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Abstract  

We introduce a locally defined shape-maintaining 
method for interpolating between corresponding 
oriented samples (vertices) from a pair of surfaces. 
We have applied this method to interpolate synthetic 
data sets in two and three dimensions and to 
interpolate medially represented shape models of 
anatomical objects in three dimensions. In the plane, 
each oriented vertex follows a circular arc as if it was 
rotating to its destination. In three dimensions, each 
oriented vertex moves along a helical path that 
combines in-plane rotation with translation along the 
axis of rotation.  

We show that our planar method provides shape-
maintaining interpolations when the reference and 
target objects are similar. Moreover, the 
interpolations are size maintaining when the 
reference and target objects are congruent. In three 
dimensions, similar objects are interpolated by an 
affine transformation. We use measurements of the 
fractional anisotropy of such global affine 
transformations to demonstrate that our method is 
generally more shape preserving than the alternative 
of interpolating vertices along linear paths 
irrespective of changes in orientation. In both two and 
three dimensions we have experimental evidence 
that when non-shape-preserving deformations are 
applied to template shapes, the interpolation tends to 
be visually satisfying with each intermediate object 
appearing to belong to the same class of objects as 
the end points.  

1. Introduction  
There are manyinteresting applications for surface 

interpolation. Perhaps the most direct application is 
to generate animations to visualize the differences 
between objects. In the general realm of shape 
analysis, a surface interpolation scheme can be used 
to measure the difference between objects which in 
turn can be used to align objects or calculate a mean. 

In the more specialized field of medical image 
analysis the paths that boundary points follow during 
the interpolation can be used to drive a registration 
process which then enables morphometry and atlas-
based segmentation. It is these latter problems, 
registration and atlas-based segmentation, that have 
inspired this research.  

The graphics community has been interested in 
creating visually pleasing morphs between objects. 
For example, the workby Breen and Whitaker[2]can 
be used to interpolate between implicitly represented 
shapes. The implicit shape representation allows for 
changes in topology. Although this feature is valued 
in the context of general purpose animation, in our 
target applications it is undesirable.  

Recent work by Vaillant and Glaunes [12] and by 
Glaunes and Joshi[5]has used the concept of 
currents from differential geometry to define a metric 
on shapes. This metric is then used to drive a global 
optimization that produces a diffeomorphic warp 
under the large deformation framework [8]. This warp 
can then be used to bring the reference shape 
forward, through a series of interpolating shapes, and 
into its target configuration. However, the 
computation needed to produce this warp can be 
expensive.  

Pizer et al.[10]advocate the use of medial shape 
representations (m-reps) because of their ability to 
describe nonlinear shape changes such as bending, 
twisting, and widening. Fletcher et al.[4]showed that 
each medial atom in an m-rep object lies on a 
manifold, and that geodesics on this manifold can be 
defined using a standard Riemannian 
metric[3].Apairof m-rep objects canbe interpolatedby 
interpolating each pair of corresponding medial 
atoms along the geodesic between them. However, 
as a medial atom follows such a geodesic, it moves 
along a linear path in R

3 
independent of the changes 

to its orientation and size. Due to the straight-line 
nature of these paths, a pair of medial atoms could 
collide during the interpolation, creating an undesired 
fold in the image space. Even if no atoms collide 
during the interpolation, an interpolated surface may 
not appear to belong to the intended object class.  
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In this work we propose a novel interpolation that 
uses orientation information to move the vertices 
along curved paths. The path for each vertex is 
computed from information that is local to that vertex. 

These paths are easy to compute and easy to 
understand. Although our method is not guaranteed 
to produce a diffeomorphism, it does tend to  

 

1  

 

Figure 1. (Left) Examples of planar points: x0 and x1 and 
the corresponding frames: E0 and E1 . The solid line 
indicates the e0,t basis direction, and the dotted line 
indicates e1,t. The interpolation provided by our method is 
indicated by a lighter color. Note that the frame rotates 
concurrently with the point. (Center) The geometry of 
rotational-flows interpolation in two dimensions. The 
rotation required to bring E0 onto E1 (inset) defines the 
angle θ swept out by the interpolating path from x0 to x1 . 
The path lies on a circle whose geometry can be derived 
from the positions of the points and the angle θ. (Right) 
The point xt is reached after interpolating t fraction of the 
way from x0 to x1 . If we then interpolate from xt to x1 out 
method continues along the original circular arc. 

 
produce visually satisfying interpolations that under 
certain circumstances have shape-preserving 
properties.  

