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EXACT DISTRIBUTIONS OF INTRACLASS CORRELATION AND CRONBACH’S
ALPHA WITH GAUSSIAN DATA AND GENERAL COVARIANCE
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Intraclass correlation and Cronbach’s alpha are widely used to describe reliability of tests and mea-
surements. Even with Gaussian data, exact distributions are known only for compound symmetric co-
variance (equal variances and equal correlations). Recently, large sample Gaussian approximations were
derived for the distribution functions.

New exact results allow calculating the exact distribution function and other properties of intraclass
correlation and Cronbach’s alpha, for Gaussian data with any covariance pattern, not just compound sym-
metry. Probabilities are computed in terms of the distribution function of a weighted sum of independent
chi-square random variables.

New F approximations for the distribution functions of intraclass correlation and Cronbach’s alpha
are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known,
the approximations typically provide sufficient accuracy, even with as few as ten observations.

Either the exact or approximate distributions may be used to create confidence intervals around an
estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that
the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected
from previously known results. However, assuming and estimating a general covariance matrix produces
somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100
gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically
large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming
general covariance introduces only a modest optimistic bias in small samples. Hence the new methods
seem preferable for creating confidence intervals, except when compound symmetry definitely holds.
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1. Introduction

1.1. Motivation

Estimates of interrater reliability are often of interest in behavioral and medical research. As
an example, consider a study in which each of five physicians used X-ray images (from CT scans)
to measure the volume of the hippocampus (a region of the brain). Each physician measured the
volume for each of twenty subjects. The scientist sought to evaluate inter-physician reliability.
This led to a wish to compute estimates of reliability and confidence intervals for the estimates.
The intraclass correlation coefficient and Cronbach’s alpha, which are one-to-one functions of
each other, provide appropriate indexes of reliability. The disparities in training and experience
among physicians makes it seem unlikely that equal variances and equal correlations (compound
symmetry) occur in this setting.

Requests for reprints should be sent to Emily O. Kistner (e-mail: EKistner@Bios.UNC.EDU), Department of Bio-
statistics, University of North Carolina, McGavran-Greenberg Building CB#7420, Chapel Hill, North Carolina 27599-
7420. Keith E. Muller (e-mail: Keith Muller@UNC.EDU) is an Associate Professor, Department of Biostatistics, Uni-
versity of North Carolina, 3105C McGavran-Greenberg Building CB#7420, Chapel Hill, North Carolina 27599-7420.
An earlier version of this paper was submitted in partial fulfillment of the requirements for the M.S. in Biostatistics, and
also summarized in a presentation at the meetings of the Eastern North American Region of the International Biometric
Society in March, 2001.

Kistner’s work was supported in part by NIEHS training grant ES07018-24 and NCI program project grant P01
CA47 982-04. She gratefully acknowledges the inspiration of A. Calandra’s “Scoring formulas and probability consider-
ations” (Psychometrika, 6, 1–9). Muller’s work supported in part by NCI program project grant P01 CA47 982-04.

0033-3123/2004-3/2001-0920-A $00.75/0
c© 2004 The Psychometric Society

459



Integre Tech. Pub. Co., Inc. Psychometrika November 30, 2004 2:35 p.m. kistner Page 460

460 PSYCHOMETRIKA

The exact, small sample, distributions of the estimates of intraclass correlation and Cron-
bach’s alpha are known only for Gaussian data with compound symmetric covariance. However,
as for the example just described, it may be invalid to assume equal variances and equal co-
variances across raters and time. Only a large sample approximation is available for covariance
matrices that are not compound symmetric.

1.2. Literature Review

Cronbach (1951) defined coefficient alpha, ρα , a lower bound of the reliability of a test.
Subsequently, Kristof (1963) and Feldt (1965) independently derived the exact distribution of a
sample estimate, ρ̂α , assuming Gaussian data and compound symmetric covariance. Exact calcu-
lations require specifying the common variance and correlation. Recently, van Zyl, Neudecker,
and Nel (2000) derived a large sample approximation of the distribution of ρ̂α for Gaussian data
with a general covariance matrix. Approximate calculations require specifying the population
covariance matrix. The results all extend to estimates of the intraclass correlation, due to the
one-to-one relationship between the two measures of reliability.

1.3. Overview of New Results

Section 2 contains exact and approximate expressions for the distribution functions of es-
timates of both intraclass correlation and Cronbach’s alpha. A theorem in Section 2.2 provides
the key result. It allows computing each distribution function in terms of the probability that a
weighted sum of independent chi-square random variables is less than zero. A simple F approxi-
mation is derived and provides a much simpler algorithm than the one required to compute exact
probabilities.

Section 3 contains three kinds of numerical evaluations of the new results. The first involves
verifying the accuracy of the exact forms. The second centers on comparing the existing Gaus-
sian approximation to the new exact result and the new F approximation. The third contains an
evaluation of the coverage accuracy of confidence intervals based on an estimated covariance
matrix.

