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Abstract. Colonoscopy is the most widely used medical technique to
screen the human large intestine (colon) for cancer precursors. However,
frequently parts of the surface are not visualized, and it is hard for the
endoscopist to realize that from the video. Non-visualization derives from
lack of orientations of the endoscope to the full circumference of parts
of the colon, occlusion from colon structures, and intervening materials
inside the colon. Our solution is real-time dense 3D reconstruction of
colon chunks with display of the missing regions. We accomplish this by
a novel deep-learning-driven dense SLAM (simultaneous localization and
mapping) system that can produce a camera trajectory and a dense re-
constructed surface for colon chunks (small lengths of colon). Traditional
SLAM systems work poorly for the low-textured colonoscopy frames and
are subject to severe scale/camera drift. In our method a recurrent neu-
ral network (RNN) is used to predict scale-consistent depth maps and
camera poses of successive frames. These outputs are incorporated into
a standard SLAM pipeline with local windowed optimization. The depth
maps are finally fused into a global surface using the optimized camera
poses. To the best of our knowledge, we are the first to reconstruct dense
colon surface from video in real time and to display missing surface.
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1 Introduction

Colorectal cancer is the third most common cancer in men and the second in
women worldwide [6]. Colonoscopy is an effective method of detecting and re-
moving pre-malignant polyps.

There is strong evidence to support the assertion that polyps and adenomas
of all kinds are missed at colonoscopy (pooled miss-rate 22% [8] among multiple
studies). An important cause is that the colonic mucosal surface was not entirely
surveyed [5]. However, it is very difficult to detect missing colonic surface from
video alone, let alone quantify its extent, because one sees only a tiny fraction
of the colon at any given time rather than a more global view. The solution is
to build a system to visualize missing colon surface area by reconstructing the
streaming video into a fully interactive dense 3D textured surface that reveals
holes in the surface if regions were not visualized (Fig. 1). This should be done
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Fig.1: 3D reconstruction for visualization of missing colonic surface (highlighted in
black in the last image, 25% surface), small colon pouches that are occluded by ridges.

in real time so that the endoscopist can be alerted to the unseen surface in a
timely manner so that the situation can be remedied.

Hong et al. [4] used haustral geometry to interpolate the virtual colon surface
so as to find missing regions. However, their work only provided single-frame
reconstruction and haustral occlusion (without fusion), which is inadequate to
determine what has been missed during the procedure. Also, there is no inter-
frame odometry being used, which could boost reconstruction accuracy. Armin
et al. [1] produced a 2D visibility map which was less intuitive than a 3D dense
reconstruction. Zhao et al. [15] used Shape From Motion and Shading for dense
endoscopy reconstruction but is not real time.

The SLAM (simultaneous localization and mapping) [7, 2, 3] and the Structure-
from-Motion (SfM) methods [9] take a video as input and generate both 3D point
positions and a camera trajectory. However, besides the fact that most of them
do not generate dense reconstructions, they work poorly on colonoscopy im-
ages for the following reasons: 1) colon images are very low-textured, which is a
disadvantage for the feature-point-based methods, e.g., ORBSLAM [7]; 2) pho-
tometric variations (caused by moving light source, moist surface and occlusions)
and geometric distortions make tracking (predicting camera pose and 3D point
positions for each frame) too difficult; 3) lack of translational motion and poor
tracking leads to severe camera/scale drift (Fig. 2) and noisy 3D triangulation.

Convolutional neural networks (CNN) have been used for SLAM tasks and
predicting dense depth maps [16,12, 14]. However, these end-to-end networks
are subject to accumulated camera drift because there is no optimization used
during prediction as in standard SLAM systems. In contrast, there are works

Fig. 2: Left: Sparse point cloud of a chunk of colonoscopy video produced by a standard
SLAM pipeline (DSO) [2]; right: Sparse point cloud produced by ours (intermediate
result). The cross sections are approximated by yellow ellipses. The diameters of the
DSO result are dramatically decreasing (scale drift), which is non-realistic. Our result
has a much more consistent scale thanks to the depth maps predicted by the RNN.
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that use CNN to improve a standard SLAM system [11,13]. CNN-SLAM [11]
incorporated CNN depth prediction to the LSD-SLAM [3] pipeline to provide
robust depth initialization. The dense depth maps are finally fused into a global
mesh. Yang et al. [13] used CNN-predicted depth (trained on stereo image pairs)
to solve the scale drift problem in Direct Sparse Odometry (DSO) [2]. However,
there are neither stereo images nor groundtruth depth for colonoscopy images.
Also, training a CNN on colonoscopy images will be difficult due to the afore-
mentioned challenges.