We describe our methods for interpolating point-
normal pairs in a plane, point-frame pairs in three 
dimensions, and m-rep shape models in Section 2. 
We show interpolations produced by our method on 
synthetic data in two and three dimensions, and on 
m-rep models of a lung during the respiratory cycle in 
Section 3. We conclude with a summary of these 
results and a discussion of future work.  

2. Methods  

Throughout this paper we will use the following 
notation. Let x =(x, y) ∈ R

2 
denote a point in the 

plane. Let E = {e1, e2}∈ SO (2) denote an orthogonal 
basis for a frame in two dimensions. The reference 

curve, S [0] = {(xi,0, Ei,0)}is a discrete set of points, 
indexed by i, with each oriented by its frame. The 
target curve, S [1] is defined similarly, and a 
correspondence is assumed between (xi,0, Ei,0)and 
(xi,1, Ei,1). A similar definition applies in three 
dimensions, with x ∈ R

3 
and E ∈ SO (3) discrete 

samples of a surface.  
The rotational-flows interpolation for a set of 

oriented points indexed by i in N ∈ {2, 3}dimensions 

will define a set of functions fi : (0, 1) → R
N 

×SO (N 
)with the property that fi (0) =(xi,0, Ei,0), fi (1) =(xi,1, 

Ei,1), and fi (t)smoothly interpolates along the time 
axis t.  

As a convention, we will discuss a single function f 
which interpolates between point-frame pairs (x0, 

E0)and (x1, E1). The full interpolation is given by 
applying the set of fi to the corresponding data.  

 
2.1. Interpolation in two dimensions  

Our method interpolates between a pair of 
oriented points by sweeping out a circular arc 
between x0 and x1 that covers an angle equal to the 
angular distance between the frames E0 and E1. An 
example of such an interpolation can be seen in the 
left pane of Fig. 1.  

Let x¯= 
1 
(x0 + x1), Δx = x1 − x0, and let x�be a  

2  
unit vector in the direction found by rotating Δx 
counterclockwise by 90 degrees. The geometry of 
the circular path defined by our method is illustrated 
in the center pane of Fig. 1. The center c is 
equidistant to x0 and x1, so it must lie on their 
perpendicular bisector: the line x¯+ αx�for some 
parameter α. The angle θ ∈ (− π, π]is defined as the 
angle between e0,0 and e0,1 with a positive sign 
indicating counterclockwise rotation. Our method 
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identifies a center of rotation, c such that the angle 
subtended by x0, c, and x1 is θ. From the geometry in 
Fig. 1, it follows that  

1 θ  
c = x¯+  

cot  

Δxx�(1) 

22 f (t) =(c + Rtθ (x0 − c), 
RtθE0) (2)  

where Rtθ denotes rotation by tθ degrees.  

The denominator in(1)is0whenθ =0. We use the 
limiting behavior to define the interpolation in this 
case. When θ =0, E0 = E1, so it is natural to think of f 
(t)as not having a rotational component. If we 
consider limθ→0 (1) then c is infinitely far from the 
data points, and the circular arc connecting them is a 
straight line:  

lim f (t) =(x0 + t (x1 − x0), E). (3)  
θ→0  

Properties of this interpolation scheme are 
discussed in Sections 2.1.1 -2.1.3.  

 

 

Figure 2. The locus of centers of rotation implied by a pair 
of similar objects is itself similar to those objects. (Left) S[0] 
and S[1] (in black) and their centers of rotation C (in 
purple). (Center) A set of curves (black) produced by 
rotating the points in S[0] about the corresponding point in 
C (purple) . (Right) The interpolated curve S[0.5] (dashed 
line) for this example. 

