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Abstract

In computer vision and image analysis, image registration between 2D pro-
jections and a 3D image while obtaining high accuracy and real-time com-
putation is challenging. In this paper, we propose a novel method that can
speedily detect the object’s 3D rigid motion or deformation from a small set
of its 2D projection images. The method consists of two stages: registration
and pre-registration learning. In the registration stage, it iteratively estimates
the motion/deformation parameters based on the current intensity residue be-
tween the target projection and the projection of the estimated 3D image using
learned linear operators. The linear operators are learned in the pre-registration
learning stage: First, it builds a low-order parametric model of the image re-
gion’s motion/deformation shape space from its prior 3D images. Second, using
learning-time samples produced from the 3D images, it formulates the relation-
ships between the model parameters and the co-varying 2D projection intensity
residues by multi-scale linear regressions. The calculated multi-scale regres-
sion matrices give the coarse to fine linear operators used in estimating the
model parameters from the 2D projection intensity residues in the registration.
The method’s application to Image-guided Radiation Therapy (IGRT ), called
CLARET (Correction via Limited-Angle Residues in External Beam Therapy),
requires only a few seconds and has given good results in localizing a tumor
under rigid motion in the head and neck and under respiratory deformation in
the lung using a small set of treatment-time imaging 2D projections.
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1. Introduction

In a variety of situations in therapy guidance in medicine, there is a planning-
time 3D image taken and there is a set of treatment-time 2D images taken that
are used to find the 2D/3D geometric transformation relating the treatment-
time layout to the planning-time layout. Current available 2D/3D registration
methods, Russakoff et al. [1, 2], Khamene et al. [3], Munbodh et al. [4], Li
et al. [5, 6], find that geometric transformation that optimizes an objective
function consisting of a match term to the 2D image data and a regularization
term. As a fast optimization often requires many evaluations of the function’s
Jacobian, the optimization-based registration methods are structurally slow.
Also, the mismatch in the registration dimensionality often introduces a non-
convex objective function which is prone to make the optimization fall into
local minima. We have sought a method that is both fast and not based on
optimization at registration time.
In a way similar to the face alignment algorithm AAM (Active Appearance
Model) in Cootes et al. [7] and the efficient tracking scheme in Jurie and Dhome
[8], we seek a linear operator M, calculated by linear regression, that when
iteratively applied to intensity differences (residue) R between projections of
presently estimated 3D image It3D and the measured images Ψ, yields parameters
C of the transformation T needed to lessen the residue.

Ct = M ·Rt
2D (1.1)

It+1
3D = It3D ◦ T (Ct) (1.2)

The registration process in eqs. 1.1 and 1.2 requires no optimizations, and
therefore it can support efficient registration. Different from the AAM, our
linear operator M estimates 3D transformation parameters from 2D projection
intensity residues R for the 2D/3D registration.
We describe our method in detail in the following sequence: First, we describe
our 2D/3D registration framework and our efficient approximation of the shape
parameter C in section 2. In section 3, we describe how we obtain low-order
parametrization for the rigid motion and deformation shape space. In section
4, we describe our regression learning to calculate the linear operator M and an
efficient multi-scale learning scheme. In section 5, we describe how we generate
commensurate projection intensities for our linear operator to work. In section
6, we describe our medical application. In sections 7 and 8, we show and then
discuss our rigid and non-rigid registration results.

2. 2D/3D Registration

In this section, we first describe the general framework of our 2D/3D image reg-
istration method. Second, we describe our approach to do efficient registration
within this framework.
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2.1. General 2D/3D Registration

The goal of the 2D/3D registration is to match a transformed 3D source image I
to a set of target 2D projections Ψ. We denote the projection intensity at pixel
location x = (x1, x2) from a projection angle θ as Ψ(x; θ). The registration can
be formulated as an iterative process. Let I(t) denote the gray-scale 3D image
at iteration t. At iteration t, the 3D image region’s motion/deformation param-
eters C(t) define a geometric transformation T (C(t)) in a shape space deter-
mined from the 3D images. We obtain C(t) from projection intensity residues
R between the target 2D projections Ψ(x; θ) and the computed projections
P(x, I(t); θ) of the transformed 3D source image I(t) = I(t− 1) ◦ T (C(t− 1)).
We denote the computed projection intensity at pixel location x = (x1, x2) from
a projection angle θ from a 3D image I(t) in iteration t as P(x, I(t); θ).