2. Analytic Results

2.1. Notation

A scalar variable will be indicated by lower case, such as x ; a vector (dimension n × 1,
always a column) by bold lower case, such as x; an n × p matrix by bold upper case, X; and its
transpose by X′. For example, 1n indicates an n × 1 vector of 1’s. If X = [x1 x2 · · · xp],
then the stacking of the columns into an n · p × 1 vector will be indicated by vec(X), with
the first column at the top, followed by the second, etc. The Kronecker product is defined as
X ⊗ Y = {

xi j · Y
}
. For an n × 1 vector x, the n × n matrix with all zero elements off the

diagonal and xi as the (i, i) element will be written Dg(x). As needed, a scalar, vector or matrix
is described as constant, random, or a realization of a random scalar, vector or matrix.

Properties of Gaussian variables will be used throughout (Arnold, Chapter 3, 1981). All
parameters are assumed finite. A scalar variable, y, will be indicated to follow a Gaussian distri-
bution, with expected value, the mean, E(y) = µ and variance, V(y) = E(y2) − [E(y)]2 = σ 2,
by writing y ∼ N (µ, σ 2). An n × 1 vector will be indicated to follow a Gaussian distribution,
with n×1 mean vector E(y) = � and n×n covariance matrix V(y) = E(yy′)−E(y)[E(y)]′ = �,
by writing y ∼ Nn(�, �).

Interest in this paper centers on an n × p matrix of data, Y, for which the rows form a set of
independent and identically distributed Gaussian vectors. This may be indicated symbolically as
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[rowi (Y)]′ ∼ Np(�, �), assuming independent and identically distributed rows. Throughout this
paper, � represents a p × p, symmetric, and positive definite population covariance matrix. The
spectral decomposition allows writing � = V�Dg(��)V′

� , with positive eigenvalues
{
λ�, j

}
.

Corresponding eigenvectors are the columns of V� , which is p× p, of full rank, and orthonormal
(V′

�V� = Ip). Furthermore, if F� = V�Dg(��)1/2 then � = F�F′
� .

Johnson, Kotz, and Balakrishnan (1994, 1995) gave detailed treatments of the chi-square
and F distributions. Writing X ∼ χ2(ν) indicates that X follows a central chi-square distri-
bution, with ν degrees of freedom. If X1 ∼ χ2(ν1) independent of X2 ∼ χ2(ν2), then writ-
ing (X1/ν1)/(X2/ν2) ∼ F(ν1, ν2) indicates that the ratio follows a central F distribution,
with numerator degrees of freedom ν1 and denominator degrees of freedom ν2. The distribu-
tion function of a central F will be indicated as FF ( f ; ν1, ν2), with corresponding qth quantile
f = F−1

F (q; ν1, ν2). The identity F−1
F (q; ν1, ν2) = 1/F−1

F (1 − q; ν2, ν1) is useful.

2.2. Known Results

A covariance matrix may be described as compound symmetric if all variances are equal
and all correlations are equal. If so, and σ 2 is the common variance while ρI is the common
correlation, � = σ 2[ρI1p1′

p − (1 − ρI)Ip]. The matrix has two distinct eigenvalues. The first

is τ1 = σ 2[1 + (p − 1)ρI], with corresponding eigenvector v0 = 1p/
√

p. The second is τ2 =
σ 2(1 − ρI), which has multiplicity p − 1 and corresponding eigenvectors any matrix V⊥, of
dimension p × (p − 1), such that V′⊥V⊥ = Ip−1 and V′⊥1p = 0p−1. Without loss of generality,
V⊥ may be taken to be the orthogonal polynomial trend coefficients (normalized to unit length).
Requiring 0 < σ 2 < ∞ and −(p − 1)−1 < ρI < 1 ensures finite and positive definite �. See
Morrison (1990, p. 289) for additional detail.

In practice, calculations are based on �̂ = Y′[In − 1n1′
n/n]Y/ν, with ν = n − 1 > p

assumed throughout. In turn, this leads to the estimated intraclass correlation coefficient,

ρ̂I =
[
1′

p�̂1p − tr
(
�̂
)]/[p(p − 1)]

tr
(
�̂
)/

p
, (1)

with −(p − 1)−1 < ρ̂I < 1. Similarly, the estimate of Cronbach’s α is

ρ̂α = p

(p − 1)

[
1 − tr

(
�̂
)/

1′
p�̂1p

]
, (2)

with −∞ < ρ̂α < 1. Estimated Cronbach’s α is a one-to-one function of estimated intraclass
correlation:

ρ̂α = pρ̂I

1 + (p − 1)ρ̂I
. (3)

Replacing �̂ with � gives the population values. If � is compound symmetric, then ρI is the
common correlation, with ρ̂I the maximum likelihood estimate (with Gaussian data).

To avoid confusion it may help to describe ρI as the intraclass correlation if � is compound
symmetric, and as the generalized intraclass correlation if � is not compound symmetric. The
two situations have different analytic properties, including different maximum likelihood esti-
mates of �. Under compound symmetry, ρI equals the average population correlation, and ρ̂I
is the corresponding maximum likelihood estimate. In contrast, without compound symmetry,
typically ρI will not equal the average correlation and ρ̂I will not be the maximum likelihood
estimate of the average correlation. See Morrison (1990, p. 250) for some additional detail.
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2.3. New Exact Distributions and Related Properties

Theorem 1. With multivariate Gaussian data, the cumulative distribution function of the
estimate of intraclass correlation exactly equals the probability that a particular weighted sum of
independent central chi-square random variables is less than zero. A parallel statement holds for
Cronbach’s α.