 
2.1.1 Invariance to similarity transformations  

Let (x0, E0)and (x1, E1)be a pair of oriented points 
whose rotational-flows interpolation is foundby f 
(t)=(xt, Et). Suppose that R defines a rotation, σ a 
uniform scaling and τ a translation. Let g ()denote the 
rotational-flows interpolation from (σRx0 + τ, RE0)to 
(σRx1 + τ, RE1). It can be shown that  

g (t) =(σRf (t)+τ, REt) (4)  

2.1.2 Resumption of an interpolation  

Let f () be the rotational-flows interpolation such that f 
(0) = (x0, E0)and f (1) = (x1, E1). For any t :0 <t< 1let gt 
()be the rotational-flows interpolation between the 
interpolated oriented point f (t)and (x1, E1). It is a 
simple proof to show that gt (s)= f (t + s (1 − t)) and 
thus each interpolated point gt (s)lies on the path 
swept out by f (). Note that c is equidistant to xt and 
x1 so it lies on their perpendicular bisector. The angle 
� (xt;c;x1)is (1 − t)θ. This is precisely the amount of 
rotation needed to bring Et to E1. This property is 
illustrated in the right pane of Fig. 1  

 
2.1.3 Interpolation of a similar curves  

Suppose that the curve S [0] is similar to S [1]. The 
local interpolations definedby(2)will produce 
interpolated objects S [t]that are also similar to S [0], 
as we will now demonstrate.  

It is an easily proven consequence of(3), that if S 
[1] can be produced by a similarity transformation of 
S [0] that has no rotational component, the rotational-
flows interpolation will interpolate that transformation 
such that every S [t]is related to S [0] by a similarity 
transformation of that form. The following theorems 
prove that this behavior also holds when S [0] and S 
[1] are related by a similarity transformation with a 

non-trivial rotation component.  
Theorem1 (Rotational centersfor two similar sets) Let 
C = {ci}be the set of rotational centers defined in (1). 
Suppose that S [1] can be produced by applying a 
similarity transform to S [0] with the following 
components: rotation by an angle φ, uniform scaling 
by a factor σ, and translation by the vector (Δx, Δy). 
When σ =1, C is similar to S [0]. When σ =1, C 
collapses to a single point.  

Let i, j index two distinct points xi,0, xj,0 in S [0] and 
their corresponding centers of rotation ci, cj .  

ci − cj 
2 
(σ − 1)

2 
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xi,0 − xj,0
2 =

4 

� 

sin 
φ 

�2 (5) 

2  
π + φ  

� (xi − xj ;0;ci − cj )= (6) 

2  
Let σ 

′
=(σ − 1)/ 2sin 

φ 

2 
 

and φ 
′
=(π + φ)/ 

2. When σ> 1, the formula for ci isgiven in(7). 
Substituting 

σ 

1 
 

→ σ into(5)and− φ → φ into(6), shows 
that the size and orientation of C are independent of 
which curve is given the name S [0] and which is S 
[1].  

The left panel of Fig. 2 shows an example of a pair 

of similar shapes and the centers of rotation identified 
by our method. Here the curve S [0] was taken from 
a manual contour of a bladder on its mid-axial slice in 
CT. S [1] was produced by applying a known 
similarity transform to S [0].  

When φ =0, the denominator of(5)is 0. This is 
consistent with(3). Because there is no rotational 
component to our similarity transform, the method 
provides a straight-line interpolation which can be 
interpreted as rotation about points that are 
infinitelyfaraway from the original data and from each 
other.  

Theorem2 (Rotation abouta similar set) Let {µ}denote 

a set of points in R
2 

. Let {ν}denote a set of similar 
points suchthat for each i, νi is formed by rotating µi 
by an  

 
1 φφ 
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222  

xi,t − xj,t
2 
(σ − 1)

2 
σ − 1 φ φσ − 1  

xi,0 − xj,0
2 
��

2 
sin 

φ 2 2 
+

2sin 
φ 

(cos tφ) (8)

 
=
 
1
+
 
−
s
i
n
  

−
t
φ
 
−
s
i
n
  

2 sin 
φ 

2  
2  

angle of φ about the origin, scaling the result 
by σ, and then  

ψ 

translating by (Δx, Δy). Now let µi be found by 
rotating µi an angle of ψ about νi.  