R[Ψ(x; θ),P(x, I(t); θ)] = Ψ(x; θ)−P(x, I(t); θ) (2.1)

The projection operator P is formulated by a simulation of the imaging process.
For example, in the medical literature, to simulate a 3D image’s x-ray projec-
tions from its 3D volume, we do ray casting to simulate the photon attenuation
for a given imaging geometry (figure 2.1).

Figure 2.1: An x-ray projection is simulated by ray casting on a 3D image volume. The dashed
lines and the arrows indicate the ray directions.

One way to calculate C is to optimize it with respect to certain measure ρ of
the intensity residue R.

C(t) = arg
C
min ‖R[Ψ(x),P(x, I(t) ◦ T (C))]‖ρ (2.2)

Computations iteratively accomplishing this optimization are slow in general.
Moreover, the iterations may easily converge to local minima since the energy
functional in eq. 2.2 is not convex.

2.2. Efficient Linear Approximation of C

We propose a different method to calculate C using multi-scale linear operators
M. At iteration t of registration, our method estimates the motion/deformation
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parameters C(t) by applying a linear operator Ms of scale s to the current
intensity residues R[Ψ(x),P(x, I(t))], defined as the concatenation over all of
the projection angles θ of the residues R[Ψ(x; θ),P(x, I(t); θ)]. That is,

C(t) = R[Ψ(x),P(x, I(t))] ·Ms, where s = 1, 2, · · ·S; t = 1, 2, · · · , tmax (2.3)

Typically, S = 4 and tmax ≤ 10 are satisfactory. The computation in eq. 2.3
involves only matrix multiplications by Ms, computing the projections by P,
and subtractions. This makes the registration structurally fast. The calcula-
tion of the multi-scale linear operators M involves a machine learning process
described in detail in section 4.

3. Shape Space Modeling

Our method limits the motion/deformation to a shape space. To allow M to
be accurately learned, we require a low-order parametrization C of this shape
space. We describe the shape space calculation for rigid motions and for non-
rigid deformations in section 3.1 and 3.2 respectively.

3.1. Rigid Motion Modeling

Rigid motions are modeled explicitly as the variation in the Euler’s six dimen-
sional rigid space:

C = (tx, ty, tz, rx, ry, rz) (3.1)

where tx, ty, tz are the translation amounts in cm along the world’s coordinate
axes x, y, z, respectively; and rx, ry, rz are described as angular rotation in
degrees (◦) about the image center successively around the world’s coordinate
axes x, y, z, respectively.

3.2. Deformation Modeling

We model deformations as a linear combination of a set of basis deformations
calculated through PCA analysis. In our target problem, a cyclically varying
set of 3D images {Jτ over time τ} are available at pre-registration learning time.
From these a mean image J̄ = I and a set of deformations φτ between Jτ and J̄
can be computed. The basis deformations can then be chosen to be the primary
eigenmodes of a PCA analysis on the φτ .

3.2.1. Deformation Shape Space and Mean Image Generation

In order to model the deformation space realistically, our method computes a
deformation-based intrinsic mean as a Fréchet mean image J via an LDDMM
(Large Deformation Diffeomorphic Metric Mapping) framework described in
Beg et al. [9] on the cyclically varying set of 3D images {Jτ over time τ}. The
Fréchet mean J , as well as the diffeomorphic deformations φ from the mean
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J to each image Jτ , are computed using a fluid-flow distance metric dfluid as
described in Christensen et al. [10] and Davis et al. [11]:

J = arg
J
min

N∑
τ=1

dfluid(J, Jτ )2 (3.2)

= arg
J
min

N∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

σ2

ˆ
Ω

||J̄(φ−1
τ (x))− Jτ (x)||2dx (3.3)

where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is
the fluid-flow velocity field for the image Jτ in flow time γ , σ is the weighting
variable on the image dissimilarity, and φτ (x) describes the deformation at the
pixel location x: φτ (x) = x+

´ 1

0
vτ,γ(x)dγ.

