. 7c) clearly illustrates the
track of maxima (height ridge=bright “core”) forming a
one-dimensional path through GGoF space.

5.3. Goodness-of-8t ridge extraction

Maximum-curvature height-ridge extraction tech-
niques are applied to GGoF spaces to extract CGMM
representations of extruded Gaussian distributions. The
three steps involved in maximum-curvature height-ridge
extraction are ridge stimulation, traversal, and traversal
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Fig. 7. Volume renderings of the GGoF space of the distribution in 8a. (a) “top–down” view of GGoF space; Viewed from large
s′ through to small s′. (b) Slicing GGoF space through s′ and rotating the point of view, exposes the distribution’s 1D GGoF ridge
(bright “core”).

termination. Other ridge de#nitions such as maxima of
level curve curvature ridges or watershed ridges can
be applied. The traces of an N -dimensional extruded
Gaussian distribution can be of dimensionality 1 to
N − 1. While this paper concentrates on the extrac-
tion of one-dimensional GGoF ridges to approximate
one-dimensional traces, the extraction technique can be
generalized to higher dimensional traces.
Ridge stimulation. A ridge stimulation point has two

components, �0 and s0. A “stimulating” FGMM is used
to specify �0. Speci#cally, the user must select the num-
ber of stimulating FGMM components to use (i.e., K),
the data are then modeled using FGMM, and the com-
ponent mean which is nearest (measured via Euclidean
distance) to two other component means is chosen as �0.
Consequently, �0 will generally be located within a dense
region of a sampled extruded Gaussian. If multiple ridges
are needed to represent a distribution, the remaining com-
ponent means may be used. The number of stimulating
FGMM components used appears to be non-critical; un-
less otherwise noted, all CGMMs developed in this paper
were the stimulated using FGMMs with 7 components.
Specifying s0 reduces to determining an initial neigh-

borhood size for calculating �(L) at �0. By assuming that
the trace tangent at �0 is well approximated by the max-
imum eigenvalued eigenvector of �(L), s0 is the square
root of the second largest eigenvalue. For this paper, the
initial neighborhood size is set equal to the distance be-
tween �0 and its closest neighboring stimulating FGMM
mean. For the data in Fig. 7a, �0 = (163:66; 80:08) and
s0 = 17:94.

Ridge traversal. The ridge normals are approximated
by the non-tangent eigenvectors of �(L) and a unit vector
which points strictly in the s′ direction. These directions
de#ne a hyperplane in GGoF space through which the
local ridge segment passes. When this normal plane is

Fig. 8. The local data covariance matrix speci#es the ridge’s
normal and tangent directions.

slightly shifted in the local ridge tangent direction, a gra-
dient ascent with respect to the GGoF values within that
plane leads to a new ridge point (Fig. 8). For this paper,
a step size of 0.1 feature space units is used to shift the
normal plane, gradient ascent within that shifted plane
is performed using Brent’s line search method [17], and
gradient ascent terminates when the gradient’s projection
onto the plane is less than 0.1% of its total magnitude.
The point in the plane at which gradient ascent terminates
is the new ridge point. The new point’s tangent direc-
tion is approximated by the eigenvector of its local data’s
covariance matrix that has the maximum-magnitude dot
product with the previous ridge point’s tangent eigenvec-
tor. If the sign of the dot product is negative, the new tan-
gent vector is negated to maintain the direction of traver-
sal. This process is repeated until a traversal termination
criterion is met.
Ridge traversal termination and recovery. Trace

traversal terminates when a “well #tting” Gaussian
cannot be found. Empirical evidence suggests that en-
countering a GGoF value of −10 or less is a reasonable
stopping criterion. This criterion was used to terminate
the traversal of every trace presented in this paper.
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Fig. 9. (a) Isocontours of the variance estimates. (b) CGMM estimated probability density function of Class A. (c) Actual probability
density function of Class A.