In particular, consider observing the n × p random matrix Y with independent and identi-
cally distributed rows such that [rowi (Y)]′ ∼ Np(�, �), with � = F�F′

� , a p × p, symmetric,

and positive definite matrix. Recall that the corresponding estimate is �̂, with ν = n − 1 > p
degrees of freedom. Let rI indicate a particular quantile of ρ̂I, with −(p − 1)−1 < rI < 1, and
let rα indicate a particular quantile of ρ̂α , with −∞ < rα < 1. In addition, define the following
one-to-one functions of the quantiles:

xI = [(p − 1)rI + 1] (4)

xα = [1 − rα(p − 1)/p]−1. (5)

For c ∈ {α, I}, also define

D(xc) = 1′
p

(
ν�̂
)
1p − xctr

(
ν�̂
)
. (6)

The assumptions just stated suffice to allow proving the following results.
The matrix F′

�(1p1′
p − xcIp)F� is a p × p, symmetric full rank, with one strictly positive

eigenvalue, λ2c,1, and p − 1 strictly negative eigenvalues,
{
λ2c,2, . . . , λ2c,p

}
. Most importantly,

Pr
{
ρ̂c ≤ rc

} = Pr {D(xc) ≤ 0}

= Pr

{
λ2c,1 Xc1 −

p∑
j=2

|λ2c, j |Xcj ≤ 0

}
, (7)

with Xcj ∼ χ2(ν), independently of Xcj ′ if j �= j ′.

Proof. See Propositions 1–4 and their proofs in the appendix.

Corollary 1. The previously known exact results for compound symmetry are special cases
of the theorem results.

1. If � has compound symmetry then the proofs of Propositions 1–4 lead to simple forms
of the required eigenvalues. In turn, D(xc) = [τ1(p − xc)]Xc1 − (τ2xc)

∑p
j=2 Xcj and

Pr
{
ρ̂c ≤ rc

} = FF

[
τ2xc(p − 1)

τ1(p − xc)
; ν, ν(p − 1)

]
= 1 − FF

[
τ1(p − xc)

τ2xc(p − 1)
; ν(p − 1), ν

]
. (8)

2. If � has compound symmetry and q ∈ [0, 1] then

q = FF [τ2(p − 1)xc/[τ1(p − xc)]; ν, ν(p − 1)].
Solving for xc gives

xc = τ1 p/
[
τ2(p − 1)F−1

F [1 − q; ν(p − 1), ν] + τ1

]
,
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with corresponding qth quantiles

rα = 1 − F−1
F [1 − q; ν(p − 1), ν]τ2/τ1 (9)

and

rI = 1 − F−1
F [1 − q; ν(p − 1), ν]τ2/τ1

1 + (p − 1)F−1
F [1 − q; ν(p − 1), ν]τ2/τ1

. (10)

3. If � has compound symmetry, an exact confidence interval can be computed as follows.
Let fL = F−1

F [αL ; ν(p − 1), ν] and fU = F−1
F [1 − αU ; ν(p − 1), ν]. For ρα , a confidence

interval of size 1 − αL − αU < 1, with 0 ≤ αL < 1 and 0 ≤ αU < 1, is given by

1 − αL − αU = Pr
{

1 − (1 − ρ̂α) f −1
L ≤ ρα ≤ 1 − (1 − ρ̂α) f −1

U

}
. (11)

Similarly, if τ̂1/τ̂2 = [1 + (p − 1)ρ̂I]/(1 − ρ̂I), then for ρI it follows that

1 − αL − αU = Pr

{
fL τ̂1/τ̂2 − 1

fL τ̂1/τ̂2 − 1 + p
≤ ρI ≤ fU τ̂1/τ̂2 − 1

fU τ̂1/τ̂2 − 1 + p

}
. (12)

Part 1 is proven in the appendix. The result coincides with the previously known form, as
do 2 and 3, which follow easily from 1.

Corollary 2. The moment, characteristic, and cumulant generating functions, as well as all
cumulants and the first two moments of D(xc), have simple closed forms. In particular, with
i= √−1, the characteristic function is (Johnson & Kotz, 1970, equation 15, p. 152)

φD(xc)(t; �) =
p∏

j=1

(1 − 2itλ2c, j )
−ν/2. (13)

The moment generating function is the same function with t replacing it and the cumulant gener-
ating function is the logarithm of the moment generating function. The mth cumulant is (Johnson
& Kotz, 1970, equation 20, p. 153)

κD(xc)(m) = 2m−1(m − 1)!ν
p∑

j=1

λm
2c, j . (14)

The first cumulant is the mean,

κD(xc)(1) = E[D(xc)] = ν

p∑
j=1

λ2c, j , (15)

and the second cumulant is the variance,

κD(xc)(2) = V[D(xc)] = 2ν

p∑
j=1

λ2
2c, j . (16)

Corollary 3. Davies’ algorithm (1980) allows computing the exact distribution function of
estimates of intraclass correlation and Cronbach’s alpha.