The Fréchet mean image J and the deformation φτ to J corresponding to the
image Jτ are calculated by gradient descent optimization. The set {φτ over τ}
can be used to generate the deformation shape space by the following statistical
analysis.

3.2.2. Statistical Analysis

With the diffeomorphic deformation set {φτ over τ} calculated, our method
finds a set of linear deformation basis functions φipc by PCA analysis. The
scores λiτ (basis function weights) for each φipc yield φτ in terms of these basis
functions.

φτ = φ+

N∑
i=1

λiτ · φipc (3.4)

We choose a subset of n eigenmodes that captures 95% of the total varia-
tion. Then we let the n basis function weights λi form the the n-dimensional
parametrization C.

C = (λ1, λ2, · · · , λn) (3.5)

4. Machine Learning

With the motion/deformation’s shape space we calculate linear operators M
that correlate coarsely to finely sampled model parameters C with the cor-
responding projection intensity residue vectors R. We describe our regression
learning to calculate the linear operators M in section 4.1 and an efficient multi-
scale learning strategy in section 4.2.

4.1. Residues to Model Parameters Regression Learning

As detailed in section 4.2 we select a collection of model parameters {Cκ over
case κ} for learning. We use linear regression to correlate the selected modeled
parameters Cκ in the κth case with the co-varying projection intensity residue
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set {Rκ,θ over the projection angle θ}. Rκ,θ(x) can be formulated as the pro-
jection intensity difference at pixel location x = (x1, x2) from a projection angle
θ between the mean image (or an untransformed 3D image for the rigid case) I
and the image I ◦ T (Cκ) transformed with the sampled model parameter Cκ:

Rκ,θ(x) = P(x, I ◦ T (Cκ); θ)−P(x, I; θ) (4.1)

We concatenate the residues at each projection angle to formulate a residue set
in a vector Rκ = (Rκ,θ1 ,Rκ,θ2 , · · · ,Rκ,θΓ) and build a linear regression for all
cases κ = 1, 2, · · · ,K: 

C1

C2

...
CK

 ≈


R1

R2

...
RK

 ·M (4.2)

The regression matrix M that gives the best estimation of the linear operators
per parameter scale is computed via a pseudo-inverse:

M = (RᵀR)−1RᵀC (4.3)

4.2. Multi-scale Learning

To enhance the regression learning ability, C must be sufficiently sampled to
capture all the shape variations. Doing this directly needs an exponential
time computation. Instead, we have designed an efficient learning scheme that
learns the model parameters, from large to small scales 1 to S, to minimize
the regression residual in sequence, yielding S multi-scale regression matrices
M1,M2, · · · ,MS . At the sth scale of learning, each model parameter c in C is
collected from the combinations of ±cs and 0 where cs is the extreme value of
the range of parameter c at scale s. In order to have accurate estimations in the
whole model domain, the selection of each cs depends on the interpolation ac-

curacy of Ms such that the union of the intervals of acceptable accuracy
S
∪
s=1

Λcs

for parameter c, covers the whole model domain:

S
∪
s=1

Λcs ⊇ [−c1, c1] (4.4)

In the registration stage the calculated multi-scale linear operators are applied
sequentially, from M1 to MS , to give new estimations of the model parameters
from large to small scales. After evaluating the estimation accuracy for target
examples of both the rigid and non-rigid types, we found that four scales (S = 4)
with cs = (S − s+ 1) · c1/S gave the required accuracy.

5. Commensurate Projection Intensity Generation

The linear operators M in the learning stage are not invariant to the projection
intensity scales and variations caused by x-ray scatter. Therefore, our method
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uses a normalization filter (section 5.1) and a following histogram matching (sec-
tion 5.2) to generate commensurate intensities for the learning-time computed
projections and the registration-time target projections.

5.1. Local Gaussian Normalization

To account for variations caused by x-ray scatter, we do a 2D Gaussian-weighted
normalization for each pixel in the learning projections (see figure 5.1 (d)) and
the target projections (see figure 5.1 (b)). To calculate the normalized value
Ψ′(x; θ) at a pixel location x = (x1, x2) for each projection angle θ, we subtract
a Gaussian-weighted spatial mean µ′(x1, x2) from the raw pixel value Ψ(x1, x2)
and divide it by a Gaussian-weighted standard deviation σ′(x1, x2).