The rate of change of the trace is used to identify
suspect trace points and prevent their inclusion into the
trace without causing termination of the traversal process.
Such points are “stepped over” using the tangents of the
previous valid trace point.
The one-dimensional GGoF trace of the data in Fig.

7a is shown in Fig. 9a. The eMect of stepping over is
visible as a break in the trace. To visualize the variance
estimates in the normal directions provided by the trace,
the 0;±0:5, ±1, ±1:5, and ±2 s′ points along the normal
at each trace point have been plotted.
Higher dimensional ridges. To generalize this tech-

nique to higher dimensions, multiple-tangent directions
must be tracked and traversed so as to form a multi-
dimensional mesh in the components’ parameter space.
Our work indicates that no other algorithmic modi#ca-
tions are required. Again the eigenvectors and eigenval-
ues of the local data covariance matrices are used. As
the dimensionality of the ridge approaches the dimen-
sionality of the data, other techniques for ridge traver-
sal, discussed in [1], provide faster performance. The
next section details the conversion of a GGoF trace to a
CGMM.

5.4. CGMMs via GGoF traces

As de#ned in Eq. (4), two values, P(x|�) and P(�),
are required at each trace point � to de#ne a CGMM
�. To calculate P(x|�), a trace point covariance matrix
�(�) must be de#ned. The eigenvectors and eigenvalues
of �(�) are de#ned by (1) the N − 1 approximate nor-
mal directions and expected variances which were used
to calculate �′s GGoF value (Section 5.2) and (2) the
approximate tangent direction, which is assigned a vari-
ance equal to the maximum expected variance in a nor-
mal direction.
A trace point’s a priori probability P(�) is de#ned

as the portion of samples it is expected to represent.
The number of samples that will be represented by a
trace point can be extrapolated based on the number of

observed samples within one standard deviation of that
point.
The CGMM de#ned via the GGoF trace depicted in

Fig. 9a produces the probability density function depicted
Fig. 9b. Although the GGoF trace extended beyond the
distribution, the low prior probabilities P(�) associated
with those points reduce their eMect on the estimated den-
sity function. The estimated density function should be
compared with the population’s actual density function
that is shown in Fig. 9c. There appears to be good corre-
spondence. The next section focuses on quantifying that
correspondence.

6. CGMM’s accuracy and consistency

To determine the accuracy and consistency of a clas-
si#er and thus the accuracy and consistency of the
distribution models it uses (Section 2), Monte Carlo
simulations and ROC analyses are performed. This
section begins by presenting an example classi#cation
result.

6.1. Example results

The classi#cation problems used to evaluate the mod-
els make use of Class A, de#ned in Section 5.3. A
competing class, Class B, is de#ned as an isotropic
Gaussian with �=(128; 128) and �=36. Given 900
training samples from Class B, the stimulation point
�0 = (160:37; 123:30) and s0 = 17:94 is automatically
chosen. The resulting trace point conditional isoproba-
bility curves overlaid onto the training data scattergram
are shown in Fig. 10a. Fig. 10b is the density function
estimated by that CGMM (NT =1). Using the Class A
and Class B CGMMs, every point in feature space can be
assigned a label and an image can be developed which
rePects those labelings by diMerent shades of gray.
Fig. 11a is such an image with the optimal decision
bounds between the classes overlaid.
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Fig. 10. (a) Isoprobability curves normal to the trace of Class
B’s CGMM. (b) Estimate of Class B’s density function pro-
duced by CGMM.