In this paper, we present a deep-learning-driven colonoscopic SLAM system.
We develop a recurrent neural network (RNN) to predict both depth and cam-
era poses and combine it in a novel fashion with a SLAM pipeline to improve
the stability and drift of successive frames’ reconstructions. The RNN training
addresses the difficulties of reconstructing from colonoscopy images. The SLAM
pipeline optimizes the depth and camera poses provided by the RNN. Based on
these optimized camera poses, the depth maps of the keyframes are fused into
a textured global mesh using a nonvolumetric method. Our method produces a
high-quality camera trajectory and colon reconstruction which can be used for
missed region visualization in colonoscopy. The whole system runs in real time.

2 Methodology

2.1 Full pipeline

The full pipeline includes the following steps: 1) Deep-learning-driven track-
ing: predicting frame-wise depth map and tentative camera pose which are used
to initialize the photoconsistency-based tracking; 2) Keyframe selection: upon
enough camera motion, creating a new keyframe as the new tracking reference
and updating the neural network; 3) Local windowed optimization: the camera
poses and sparsely sampled points’ depth values of the latest N (e.g., 7) keyframes
are jointly optimized; 4) Marginalization: the oldest keyframe in window is final-
ized, i.e., marginalized from the optimization system; 5) Fusion: using optimized
camera pose, the image and the depth map of the marginalized keyframe is fused
with existing surface. We will detail item 1 in Sec 2.2, items 2-4 in Sec 2.3 and
item 5 in Sec 2.4.

update tracking reference

latest N keyframes

fused surface

1 oldest
deep-learning-driven keyframe local windowed e
tracking selection optimization

keyframe set
1 update optimized keyframes

Fig.3: Flow chart of presented deep-learning-driven colonoscopic SLAM system
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2.2 Deep-learning-driven tracking

Our deep-learning-driven tracking is developed upon RNN-DP (a recurrent neural
network for depth and pose estimation [12]) that predicts a depth map and a
camera pose for each image in the video. However, it cannot be directly trained
on colonoscopy videos because there is no groundtruth depth available. In addi-
tion, the pose estimation network in RNN-DP is trained based on image repro-
jection error, which is severely affected by the specular points and occlusions in
colonoscopy videos. Therefore, in this section we present several new strategies
that allow RNN-DP to be successfully trained on colonoscopy videos.

To solve the problem of the lack of groundtruth depth, we used SfM [9]
to produce a sparse depth map for each individual colonoscopy video frame.
These sparse depth maps are then used as groundtruth for RNN-DP training.
We collected 60 colonoscopy videos, each containing about 20K frames. Then
we grouped every 200 consecutive frames into a subsequence with an overlap
of 100 frames with the previous subsequence. Thereby we generated about 12K
subsequences from 60 colonoscopy videos. Then we ran SfM [9] on all the sub-
sequences to generate sparse depth maps for each frame. Following the training
pipeline in RNN-DP [12], these sparse depth maps are used as ground-truth for
training.

To avoid the error from specularity (saturation), we computed a specularity
mask M, Stpec for each frame based on an intensity threshold. Image reprojection
error at saturated regions are explicitly masked out by M ;fpec during training.

Colonoscopy images also contain severe occlusions by haustral ridges, so a
point in one image may not have any matching point in other images. The
original RNN-DP did not handle occlusion explicitly. In order to properly train it
on colonoscopy video, we compute an occlusion mask M?_. to explicitly mask out
image reprojection error at occluded regions. The occlusion mask is determined
by a forward-backward geometric consistency check, which was introduced in
[14].

Our improved RNN-DP outputs frame-wise depth maps and tentative cam-
era poses (relative to the previous keyframe). They are used to initialize the
photoconsistency-based tracking [2] that refines the camera pose.