µ′(x1, x2) =

∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ∗Ψ(ξ, η)]

(2A+ 1)× (2B + 1)
(5.1)

where ∗ is the 2D convolution operator; 2A+1 and 2B+1, respectively, are the
number of columns and rows in the averaging window centered at (x1, x2); the
function G is a zero mean Gaussian distribution with a standard deviation w.

σ′(x1, x2) =

(∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ∗Ψ(ξ, η)− µ′(x1, x2)]

2

(2A+ 1)× (2B + 1)

) 1
2

(5.2)

Ψ′(x1, x2) =
Ψ(x1, x2)− µ′(x1, x2)

σ′(x1, x2)
(5.3)

We choose A, B, and w to be a few pixels to perform a local Gaussian-weighted
normalization for our target problem (see section 6).

5.2. Histogram Matching

In addition, in order to correct the intensity spectrum differences between the
normalized learning projection Ψ′learning and the normalized target projection
Ψ′target, a function Fω on intensity achieving non-linear cumulative histogram
matching within the region ω of an object of interest is applied after local
Gaussian normalization. The object region ω is determined as a pixel set where
their intensity values are larger than the mean value in the projection. That is,
Fω is defined by

Fω(Hf (Ψ′target)) ≈ Hf (Ψ′learning) (5.4)

whereHf is the cumulative histogram profiling function. The histogrammatched
intensities Ψ?

target (see figure 5.1 (c)) can be calculated through the mapping:

Ψ?
target = Ψ′target ◦ Fω (5.5)
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(a) (b) (c) (d)

Figure 5.1: (a) A raw Cone-Beam (CB) projection (target projection), (b) a local Gaus-
sian normalized CB projection (normalized target projection), (c) histogram matched CB
projection (normalized and histogram matched target projection) and (d) a local Gaussian
normalized DRR of a Fréchet mean CT (learning projection) from a lung dataset. As shown in
the images, after normalization and histogram matching, the intensity contrast in the target
projection becomes closer to that in the learning projection.

6. Medical Application - IGRT

Our target problem is IGRT (Image-guided Radiation Therapy). There the 3D
image I is the planning CT (Computed Tomography), and the target projec-
tion images Ψ are treatment-time imaging kV projections. In particular, the kV
projections are produced by 1) a rotational CBCT (Cone-beam CT) imager or
2) a stationary NST (Nanotube Stationary Tomosynthesis) imager specified in
Maltz et al. [12]. Our method’s application to IGRT, called CLARET (Correc-
tion via Limited-Angle Residues in External Beam Therapy) has shown promise
in registering the planning CT to the treatment-time imaging projections. We
describe the two treatment imaging geometries in section 6.1 and CLARET’s
specialization for head-and-neck IGRTs and lung IGRTs in sections 6.2 and 6.3,
respectively.

6.1. Treatment Imaging Geometry

6.1.1. Cone-beam CT (CBCT)

CBCT is a rotational imaging system with a single radiation source and a planar
detector, and is mounted on a medical linear accelerator. This pair rotates by
an angle of up to 2π during IGRT, taking projection images Ψ during traversal
(figure 6.1 (a)). A limited-angle rotation provides a shortened imaging time and
lowered imaging dose. For example, for a 5◦ rotation, it takes ∼ 1 second.

6.1.2. Nanotube Stationary Tomosynthesis (NST)

NST is a stationary imaging system mounted on a medical linear accelerator
that can perform imaging without interfering with treatment delivery. As il-
lustrated in figure 6.1 (b), it consists of an arrangement of radiation sources
arrayed around the treatment portal, together with a planar detector. Firing
the sources in sequence produces a different 2D projection image Ψ per source.
Each projection image requires ∼ 200 ms.
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(a) (b)

Figure 6.1: (a) The 30◦ CBCT geometry: rotational imaging system with tomographic angle
θ = 15◦ (b) The NST geometry: stationary sources arrays with max tomographic angle
θ = 22.42◦

6.2. Head-and-neck IGRT

In head-and-neck IGRT, the use of an immobilization device allows very lit-
tle geometric difference between planning time and treatment time other than
a rigid transformation. Therefore, in the pre-registration learning, CLARET
samples clinically credible variations (±2 cm, ±5◦) in the Euler’s 6-space C to
capture the treatment-time patient’s motions. With a single planning CT I of
the patient the learning computed projections P(x, I ◦ T (C); θ) are generated
by transformation of those credible variations T (C) and projection from a given
tomographic angle θ to the transformed 3D volume I ◦ T (C).
In the registration, CLARET iteratively applies S multi-scale linear operators,
from M1 to MS to estimate the rigid transformation parameters from the 2D
intensity residues form by the difference between the target projections Ψ? and
the normalized projections computed from the presently estimated rigid trans-
formation applied to the planning-time 3D image.