The algorithm computes the distribution function of a weighted sum of independent chi-
squares with any combination of positive and negative weights, by numerical inversion of the
characteristic function.
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2.4. An F Approximation for the Distribution Function

Davies’ algorithm can be computationally intensive. Therefore an approximation was de-
rived for the distribution function of D(xc), based on Satterthwaite’s method (Mathai & Provost,
1992). The approximation matches the first two moments of

Q =
p∑

j=2

|λ2c, j |X j (17)

to Q∗ = λ∗ X∗, with X∗ ∼ χ2(ν∗). The constants that define the approximation are

λ∗ =
p∑

j=2

λ2
2c, j

/ p∑
j=2

|λ2c, j | (18)

and

ν∗ = ν

(
p∑

j=2

|λ2c, j |
)2/ p∑

j=2

λ2
2c, j . (19)

Assuming Q ≈ Q∗ allows writing

Pr
{
ρ̂c ≤ rc

} ≈ Pr
{
λ2c,1 X1 − λ∗ X∗ ≤ 0

}
= Pr

{
X1/ν

X∗/ν∗
≤ ν∗λ∗

νλ2c,1

}

= Pr

{
X1/ν

X∗/ν∗
≤

p∑
j=2

|λ2c, j |/λ2c,1

}

= FF

(
p∑

j=2

|λ2c, j |
/

λ2c,1; ν, ν∗

)
. (20)

Note that both the exact distribution and the approximate F distribution depend only on the
eigenvalues of A2c, which are functions of � and rc. The approximation reduces to the exact
result in the special case of compound symmetry.

2.5. Proposals for Approximating Confidence Limits with General Covariance

Two different methods for approximating confidence limits with general covariance have
some appeal. For a confidence level of 1 − αL − αU , the simplest method is to merely replace
� by �̂ and find the values of rcL and rcU that satisfy the equation 1 − αL − αU = Pr{rcL ≤
ρ̂c ≤ rcU }. This first approach is based on approximate quantiles. Alternately, the relationship
between the forms of the exact quantiles and confidence bounds under compound symmetry
leads to suggesting a simple modification in the context of the F approximation. The confidence
limit differs from the quantile by replacing an F quantile with the reciprocal of the opposite
tail quantile. In the context of numerically inverting the approximate distribution function, this
corresponds to replacing

FF

(
p∑

j=2

|λ̂2c, j |
/

λ̂2c,1; ν, ν∗

)
by 1 − FF

(
λ̂2c,1

/ p∑
j=2

|λ̂2c, j |; ν, ν∗

)
.

The second approach may be described as being based on approximate confidence limits.
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3. Numerical Evaluations

3.1. Check Exact Results with Simulations

Given a critical value, rc, and �, calculation of the exact distribution function required the
following steps.

1. Use Cholesky decomposition to compute F� such that � = F�F′
� .

2. Compute xc as either xI = [(p − 1)rI + 1] or xα = [1 − rα(p − 1)/p]−1.
3. Compute A1c = (1p1′

p − xcIp).
4. Compute the eigenvalues of A2c = F′

�A1cF� .
5. Apply Davies’ algorithm to compute Pr {D(xc) ≤ 0}, based on equation 7.

Computer simulations allowed checking the accuracy of the calculations of exact prob-
abilities. All such simulations used ν = 9 and p = 4. Using SAS/IML (SAS Institute, 1999),
100,000 random samples were generated from a multivariate normal distribution. Twelve distinct
choices for �, assumed known, were created by combining one of four correlation matrices with
one of three variance patterns. One correlation matrix had all correlations equal to ρ = 0.5 (all
off-diagonal elements were 0.5). The other three correlation matrices were autoregressive of or-
der 1, indicated AR(1), which implies the j, j ′ element was ρ| j− j ′|, with ρ ∈ {0.2, 0.5, 0.8}. The
variance pattern, [σ 2

1 σ 2
2 σ 2

3 σ 2
4 ]′, was [1 1 1 1]′, [1 2 3 4]′, or [4 3 2 1]′.

The observed probability that the estimate of Cronbach’s alpha was less than the critical value of
rα = 0.70 was tabulated from the 100,000 replications. Each observed probability was compared
to the corresponding exact probability computed with Davies’ algorithm. In all cases the exact
probability was contained within the 95% confidence interval around the observed probability.
The confidence intervals were based on a Gaussian approximation.

3.2. Evaluation of the F Approximation

Calculation of the F approximation for the distribution function began with computing the
eigenvalues of A2c, as described in the opening paragraph of Section 3.1. Then equations 19 and
20 were used to complete the calculation.

The F approximation was computed for all cases considered in Section 3.1, again assuming
� known (see Table 1). As stated in Corollary 1, the approximation gives the exact probabil-
ity with compound symmetry. More notably, at least for the cases considered in Table 1, the
approximation achieves three to four digits of accuracy.

Table 2 illustrates the behavior of the approximation for a range of quantiles with ν = 9,
p = 3, AR(1) with ρ = 0.5, and [σ 2

1 σ 2
2 σ 2

3 ]′ = [1 2 3 ]′. For the case considered, the
approximation is accurate even at the extremes of the distribution.

TABLE 1.
Pr{ρ̂α ≤ 0.70} with � Known and ν = 9

Correlation ρ [σ 2
1 σ 2

2 σ 2
3 σ 2

4 ]′ Exact F Approx.

equal 0.5 [1 1 1 1]′ 0.2689 0.2689
AR(1) 0.5 [1 1 1 1]′ 0.5628 0.5631
AR(1) 0.2 [1 1 1 1]′ 0.9442 0.9440
AR(1) 0.8 [1 1 1 1]′ 0.0430 0.0429
equal 0.5 [1 2 3 4]′ 0.4697 0.4705
AR(1) 0.5 [4 3 2 1]′ 0.7139 0.7135
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TABLE 2.
Pr{ρ̂α ≤ rα} with � Known, AR(1) Correlation with
ρ = 0.5 and [σ 2

1 σ 2
2 σ 2

3 ]′ = [1 2 3]′

rα Exact F Approx.