The CGMMs of Classes A and B provide accurate
labelings for most of feature space. To improve the
CGMM’s labelings, multiple traces can be used. While
generally containing redundant information, additional
traces do re#ne a CGMM. CGMMs using NT =2, 4,
and 7 traces per class (called CGMM02, CGMM04, and
CGMM07, respectively) produce the labelings shown in
Figs. 11c, e, and g, respectively. FGMMs using K =1,
2, 4, and 7 components per class (called FGMM01,
FGMM02, FGMM04, and FGMM07, respectively) pro-
duce the labelings shown in Figs. 11b, d, f, and g respec-
tively. Allocation to each trace=component is indicated
by diMerent shades of gray; light grays indicate alloca-
tion to Class A. The presence of non-optimal FGMM
maxima is clear for FGMM07; one Class A component
represents a sliver through feature space. That com-
ponent is being poorly utilized, and its use does not
correspond to the underlying distribution.
Given 2700 testing samples from each class, the Class

A true positive rates (TPRs) and false positive rates
(FPRs) in Table 1, Run 1 are produced. Compared to
FGMM07s, CGMM07s provide a 718% decrease in the
FPR with a less than 11% decrease in the TPR! To
determine if these results were anomalous, new mod-
els were developed and tested using diMerent samples

Fig. 11. Labeling of feature space produced using (a) CGMM
(NT = 1) (b) FGMM01s (c) CGMM02s (d) FGMM02s (e)
CGMM04s (f) FGMM04s (g) CGMM07s (h) FGMM07s. Dif-
ferent shades of gray correspond to pixels’ allocation to diMer-
ent traces=components; Light gray shades indicate assignment
to Class A.

from Classes A and B. Those results are summarized in
Table 1, Run 2. CGMM07 again produced a low FPR,
but the diMerences are less dramatic. Run 1’s extreme
performance resulted in an exceptionally good model in
a central portion of feature space where the class samples
were particularly dense.
While no conclusions should be drawn from these

two runs, the results are quite encouraging. Not only
does CGMM07 provide the lowest FPR values and



1830 S.R. Aylward / Pattern Recognition 35 (2002) 1821–1833

Table 1
Class B TPRs and FBRs from two diMerent sets of training and
testing data

Run1 Run2

FPR TPR FPR TPR

CGMM01 0.3233 0.8859 0.2281 0.6681
CGMM02 0.3215 0.8859 0.2178 0.7874
CGMM04 0.2604 0.8367 0.2200 0.8204
CGMM07 0.0385 0.8237 0.2318 0.8485
FGMM01 0.2933 0.8415 0.2878 0.8659
FGMM02 0.3259 0.9196 0.3185 0.9307
FGMM04 0.3315 0.9259 0.3218 0.9400
FGMM07 0.3152 0.9130 0.3067 0.9141

competitive TPR values, but there is also an ordered
progression in the TPR and FPR values for CGMM as
the number of traces used is increased. For FGMM, the
use of additional components does not always increase
performance.

6.2. Monte Carlo results

To gain an understanding of the expected consistency
with which CGMMs model extruded Gaussians, Monte
Carlo simulations involving Classes A and B were per-
formed. Initial simulations revealed that even after 5000
repetitions of themodeling and testing task of Section 6.1,
classi#ers using FGMMs demonstrated extremely poor
consistency. So as to compare CGMMs with FGMMs on
a problem for which FGMMs provide consistent perfor-
mance, the Monte Carlo experiments were simpli#ed by
limiting their analysis to the FGMMs and CGMMs of the
extruded Gaussian, Class A. Each classi#er was provided
with an exact model of Class B. Given 100 Monte Carlo
runs involving 900 Class A training samples and 2700
Class A and 2700 Class B testing samples yielded the
average TPRs, FPRs, and standard error ranges shown in
Table 2.

Table 3
Results of measures made on ROC curves

Area of max − P(C) TPR @ TPR @ TPR @
ROC FPR=0:1 FPR=0:15 FPR=0:2

CGMM07 0.8752 1.5893 0.6160 0.7068 0.7741
FGMM01 0.8443 1.5530 0.5688 0.6704 0.7337
FGMM02 0.8665 1.6048 0.5889 0.6961 0.7844
FGMM04 0.8765 1.6126 0.6019 0.7166 0.7945
FGMM07 0.8793 1.6159 0.6047 0.7155 0.7935