6.3. Lung IGRT

In lung IGRT, the respiratory motion introduces non-rigid transformations.
In the pre-registration learning stage, a set of 10-phase RCCTs (Respiratory-
correlated CTs) collected at planning time give the cyclically varying 3D images
{Jτ over the phase τ}. This image set is used to generate the deformation shape
space C. From these RCCTs, a respiratory Fréchet mean image J and the de-
formation φτ to J corresponding to the CT Jτ are calculated via an LDDMM
framework. See an example respiratory Fréchet mean image in figure 6.2 (c).
The deformation basis functions φpc are then generated by PCA analysis on the
deformation set {φτ over phase τ}. In Liu et al. [13], they have shown that
a shape space with three eigenmodes adequately captures the respiratory vari-
ations experienced at treatment time. See the first two principal deformation
basis functions in figure 6.3.
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(a) (b) (c)

Figure 6.2: (a) Planning CT at the End-Expiration (EE) phase (b) planning CT at the
End-Inspiration (EI) phase and (c) respiratory Fréchet mean CT generated via an LDDMM
framework from a lung dataset .

(a) (b)

Figure 6.3: The (a) first and (b) second principal deformation basis functions analyzed from
the RCCTs of a lung dataset. Colored lines indicate heat maps of the deformation magnitudes.
As shown in the images, the first principal motion is the expansion / contraction of the lung
and the second principal motion is along SI direction.

−→
X : Left to Right (LR);

−→
Y : Anterior

to Posterior (AP);
−→
Z : Superior to Inferior (SI).

To generate credible variations in the deformation spaceC for learning the linear
operatorM, CLARET samples the largest scale of parameters by three standard
deviations of the scores appeared in the planning image set {Jτ over phase τ}
for each PCA-derived basis function. With the generated Fréchet mean image
J̄ = I the learning computed projections P(x, I ◦ T (C); θ) are generated by 1)
transformation based on those credible variations T (C) and 2) projection from
a given tomographic angle θ to the transformed 3D volume I ◦ T (C).
In the registration, CLARET iteratively applies S multi-scale linear operators,
from M1 to MS to estimate the scores C on the basis functions φpc from current
2D intensity residues R. The residues are formed by the difference between the
normalized and histogram matched target projections Ψ? (see figure 5.1 (c))
and the normalized projections (see figure 5.1 (d)) computed from the presently
estimated deformation applied to the Fréchet mean image.

7. Results

We show CLARET’s rigid registration and non-rigid registration results in sec-
tions 7.1 and 7.2, respectively. In particular, we tested the rigid registration
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using the NST imaging system for the head-and-neck IGRT and tested the non-
rigid registration using a CBCT imaging system for the lung IGRT.

7.1. Rigid Registration Results

We tested CLARET’s rigid registration by synthetic treatment-time projections
and by real phantom projections, as described in sections 7.1.1 and 7.1.2, respec-
tively. The registration quality was measured by mean absolute error (MAE )
and mean target registration error (mTRE ). The MAE in any of the parameters
of C is the mean, over the test cases, of the absolute error in that parameter.
The mTRE for a test case is the mean displacement error, over all voxels in a
16 × 16 × 16 cm3 bounding box (the probable tumor region) centered at the
center of the pharynx in the planning CT I.

mTRE(I) =
1

χ

χ∑
i=1

‖I(yi) ◦ T (Ctrue)− I(yi) ◦ T (Cest)‖2 (7.1)

where χ is the number of pixels in the probable tumor region, yi = (y1, y2, y3)
is the tuple of the ith voxel position, and Ctrue, Cest are the true and the
estimated transformation parameters, respectively.