2.3 Keyframe management and optimization

In this subsection, we will briefly review how a vanilla SLAM pipeline (DSO)
works and then introduce how RNN-DP interacts with the system.

Besides (deep-learning-driven) tracking, the other three main modules of the
SLAM system are keyframe selection, local windowed optimization and marginal-
ization. The SLAM system keeps a history of all keyframes. The latest keyframe
is used as the tracking reference for the incoming frames. In the keyframe se-
lection module, if the relative camera motion or the change of visual content
(measured by photoconsistency) is large enough, the new frame will be inserted
into the keyframe set. It will then be used as a new tracking reference.



Dense 3D Reconstruction from Colonoscopy 5

When a keyframe is inserted, the local windowed optimization module is
triggered. The local window contains the latest 7 keyframes. From each of these
keyframes, 2000 2D active points are sampled in total, preferring high-gradient
regions. Each active point is based on exactly one keyframe but is projected
to other keyframes to compute a photometric error. By minimizing the total
photometric loss, the camera poses (7x6 parameters) and the depth values of the
sampled points (2000 parameters) are jointly optimized. In addition, to tolerate
global brightness change of each keyframe, two lighting parameters per frame are
added to model the affine transform of brightness. The purpose of the sampling
is to enable efficient joint optimization by maintaining sparsity.

After optimization, the oldest keyframe is excluded from the optimization
system by marginalization based on the Schur complement [2]. The finalized
reconstructed keyframe is to be fused into the global mesh.

The SLAM system is improved using our RNN-DP network. In the keyframe
selection module, when a new keyframe is established, the original DSO used
the dilated projections of existing active points to set the depth map for this
keyframe, which is used in the new tracking tasks. The resulting depth map is
sparse, noisy and is subject to scale drift. In our method we set the depth map
for this keyframe using the depth prediction from the network. Our depth maps
are dense, more accurate and scale consistent. As a result, it makes the SLAM
system easier to bootstrap, which is known to be a common problem for SLAM.
On the other hand, the SLAM system also improves the result of raw RNN-DP
predictions by optimization, which is very important to eliminate accumulated
camera drift of RNN-DP. In summary, this is a win-win strategy.

Our RNN-DP network is integrated into the SLAM system. Its execution
is directed by the keyframe decisions made by the system. After tracking, the
hidden states of the RNN-DP remain at the stage of the latest keyframe. They
are updated only when a new keyframe is inserted.

2.4 Fusion into a chunk

The independent depth maps predicted by the RNN-DP need to be fused into a
global mesh. We use a point-based (nonvolumetric) method called SurfelMesh-
ing [10]. It takes a RGB+depth+camera sequence as input and generates a 3D
surface. Since SurfelMeshing requires well-overlapped depth maps, we add a pre-
processing step to further align the depths.

Windowed depth averaging: the fusion module keeps a temporal window
that keeps the latest 7 marginalized keyframes. In parallel, the depth map of
the 6 old keyframes are first projected to the latest keyframe. Second, the new
keyframe replaces its depth with the weighted average of the projected depth
maps and its current depth. The weights are inversely proportional to time in-
tervals. The average depth is used for fusion. This step effectively eliminates the
non-overlapping between depth maps at a cost of slight smoothing.

The fusion result (a textured mesh) is used for missing region visualization
and potentially for region measurement.
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3 Experiments

Our algorithm is currently able to reconstruct a colon in chunks when the colon
structure is clearly visible. The end of a chunk is determined by recognizing a
sequence of non-informative frames, e.g., frames of intervening material or bad
lighting, whose tracking photoconsistencies are all lower than a threshold. The
chunks we reconstructed are able to visualize the missing regions. We provide
quantitative results estimating the trajectory accuracy and qualitative results
on the reconstruction and missing region visualization.

3.1 Trajectory Accuracy

To evaluate the trajectory accuracy, we compare our method to DSO [2] and
RNN-DP [12]. Since there is no groundtruth trajectory for colonoscopic video,
to generate high quality camera trajectories in an offline manner, we use colmap
[9], which is a state-of-the-art SfM software that incorporates pairwise exhausted
matching and global bundle adjustment. These trajectories are then used as
“sroundtruth” for our evaluation.