0.10 0.0614 0.0614
0.20 0.0899 0.0900
0.30 0.1349 0.1353
0.40 0.2072 0.2079
0.50 0.3231 0.3242
0.60 0.5010 0.5020
0.70 0.7367 0.7361
0.80 0.9418 0.9391
0.90 0.9992 0.9989

Figures 1–4 display the exact density function of Cronbach’s alpha, the F approximate
density, and the Gaussian approximate density due to van Zyl et al. (2000). The exact and F ap-
proximation densities were computed as numerical derivatives of the corresponding distribution
functions. In Figures 1 (ν = 9) and 2 (ν = 49), which differ only due to sample size, the exact
density and the F approximate density coincide exactly because both are based on compound
symmetry. Figures 3 (ν = 9) and 4 (ν = 49), which differ only due to sample size, are based
on an AR(1) correlation pattern with heterogeneity of variance. In Figure 3, the exact and F
approximate densities differ only slightly (by less than 10% in ordinate values) for only a subset
of the domain. In Figure 4, the exact and F approximate densities are indistinguishable at the
resolution of the plot.

Two overall conclusions seem apparent. First, the Gaussian approximation may deviate sub-
stantially from the exact result, including nonzero probabilities for values of Cronbach’s α greater
than 1.0 (which are impossible). Second, the F approximation is nearly always indistinguishable
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FIGURE 1.
Density of ρ̂α for ν = 9. Solid line for exact and F approximate, dotted line for Gaussian approximate, for p = 4 and
compound symmetry with ρ = 0.20, σ 2 = 1.
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FIGURE 2.
Density of ρ̂α for ν = 49. Solid line for exact and F approximate, dotted line for Gaussian approximate, for p = 4 and
compound symmetry with ρ = 0.20, σ 2 = 1.

from the exact result, except for some small differences in the right half of Figure 3. These results
agree with those in Tables 1 and 2.

3.3. Confidence Intervals from Estimated �

All research to this point has assumed that the true covariance matrix is known. In practice,
the covariance matrix can only be estimated. This leads to the desire to compute confidence
intervals based on an estimated �. Four distinct methods for computing confidence intervals are
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FIGURE 3.
Density of ρ̂α for ν = 9. Solid line for exact, dashed line for F approximate, and dotted line for Gaussian approximate,
for p = 4, AR(1) with ρ = 0.80 and [σ 2

1 σ 2
2 σ 2

3 σ 2
4 ]′ = [1 2 3 4]′.
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FIGURE 4.
Density of ρ̂α for ν = 49. Solid line for exact and F approximate, dotted line for Gaussian approximate, for p = 4,
AR(1) with ρ = 0.80 and [σ2

1 σ 2
2 σ 2

3 σ 2
4 ]′ = [1 2 3 4]′.

defined by making two choices. The first choice is to assume either compound symmetry or
general covariance. The second choice is to compute estimated quantiles or estimated confidence
limits.

Assuming general covariance led to difficulties with finding lower quantiles of the un-
bounded random variable ρ̂α . Hence all calculations were conducted in terms of the intraclass
correlation coefficient, which has a finite range, (−(p − 1)−1, 1), while the range of ρ̂α is un-
bounded, (−∞, 1). The change ensured stable convergence.

When assuming compound symmetry, equation 1 was used to compute ρ̂I. In turn, τ̂2/τ̂1 =
(1 − ρ̂I)/[1 + (p − 1)ρ̂I] was computed. The quantile approach values were computed by replac-
ing τ2/τ1 with τ̂2/τ̂1 in equation 10. The confidence limits approach values were computed by
replacing τ2/τ1 with τ̂1/τ̂2 in equation 12.

Assuming general covariance requires an iterative process to compute quantiles or approxi-
mate confidence limits. The corresponding method assuming compound symmetry provided the
starting value. The associated approximate distribution function value was computed next. This
was done by computing the eigenvalues of A2c, as described in the opening paragraph of Section
3.1, but with �̂ replacing �, and then using equations 19 and 20. A simple bisection algorithm
was applied to numerically invert the process and find a particular quantile. As described in
Section 2.5, the confidence interval approach differs only by replacing the calculation of

FF

(
p∑

j=2

|λ̂2c, j |/λ̂2c,1; ν, ν∗

)

with the calculation of

1 − FF

(
λ̂2c,1/

p∑
j=2

|λ̂2c, j |; ν, ν∗

)
.

Simulations were used to estimate the coverage probability, which is the number of times a
confidence interval contains the true value of the parameter, ρα , when estimating �. In all cases
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p = 4, with 500,000 samples from a multivariate normal distribution. One of four covariance
matrices were used. Two were compound symmetric (see Table 3) with constant variance of
σ 2

j = 1 and ρ ∈ {0.2, 0.8}. Two (see Table 4) used
[
σ 2

1 σ 2
2 σ 2

3 σ 2
4

]′ = [1 2 3 4]′ with
an AR(1) correlation matrix and ρ ∈ {0.2, 0.8}.