7.1.1. Synthetic Treatment Projections

We used noise-added DRRs (digitally-reconstructed projections) of target CTs
as the synthetic treatment-time projections. The DRRs (see figure 7.1(a)) were
generated to simulate the NST projections with dimension: 128×128; and pixel
spacing: 3.2 mm (see figure 2.1). The target CTs were transformed from the
patient’s planning CT by taking normally distributed random samples of the
translation and rotation parameters within ±2 cm and ±5◦. The planning CTs
are with a voxel size = 1.2 mm lateral × 1.2 mm anterior-posterior × 3.0 mm
superior-inferior. In the testing the number of imaging positions was varied to
find the minimum number with sub-CT-voxel accuracy in terms of mTRE.
Zero mean, constant standard deviation Gaussian noise was added to the DRRs
to generate the synthetic projections. The standard deviation of the noise was
chosen to be 0.2 × (mean bony intensity - mean soft tissue intensity). This
noise level is far higher than that produced in the NST system. An example
synthetic projection is shown in figure 7.1(b).
We first studied how many projection images are needed for CLARET’s learn-
ing to obtain sub-voxel accuracy. The results on 30 synthetic test cases of a
head-and-neck dataset, displayed in figure 7.2(a), show that two projection im-
ages are enough for CLARET to have sub-CT-voxel accuracy in the head and
neck. Figure 7.1(c) shows the geometry of the two opposing x-ray sources that
generated the two projection images in the study.
In addition, we studied the effect of the number of scales for CLARET learning.
Figure 7.2(b) shows that increasing the number of scales for CLARET learning
reduces the registration errors.
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(a) (b) (c)

Figure 7.1: (a) A raw DRR from a x-ray source in the NST (b) DRR with Gaussian noise
added (c) the NST geometry of two opposing x-ray sources

(a) (b)

Figure 7.2: Boxplot results of errors in varying (a) the number of projections used and (b)
the number of scales used for CLARET’s rigid registration. Red dots are the outliers. In (a),
projections of equally-spaced sources were used.

Table 1 shows the statistics of the errors in each rigid parameter from 90 syn-
thetic test cases generated from three patients’ planning CTs (30 cases for each
CT). In those test cases, CLARET performed registration using only the two
opposing NST projection images. See the geometry in figure 7.1(c).

(mm; ◦) Tx Ty Tz Rx Ry Rz mTRE
MAE 0.094 0.302 0.262 0.1489 0.0248 0.1540 0.524
SD 0.085 0.211 0.715 0.1093 0.0174 0.2824 0.728

Table 1: Mean absolute errors (MAE) and standard deviation (SD) of the absolute errors of
the six rigid parameters appeared in the 90 synthetic test cases where CLARET used two
synthetic NST projection images to do the registration.

7.1.2. Real Treatment Projections

We tested CLARET’s rigid registration on a head-and-neck phantom dataset.
NST projections (dimension: 1024× 1024; pixel spacing: 0.4 mm) of the head-
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and-neck phantom were downsampled to dimension 128×128 with a pixel spac-
ing of 3.2 mm. The dimension of the planning CT is 512 × 512 × 96 with a
voxel size of 3.43 mm3. The initial error between the planning time and the
treatment time is 51.8 mm. With 4-scale learning (S = 4), CLARET obtained
a sub-voxel accuracy of 3.32 mm using only two projections in 5.81 seconds. As
shown in figure 7.3, CLARET is more accurate as more projections and scales
used in its learning. The registration time is approximately linear to the num-
ber of projections used. The projection function P is implemented on a GPU
(NVIDIA GeForce 9400m).

(a) (b)

Figure 7.3: (a) Time plots and (b) error plots of CLARET’s registrations on a real head-and-
neck phantom dataset.

7.2. Non-rigid Registration Results

We tested CLARET’s non-rigid registration with synthetic and real patient
cone-beam projections, as described in sections 7.2.1 and 7.2.2, respectively.
Respiratory-correlated CT (RCCT ) datasets (CT dimension: 512× 512× 120;
voxel size = 1 mm lateral × 1 mm anterior-posterior × 2.5 mm superior-inferior)
were generated by a 8-slice scanner (LightSpeed i, GE Medical Systems), acquir-
ing repeat CT images for a complete respiratory cycle at each couch position
while recording patient respiration (Real-time Position Management System,
Varian Medical Systems). The CT projections were retrospectively sorted (GE
Advantage 4D) to produce 3D images at 10 different respiratory phases.