Evaluation metrics. We use the absolute pose error (APE) to evaluate
global consistency between the real-time system estimated and the colmap-
generated ” groundtruth” trajectory. We define the relative pose error E; between
two poses Py, Pest,i € SE(3) at timestamp ¢ as

E; = (Py.i) " Pest; € SE(3) (1)
The APE is defined as
APE; = ||trans(E;)|| (2)

where trans(E;) refers to the translational components of the relative pose error.
Then different statistics can be calculated on the APEs of all timestamps, e.g.,
the RMSE:

RMSE = 3)
A —— RNN-DP --- Colmap
0.7 [ DSO stdev S \ —— DSO
— Ours Q RNN-DP
0.6 I\ Imse E— \ —— Ours
K | \ . I — \‘
w 0'5.) d | min == «"\
%04 \ | — AY
LA, ) 0 [0 | median e — b
0.3 /| ; ‘ T 7 p)
’ (M [ \ /) i N
01 y -1." : J [ max_ :\"
&

20 40 60 80 100 120 140 0.00.1 0.2 0.3 0.4 0506 0.7
@) frame (b) APE (c)

Fig.4: Evaluation result on one colonscopy sequence. (a) APE of the three approaches
across the whole sequence. (b) Statistics based on APE. (c) A bird’s-eye view of the
full trajectories.
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| Method | rmse | std | min | median | mean | max |
RNN-DP 0.617 0.253 0.197 0.518 0.560 1.229
DSO 0.544 0.278 0.096 0.413 0.465 1.413
Ours 0.335 0.157 0.074 0.272 0.294 0.724

Table 1: Average statistics based on the APE across 12 colonoscopic sequences

Fig. 4 shows evaluation results on one colonoscopic sequence. Fig. 4.a com-
pares the absolute pose error (APE) of the three approaches on the example
sequence: our result (red) has the lowest APE at most times. Fig. 4.b shows
APE statistics of the three approaches: our result is better than the other two
approaches. Fig. 4.c shows the trajectories of the three approaches together with
the grountruth. Table 1 shows the statistics of Fig 4b but averaged across 12
colonoscopic sequences: we achieve the best result on all the metrics.

3.2 Reconstructions and Missing Regions

Fig. 5 shows two high-quality examples of fused surfaces. The two chunks are
dense and textured. It also shows the incremental fusion process of the first
example. The snapshots are captured in real time.

Fig.5: Rows 1 and 2 each show the reconstruction of a colon chunk from multiple
points of view. They have 12% and 10% surface missing. Row 3 shows the incremental
fusion of the row 1 example.

There are multiple reasons for missing regions. Two important ones are lack
of camera orientations to the full circumference of parts of a colon and haustral
occlusion. These two reasons are respectively illustrated in Fig. 6 and Fig. 1. For
the four chunks shown in this paper the missing area fraction was notable: 25%,
12%, 10%, and 33% respectively, as verified on the video by our colonoscopiist
co-author, Dr. McGill.

Limitations and future work We currently reconstruct in chunks because
the tracking will fail upon very large camera motion or deformation. Loop closure
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is not included in our current system; it could be useful for backward motion.
Making the tracking more robust to large deformation and adding loop closure
are two future directions.

Fig.6: A part of the colon chunk is missing (33% surface) due to the lack of camera ori-
entations. This can be verified by checking the respective video frames (the upper part
of the colon was not seen). However, this might not be realized during a colonoscopy.

4 Conclusion

We developed a deep-learning-driven dense SLAM system for colonoscopy. It is
the first to reconstruct chunks of a colon as fused surface from a video sequence
(vs. existing single-frame methods) in real time. The reconstructions can be used
for the visualization of missed colonic surfaces that lead to potential missed
adenomas. Our technical contributions include 1) a recurrent neural network
that predicts depth and camera poses for colonoscopic images; 2) integrating
the recurrent neural network into a standard SLAM system to improve tracking
and eliminate drift, and 3) fusion of colonoscopic frames into a global high-
quality mesh. Clinically, it should help endoscopists to realize missed colonic
surface and resect more pre-cancerous polyps.
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