The coverage probability was estimated by tabulating the fraction of times the estimated
confidence interval contained the true value of ρα . Results in Tables 3 and 4 followed consis-
tent patterns. Overall, estimating the covariance matrix introduced bias in confidence interval
coverage, with the nature of the bias varying with the underlying assumption.

Naturally, if the assumption of compound symmetry holds in the population, confidence
intervals based on the exact method worked perfectly. In contrast, the quantile based approxi-
mation gave accurate confidence intervals in large samples and optimistically narrow confidence
intervals in small samples. Of course, the quantile approach would never be used in practice if
compound symmetry were known to hold. However, the results give some guidance as to the
sources of inaccuracy in the general covariance setting.

When general covariance is assumed regardless of the underlying covariance matrix, both
methods generated optimistically narrow intervals in small samples, with the approximate confi-

TABLE 3.
Estimated Coverage Probability of Confidence Interval for ρα with Compound Symmetry and All σ 2

j = 1

95% CI for Coverage of ρα

Assume Compound Symmetry Assume General �

ρ ν + 1 Quantiles Conf. Limits Quantiles Conf. Limits

0.2 10 (0.929, 0.930) (0.949, 0.950) (0.919, 0.921) (0.936, 0.937)
50 (0.946, 0.947) (0.949, 0.950) (0.944, 0.945) (0.948, 0.949)
100 (0.948, 0.949) (0.949, 0.950) (0.946, 0.948) (0.949, 0.950)
200 (0.948, 0.949) (0.949, 0.951) (0.948, 0.950) (0.949, 0.950)

0.8 10 (0.929, 0.930) (0.950, 0.951) (0.919, 0.920) (0.936, 0.937)
50 (0.946, 0.947) (0.949, 0.951) (0.943, 0.945) (0.948, 0.949)
100 (0.948, 0.949) (0.949, 0.950) (0.947, 0.949) (0.948, 0.950)
200 (0.948, 0.949) (0.949, 0.950) (0.948, 0.949) (0.949, 0.950)

TABLE 4.
Estimated Coverage Probability of Confidence Interval forρα with AR(1) Correlation and [σ 2

1 σ 2
2 σ 2

3 σ 2
4 ]′ = [1 2 3 4]′

95% CI for Coverage of ρα

Assume Compound Symmetry Assume General �

ρ ν + 1 Quantiles Conf. Limits Quantiles Conf. Limits

0.2 10 (0.952, 0.953) (0.973, 0.974) (0.929, 0.930) (0.934, 0.935)
50 (0.970, 0.971) (0.974, 0.975) (0.946, 0.947) (0.946, 0.948)

100 (0.972, 0.973) (0.974, 0.975) (0.948, 0.950) (0.948, 0.949)
200 (0.973, 0.974) (0.974, 0.975) (0.949, 0.950) (0.948, 0.949)

0.8 10 (0.978, 0.979) (0.992, 0.993) (0.932, 0.934) (0.932, 0.934)
50 (0.993, 0.993) (0.995, 0.996) (0.946, 0.948) (0.946, 0.947)

100 (0.994, 0.995) (0.995, 0.996) (0.948, 0.949) (0.948, 0.949)
200 (0.995, 0.995) (0.995, 0.996) (0.949, 0.950) (0.949, 0.950)
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dence limit approach generating slightly less bias. In larger samples, assuming general covariance
works very well with either method.

A very different picture arose from assuming compound symmetry when the assumption
was false. Violation of the assumption led to consistently wide confidence intervals, independent
of sample size for the approximate confidence limit approach. The quantile approach also always
gave pessimistically wide intervals, although with somewhat less bias in small samples.

4. Conclusions

The new results provide a wide range of properties of estimates of intraclass correlation
and Cronbach’s alpha with Gaussian data and general covariance. In addition, Davies’ algorithm
provides precise numerical calculation of probabilities and densities.

The new F approximation, based on assuming general covariance, provides the best com-
bination of accuracy and convenience, for both known and estimated �. In comparison to the
Gaussian approximation, the new F approximation provides substantially greater accuracy, es-
pecially in small samples.

The one-to-one relationship between estimates of intraclass correlation and Cronbach’s al-
pha has two practical implications. First, all of the conclusions from the simulations about esti-
mates of Cronbach’s alpha also apply to estimates of intraclass correlation. Second, the bounded
nature of the intraclass correlation, leads to preferring calculations based on the intraclass corre-
lation, even when interest centers on Cronbach’s alpha.

Not surprisingly, assuming general covariance provides much greater accuracy than that
obtained when wrongly assuming that compound symmetry holds. Equally important, assuming
general covariance in the presence of compound symmetry has only a small effect on confidence
interval accuracy, and then only in small samples. Hence any substantial doubt about the validity
of the compound symmetry assumption should lead to assuming general covariance and using
the new results.

A number of avenues have appeal for future research. An improved approximation for con-
fidence intervals based on estimated � in very small samples merits attention. Methods for com-
paring two or more estimates of reliability, and associated sample size formulas, would be valu-
able. It would be useful to know the impact of allowing missing data. Finally, the robustness of
the probability calculations to the violation of the assumption of Gaussian variables holds great
interest.