7.2.1. Synthetic Treatment Projections

We used DRRs of the target CTs as the synthetic treatment-time projections.
The DRRs were generated to simulate projections in a gantry-mounted kV on-
board imaging system (Varian Medical Systems). The target CTs were deformed
from the patient’s Fréchet mean CT by taking normally distributed random
samples of the coefficients of the first three eigenmodes of the deformation of
the patient’s RCCTs.
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For each one of the 10 CLARET’s registrations, in our studies so far we used
a single simulated coronal projection (dimension: 128× 96; pixel spacing: 3.10
mm) at angle = 14.18◦ (see figure 5.1(d)) as the input. (Future studies will inves-
tigate the effect of this pixel spacing on the registration quality.) The registra-
tion quality was then evaluated by measuring the 3D tumor centroid difference
between the CLARET-estimated CT and the target CT. 3D tumor centroids
were calculated from their active contour (Snake) segmentations (Yushkevich
et al. [14]). As shown in Table 2, after registration CLARET can reduce more
than 85% of centroid error.

Case# 1 2 3 4 5 6 7 8 9 10
Before 8.23 21.33 21.78 20.05 9.86 10.24 10.92 15.72 14.87 19.91
After 1.30 0.78 1.52 3.33 0.75 1.31 0.45 1.57 2.07 2.72

Table 2: 3D tumor centroid error (mm) before and after CLARET’s registration for the 10
randomly generated test cases.

We studied CLARET’s registration quality in average DVF (Displacement Vec-
tor Field) error over all cases and all CT voxels versus different angular spacings
for learning. For each sampling angle, we generated 30 random test cases. Fig-
ure 7.4(a) shows the average DVF error reduces with appropriately large angular
spacings.
We also studied CLARET’s registration quality by measuring the average DVF
error versus the number of projections used for learning. For each number of
projections, we also generated 30 random test cases. Figure 7.4(b) shows no
particular trend. As a result, we used a single projection to test CLARET’s
non-rigid registration for the real patient data in the next section.

(a) (b)

Figure 7.4: Boxplot results of errors in varying (a) the angular spacing and (b) the number
of projections used for CLARET’s non-rigid registration. Red dots are the outliers. In (a),
two projections for each test were used. For the zero-degree test case, only one projection
was used. In (b), DRRs spanning 9.68◦ about 14.18◦ were used in each test. For the single
projection test case, it was tested at angle = 14.18◦ (see figure 5.1(d)).
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7.2.2. Real Treatment Projections

We tested CLARET on 5 lung dataset with the on-board CBCT system men-
tioned before. CBCT projections were shifted 16 cm to the left for acquiring
CBCT scans in a half-fan mode. In this real patient study, a single coronal on-
board CB projection (dimension: 1024 × 768; pixel spacing: 0.388 mm) down-
sampled to dimension: 128 × 96 with pixel spacing: 3.10 mm at 14.18◦ (see
figure 5.1(a)) at both the EE (End-Expiration) and the EI (End-Inspiration)
phases were used for CLARET’s testing. We measured the 3D tumor centroid
(see figure 7.6(a)) difference between CLARET-estimated CT and the recon-
structed CBCT at the same respiratory phase as the testing projection. For
the Gaussian normalization, we set the RMS width of the Gaussian window
to 31.98 mm for this imaging geometry where CLARET yielded the smallest
3D centroid error for a lung dataset (see figure 7.5). (Future studies will check
whether this window size is also best for other datasets.) The results shown in
Table 3 suggest a consistency of registration quality between the synthetic tests
and the real patient tests. The average computation time is 5 seconds with the
projection function P implemented on a GPU (NVIDIA GeForce 9800 GTX).
CLARET reduces errors in the directions orthogonal to the projection direction
(coronal plane) more than those in the projection direction. As shown in Table
3, most of the percentages of the 2D error reduction (coronal plane error re-
duction), except cases from patient #1, are greater than those of the 3D error
reduction. This is expected because the single projection used communicates
tumor positions directly in the two dimensions orthogonal to the projection di-
rections but communicates tumor positions along the projection direction only
from perspective effects. For directions orthogonal to the projection directions,
CLARET can particularly accurately locate the tumor. See figure 7.7 discussed
in the next section.