Table 2
Average TPR=FPR values and their standard error ranges

Average Standard error

FPR TPR FPR TPR

CGMM01 0.2002 0.7181 0.0057576 0.0165489
CGMM02 0.2437 0.8192 0.0033732 0.0070245
CGMM04 0.2702 0.8658 0.0025880 0.0032410
CGMM07 0.2873 0.8862 0.0020565 0.0019929
FGMM01 0.2779 0.8364 0.0009231 0.0009339
FGMM02 0.2419 0.8660 0.0010374 0.0009371
FGMM04 0.2216 0.8495 0.0011087 0.0014111
FGMM07 0.1934 0.7990 0.0027022 0.0084882

These results are signi#cant: (1) These results reveal
that this is a problem on which FGMM performs well
(i.e., consistently), therefore CGMM is being compared
with FGMM on a problem for which FGMM performs
well. (2) Both modeling techniques demonstrate an or-
dered progression in consistency based on their hyperpa-
rameter, i.e., number of components or number of traces.
FGMM’s consistency, however, monotonically declines
as additional components are used. CGMM’s consistency
monotonically improves as additional traces are used.
CGMM07 is shown to oMer very competitive consistency.
ROC analysis is needed to compare the accuracy of these
classi#ers.

6.3. ROC analysis

By changing the a priori probability (observer bias)
associated with Class B while keeping each class model
and the testing data #xed, a continuum of FPR and TPR
values are de#ned. Qualitatively, these curves have very
similar shapes. Using these curves, three measures can be
made to quantitatively compare the classi#ers’ accuracy:
the area under each curve; the maximum probability of
generating a correct answer for each curve, i.e., max −
P(C)=max(TPR + (1− FPR)); and the TPR values of
each curve at #xed FPR values [18]. Table 3 summarizes
these measures for the ROC curves.
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Table 4
Probit’s d′ value for ROC curves based on Monte Carlo aver-
ages (Table 2)

d′ d′
CGMM01 1.418 FGMM01 1.569
CGMM02 1.607 FGMM02 1.808
CGMM04 1.719 FGMM03 1.801
CGMM07 1.768 FGMM04 1.801
CGMM14 1.810 FGMM07 1.704

The area under the CGMM07 curve is comparable to
that of FGMM04 and only slightly less than FGMM07.
CGMM07 provides performance similar to FGMM02,
but well below FGMM04 and FGMM07. As demon-
strated in both experiments of Section 6.1, CGMM07
provides the best TPR value for the smallest FPR tested,
i.e., FPR=0:1. This ROC analysis, however, is based on
a single instance of these modeling techniques and does
not reveal expected accuracy.
To determine the expected accuracy of CGMMs and

FGMMs on the Class A versus Class B problem, the
Monte Carlo averaged TPR and FPR values reported in
Section 6.2 are used. Speci#cally, the ROC curves pass-
ing through each classi#er’s Monte Carlo averaged TPR
and FPR values can be explicitly calculated under the
assumption that the class distributions are unit variance
Gaussians. While that assumption is strictly incorrect for
Class A, a Gaussian is a #rst order approximation to Class
A’s and B’s actual distributions. The signi#cant measure
produced from this ROC analysis is the probit measure
d′, the spread of the means [18]. More accurate models
have larger d′ values. Table 4 lists the relevant d′ values.
These values indicate that as additional cores are

used, CGMMs can be expected to asymptotically out-
perform the best performing FGMM when representing
Class A, an extruded Gaussian. That is, under #rst order
assumptions for Classes A and B: (1) the area under
CGMM14’s ROC curve will be larger, (2) CGMM14’s
maximum probability of being correct will be higher,
and (3) CGMM14 will provide a better TPR for every
FPR value compared to the best performing FGMM,
i.e., FGMM02.
In summary, every one of the experiments performed

suggests that for low FPRs, CGMMs composed of a su<-
cient number of GGoF traces can be expected to provide
better TPRs than any FGMM via MLEM. The next sec-
tion demonstrates the application of CGMMs to a higher
dimensional extruded Gaussian.