Free software which implements the new methods may be found at http://www.bios.
unc.edu/~muller. Distribution function and confidence interval algorithms are implemented
as collections of SAS/IML modules (SAS Institute, 1999).

Appendix

Definitions and Properties of Matrix Normal and Wishart Matrices

Arnold (1981, pp. 310–311) provided a general notation for a Gaussian data matrix. It is
used because it helps simplify the proof of Theorem 1. In particular, an n × p matrix, Y, will
be indicated to follow a matrix normal distribution, with n × p mean matrix, M, n × n row
structure, �, p× p column structure, �, by writing Y ∼ Nn,p(M, �, �). Equivalently, vec(Y) ∼
Nn·p[vec(M), � ⊗ �], or vec(Y′) ∼ Nn·p[vec(M′), � ⊗ �]. Both � and � are required to be
symmetric and positive semi-definite.

A reproductive property of a matrix normal will be used repeatedly. For constants A,
(n∗ × n), B (p × p∗), and C (n∗ × p∗), it follows that AYB + C ∼ Nn∗,p∗(AMB + C, A�A′,
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B′�B). Either the original or transformed distribution may be singular, depending on the com-
bination of ranks of A, B, � and �.

Following Arnold (1981, pp. 314–323), if Y ∼ Nn,p(M, I, �), then Y′Y is described as
following a Wishart distribution, written Y′Y ∼ Wp(n, �, M′M). Many variations occur, de-
pending on the relative sizes of p and n, as well as the ranks of � and M. If M = 0 then write
Wp(n, �) to indicate a central Wishart.

Proof of Theorem 1. The following assumptions suffice to prove Theorem 1. The n × p
random matrix Y has independent and identically distributed rows such that [rowi (Y)]′ ∼
Np(�, �), with � = F�F′

� , a p × p, symmetric, and positive definite matrix. The correspond-

ing estimate is �̂. The functions xI = [(p−1)rI +1] and xα = [1−rα(p−1)/p]−1 are functions
of −(p −1)−1 < rI < 1 and −∞ < rα < 1, while for c ∈ {α, I}, D(xc) = 1′

p(ν�̂)1p − xctr(ν�̂)

(see equations 4–6).
The assumptions have the following immediate implications. With ν = n − 1 > p, the

estimated covariance matrix, �̂, is such that ν�̂ ∼ Wp(ν, �). A lemma in Glueck and Muller
(1998) ensures that for any such �̂ there exists a ν × p matrix Y0 ∼ Nν,p(0, Iν, �) with Y′

0Y0 =
ν�̂. The spectral decomposition allows writing � = V�Dg(��)V′

� , with V�V′
� = V′

�V� =
Ip . Also F� = V�Dg(��)1/2 and � = F�F′

� . The matrices V� , Dg(��) and F� are p × p and
full rank.

Proposition 1. Let V1 = [v0 V⊥ ], with v0 = 1p p−1/2. Also let V⊥ be a p × (p − 1)

matrix such that V′⊥V⊥ = Ip−1 and V′⊥1p = 0p−1. For c ∈ {α, I}, A1c = (1p1′
p − xcIp)

is p × p, symmetric and full rank, with one positive eigenvalue (p − xc) and p − 1 nega-
tive eigenvalues of −xc. Corresponding orthonormal eigenvectors are v0 and V⊥. Also A1c =
V1Dg[(p − xc),−xc1p−1]V′

1, with V′
1V1 = Ip .

Proof of Proposition 1. A1c is a difference of p × p matrices and A′
1c = (1p1′

p − xcIp)
′ =

A1c. The fact that V′
1V1 = Ip follows from the definitions of v0 and V⊥. It is easy to directly

verify that A1cv0 = (p − xc)v0 and that A1cV⊥ = −xcV⊥, which proves the eigenvalue and
eigenvector properties. The restriction −(p − 1)−1 < rI < 1 ensures (p − xI) > 0 and xI > 0.
It also implies −∞ < rα < 1, which ensures (p − xα) > 0 and xα > 0.

Proposition 2. For c ∈ {α, I}, A2c = F′
�A1cF� is p × p, symmetric full rank, with one

strictly positive eigenvalue, λ2c,1, and p − 1 strictly negative eigenvalues,
{
λ2c,2, . . . , λ2c,p

}
.

Proof of Proposition 2. As a product of full rank p × p matrices, A2c is p × p and full
rank. Also A′

2c = (F′
�A1cF�)′ = A2c. Hence the spectral decomposition may be written A2c =

V2cDg(�2c)V′
2c. If T = F−1

� V1 then

T′A2cT = T′(F′
�A1cF�)T

= (F−1
� V1)

′[(F′
�V1)Dg[(p − xc),−xc1p−1](V′

1F�)](F−1
� V1)

= Dg[(p − xc),−xc1p−1]. (A21)

This demonstrates that A2c and Dg[(p − xc),−xc1p−1] are congruent. Consequently Sylvester’s
Law of Inertia (Lancaster, 1969, p. 90) allows concluding that A2c has one positive and p − 1
negative eigenvalues.



Integre Tech. Pub. Co., Inc. Psychometrika November 30, 2004 2:35 p.m. kistner Page 472

472 PSYCHOMETRIKA

Proposition 3. Pr
{
ρ̂c ≤ rc

} = Pr {D(xc) ≤ 0}.

Proof of Proposition 3.