Patient# 1 2 3 4 5
EE, 3D, before 7.96 9.70 1.47 10.17 3.52
EE, 3D, after 2.27 (72%) 3.20 (67%) 1.32 (10%) 2.77 (73%) 2.24 (36%)
EE, 2D, before 4.16 9.18 1.47 9.67 3.46
EE, 2D, after 2.07 (50%) 2.23 (76%) 1.32 (10%) 1.51 (84%) 1.91 (45%)
EI, 3D, before 8.03 7.45 3.63 5.53 3.89
EI, 3D, after 5.26 (34%) 2.85 (62%) 2.03 (44%) 2.31 (58%) 2.40 (38%)
EI, 2D, before 6.80 6.77 3.49 5.17 3.16
EI, 2D, after 4.71 (31%) 1.64 (75%) 1.86 (47%) 1.52 (71%) 0.83 (74%)

Table 3: 2D and 3D tumor centroid errors (mm) of EE and EI phases before and after
CLARET’s registration for 5 patients’ on-board CBCT dataset. The number inside the
parentheses indicates the percentage of the error reduction. The 2D error refers to the tumor
centroid error in the directions orthogonal to the projection direction (coronal plane).
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Figure 7.5: 3D tumor centroid error plots on a lung dataset with varying sizes of the Gaussian
window used for CLARET’s local Gaussian normalization.

7.2.3. Visual Validation

Figure 7.6(b) shows the 3D meshes of the tumors in the mean CT, the CBCT
at EE respiratory phase, and the estimated CT of a lung dataset for visual
validation. As shown in the figure, CLARET moves the tumor up in the lung
from the mean image; this is expected physiologically for the EE phase. Figure
7.7 shows the same 3-space lines in the mean CT, the reconstructed CBCT at
the EE phase and the CLARET-estimated CT of a lung dataset. The fact that
the lines pass near the tumor centroid in the CLARET-estimated CT and results
shown in Table 3 indicate that CLARET can accurately locate the tumor in the
directions orthogonal to the projection direction (coronal plane).

(a) (b)

Figure 7.6: (a) Manual segmented contours in the reconstructed CBCT at specific phase.
They were used for 3D centroid calculation. (b) Tumor meshes in the mean CT (gray), in the
target CBCT at the EE respiratory phase (blue) and in the CLARET-estimated CT (red) of
a lung dataset. The background is a coronal slice of the mean CT for illustration. The overlap
between the estimated and the target tumor meshes indicates a good registration.
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(a) (b) (c)

Figure 7.7: The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT at the
EE phase and (c) the estimated CT of the same lung dataset used in figure 7.6(b). Upper row:
lines locating the tumor centroid in the CBCT at the EE phase; lower row: lines locating the
diaphragm contour in the CBCT at the EE phase.

8. Conclusions and Discussion

We presented a novel rigid and non-rigid 2D/3D registration method that esti-
mates an image region’s 3D motion/deformation parameters from a very small
set of 2D projection images of that region. The method is based on producing
limited-dimension parameterizations of geometric transformations based on the
region’s 3D images. The method operates via iterative, multi-scale regression,
where the regression matrices are learned in a way specific to the 3D image(s).
Relative to registration methods based on optimization, the method is more
robust, has wider capture range, and is qualitatively faster while achieving com-
parable registration accuracy. The synthetic and real test results have shown
our method’s promise to provide fast and accurate tumor localization with a
small set of treatment-time imaging projections for IGRT.
However, in order to obtain such robustness, our registration method requires a
well-modeled motion/deformation shape space that includes all credible varia-
tions of the image region. In many radiation therapy situations for certain parts
of the body, collecting the required number of 3D images of the patient to form
the well-modeled shape space is not directly obtainable in current therapeutic
practice.
To make our method more robust for IGRT application, the future work of this
paper is to evaluate the method on more patient datasets and to study the
effects of the projection resolution and the normalization window size on the
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registration accuracy.
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