7. Trivariate extruded Gaussians and CGMMs

This section presents a trivariate distribution and
shows its CGMM representation. This increase in the

dimensionality of feature space allows anisotropic
control Gaussians to be used to de#ne a spline to
generate extruded Gaussians having elliptical cross-
sections (similar spline method was used in Section
5.2). This additional complexity illustrates the bene-
#t of using expected variance ratios (Eq. (11)). Be-
cause of the higher dimensionality of feature space,
9000 samples are used to represent the population
(Fig. 12a).
Using a stimulating FGMM with 7 components,

a stimulation point at �0 = (96:20; 98:94; 66:04) and
s0 = 12:07 is automatically generated. A one-dimensional
GGoF ridge spanning approximately 192 feature space
volume elements is automatically extracted. The central
skeleton of the distribution is well tracked by the GGoF
ridge. The GGoF ridge throughout the majority of the
distribution’s extent accurately estimates the local scale.
A volume visualization of the estimated density func-
tion provided by the CGMM is illustrated in Fig. 12b.
By slicing through this distribution at f2 = 64, the fact
that the model captures the anisotropic variance of the
population is demonstrated (Fig. 12c). The values of a
GGoF ridge point in that region match the expected vari-
ance ratios. The majority (∼ 95%) of the ridge points
evaluated demonstrated similarly accurate variance
ratios.
In summary, the GGoF ridge approximates the

trace of an anisotropic trivariate extruded Gaussian. A
one-dimensional height ridge is tracked in the four-
dimensional GGoF space. A CGMM is de#ned. A prob-
ability density function is estimated. No user interaction
is required.

8. Inhomogeneous magnetic resonance images

This section demonstrates the e<cacy of CGMMs
using GGoF traces for medical image data. Using the
hand-labeled samples shown in Fig. 2, four GGoF traces
can be automatically extracted to represent each class.
Using these CGMMs, all of the points in the image can
be labeled as either gray or white matter. While there
will be errors since other tissues are present, the results
are very promising; the gray matter mask formed is given
in Fig. 13a. The qualitative best FGMM was achieved
using four components. FGMM04’s gray matter mask is
shown in Fig. 13b.
The diMerences between the CGMM and the FGMM

masks are extremely small. The lack of a gold standard
for this data prevents a quantitative comparison. These
results are signi#cant, however, in that they indicate that
(1) CGMMs are a viable alternative for extruded Gaus-
sians given “real-world” data and (2) CGMMs do not
require the user to specify a hyperparameter value, i.e.,
the number of components.
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Fig. 12. (a) Estimated density function (b) Slice at f2 = 64
through the estimated density function reveals its elliptical
shape.

9. Conclusion

A CGMM of an extruded Gaussian can be de#ned us-
ing GGoF traces. Such models consistently yield accurate
classi#cations. Initial experiments indicate that for small
FPRs, this approach provides superior TPRs compared to

Fig. 13. (a) CGMM04’s gray matter mask. (b) FGMM04’s
gray matter mask.

FGMMs de#ned via MLEM. Given diMerent collections
of training data, the TPRs and FPRs associated with these
labelings remain consistent relative to the consistency of
the labelings produced by FGMMs. Furthermore,

• as additional GGoF traces are extracted, the accuracy
and consistency of the CGMM improves asymptoti-
cally

• by de#ning CGMMs using GGoF traces, CGMM per-
formance does not rely on the user to specify critical
hyperparameters such as the number of components

• by using GGoF trace de#nitions, CGMMperformances
does not suMer from the problems associated with local
maxima in an iterative parameter re#nement processes,
e.g., MLEM.

The application of CGMMs using GGoF ridges
to medical image data and the existence of extruded
Gaussians in medical images is demonstrated via the
classi#cation of tissues in an inhomogeneous MR image.
Current work is focusing on the extraction of higher
dimensional (M ¿ 1) GGoF traces and the develop-
ment of deformable distribution models using GGoF
traces which adapt generic representations to form more
optimal speci#c representations.
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