Pr
{
ρ̂I ≤ rI

} = Pr

{ [1′
p�̂1p − tr

(
�̂
)]/[p(p − 1)]

tr
(
�̂
)/

p
≤ rI

}

= Pr
{

1′
p�̂1p

/
tr
(
�̂
)− 1 ≤ (p − 1)rI

}
= Pr

{
(ν1′

p�̂1p)
/[

νtr
(
�̂
)] ≤ xI

}
= Pr

{
1′

pY′
0Y01p − xItr(Y′

0Y0) ≤ 0
}

= Pr {D(xI) ≤ 0} , (A22)

and

Pr
{
ρ̂α ≤ rα

} = Pr
{[

1 − tr
(
�̂
)/

1′
p�̂1p

]
p
/
(p − 1) ≤ rα

}
= Pr

{
−[νtr

(
�̂
)]/(ν1′

p�̂1p
) ≤ [rα(p − 1)/p − 1]

}
= Pr

{
1′

pY′
0Y01px−1

α − tr(Y′
0Y0) ≤ 0

}
(A23)

= Pr
{

1′
pY′

0Y01p − xα tr(Y′
0Y0) ≤ 0

}
= Pr {D(xα) ≤ 0} .

Proposition 4. D(xc) = λ2c,1 Xc1 −∑p
j=2 |λ2c, j |Xcj , with Xcj ∼ χ2(ν), independently of

Xcj ′ if j �= j ′.

Proof of Proposition 4. The fact that tr(AB) =tr(BA), when the matrices conform, allows
writing

Pr
{

D(xc) ≤ 0
} = Pr

{
1′

pY′
0Y01p − xctr(Y′

0Y0) ≤ 0
}

= Pr
{
tr(Y01p1′

pY′
0) − xctr(Y0Y′

0) ≤ 0
}

= Pr
{
tr[Y0(1p1′

p − xcIp)Y′
0] ≤ 0

}
= Pr

{
tr(Y0A1cY′

0) ≤ 0
}
. (A24)

If Z1 ∼ Nν,p(0, Iν, Ip) then Y0 = Z1F′
� . Note that Z1 = {z1,i j } is a collection of independent

standard Gaussian variables. With V2c the orthonormal eigenvectors of A2c, define Z2c = Z1V2c,
with Z2c ∼ Nν,p(0, Iν, Ip). Therefore

Pr {D(xc) ≤ 0} = Pr
{
tr[Z1(F′

�A1cF�)Z′
1] ≤ 0

}
= Pr

{
tr[Z1(V2cDg(�2c)V′

2c)Z
′
1] ≤ 0

}
= Pr

{
tr[Z2cDg(�2c)Z′

2c] ≤ 0
}

= Pr
{
tr[Z′

2cZ2cDg(�2c)] ≤ 0
}
. (A25)
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A diagonal element of Z′
2cZ2c is z′

2c, j z2c, j , with z2c, j the (ν ×1) column j of Z2c. Using the fact
that postmultiplying by a diagonal matrix scales the columns allows writing

Pr {D(xc) ≤ 0} = Pr
{
tr[Z′

2cZ2cDg(�2c)] ≤ 0
}

= Pr

{
p∑

j=1

λ2c, j z′
2c, j z2c, j ≤ 0

}
. (A26)

The independent standard Gaussian nature of the elements of Z2c allows concluding that

Xcj = z′
2c, j z2c, j ∼ χ2(ν), (A27)

with Xcj independent of Xcj ′ if j �= j ′. Without loss of generality, assume that λ2c,1 is the single
positive eigenvalue of A2c. The proof is completed by splitting the summation:

Pr {D(xc) ≤ 0} = Pr

{
λ2c,1 Xc1 −

p∑
j=2

|λ2c, j |Xcj ≤ 0

}
. (A28)

Proof of Corollary 1. If � is compound symmetric then the eigenvectors of A1c and � co-
incide, which implies V′

1V� = V′
�V1 = Ip . In turn,

A2c = F′
�A1cF�

= [V�Dg(��)1/2]′[V1Dg[(p − xc),−xc1p−1]V′
1][V�Dg(��)1/2]

= Dg(��)1/2Dg[(p − xc),−xc1p−1]Dg(��)1/2

= Dg[τ1, τ21p−1]1/2Dg[(p − xc),−xc1p−1]Dg[τ1, τ21p−1]1/2

= Dg[τ1(p − xc),−τ2xc1p−1]. (A29)

If Xc+ = ∑p
j=2 Xcj then Xc+ ∼ χ2[ν(p − 1)]. Furthermore

Pr
{

D(xc) ≤ 0
} = Pr

{
τ1(p − xc)Xc1 − τ2xc

p∑
j=2

Xcj ≤ 0

}

= Pr
{
τ1(p − xc)Xc1 − τ2xc Xc+ ≤ 0

}
= Pr

{
Xc1/ν

Xc+/[ν(p − 1)] ≤ τ2(p − 1)xc

τ1(p − xc)

}
= FF

[
τ2(p − 1)xc

τ1(p − xc)
; ν, ν(p − 1)

]
= 1 − FF

[
τ1

τ2

(p − xc)

(p − 1)xc
; ν(p − 1), ν

]
. (A30)

Note the identity F−1
F [q; ν, ν(p − 1)] = 1/F−1

F [1 − q; ν(p − 1), ν].
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