µ 
ψ

i 
− µ 

ψ

j 

2 
 

= 1+2σ
2 
− (9) 

µi − µj 
2 
2σ (cos(φ)− cos(φ − ψ)+σ cos(ψ))  

Equation (9) is a general statement: the new 
shape formed by rotating a shape about another 
similar shape, in the manner we have defined, is 
also similar to the original shape. When σ is 0,(9) 
simplifies to a well known truth: rotation about a 
single point is a rigid transformation.  

The center pane of Fig. 2 shows the result of 
various rotations of a curve about a similar curve.  
Theorem3 (Rotational flows between similar objects)  
Suppose again that S [0] and S [1] are related by a 
similarity transform with rotational component φ, 
scaling factor σ, and an arbitrary translational factor. 
Any S [t]is similar to S [0]. The square of scaling 
factor from S [0] to S [t]is given by(8).  

Equation (8) follows from substituting (5, 6) into 
(9) and from(2)which states that � (xi,0;ci;xi,t)= tφ. 
The rotational-flows interpolation between two 
similar curves is shape maintaining. An example of 
this property can be seen in the right pane of Fig. 2.  

The special case of (8) when σ =1 shows that the 
rotational-flows interpolation between two congruent 
curves is shape and size maintaining. When σ> 1, 
the derivative of (8) with respect to t is strictly 
positive over  

d 

the interval t ∈ [0, 1]. Likewise, when 0 <σ< 1, 
dt 

 

(8
) is strictly negative over that interval. Although(9) 
allows the set of points to collapse onto a single 
point, the monotonicity of scale when(8)is restricted 
to t ∈ [0, 1] guarantees that the interpolation 
between similar, but non-trivial, shapes will not pass 
through the degenerate configuration. 

 
2.2. Interpolation in three dimensions  

Let (x0, E0) and (x1, E1) be corresponding oriented 
points in R

3 
. There exists a unit vector v that defines 

the axis of rotation from E0 to E1. Let the magnitude 

of this rotation be denoted by 0 ≤ φ ≤ π. The three 
dimensional rotational-flows interpolation between 
these points is designed to rotate x0 by φ about the 
axis v.  

2  
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Since x0 and x1 may lie in different planes that are 
normal to v we cannot assume that the desired 
rotational path between them exists. If we project x0 
and x1 along v into a common plane, we can form a 
path that combines rotation about v with translation 
along v. Let v0 =(x0 v)and  
′′ 

x 0 = x0 − v0v. Let v1 and x 1 be definedina 
similarfash 

′ 

ion. Let f2 (t)=(x t, )be the two-dimensional rotational-
flows interpolation between these projected points. 
The three-dimensional rotational-flows interpolation is 
given by (10)and is illustrated in Fig.3.  

′ 

f (t) =(x t +(v0 + t (v1 − v0))v, Rv,tφE0)(10)  

 
Figure 3. Three-dimensional rotational-flows interpolation. 
xt lies on a helix whose axis is the axis of rotation between 
E0 and E1 .  

Our method can be understood as a 
generalization of Rossignac’s method for rigid body 
interpolation[11]. Each sample (x, E)is analogous to 
an independent rigid body. An interpolated surface S 
[t]is produced by allowing each sample to follow its 
own screw-like path.  

When the surfaces S [0] and S [1] are similar, 
each S [t] produced by rotational-flows interpolation 
is related to S [0] by a transformation that is linear 
with respect to the vertex positions in homogeneous 
coordinates. The interpolated shapes are not 
necessarily similar to S [0] and S [1] since scaling 
within the v =0plane per(8)and scaling due to the 
translation along the the v axis have different scale 
factors. In Section 3.2 we argue that rotational-flows 
interpolation is more shape preserving than a 
straight-line interpolation.  

2.3. Interpolation of mrep shape models  
The discrete m-rep[10]provides a sampled medial 

representation for a shape in three dimensions. This 

representation has been used for a variety of 
applications in medical image analysis including 
shape modeling [7], image segmentation[9], and 
statistical shape analysis[6].  

Each shape instance (referred to as an object or 
an m-rep for convenience) consists of a 2-D lattice of 
medial atoms consisting of the following parameters: 
a position in the interior of the object, x (u, v), also 
known as a hub; a radius, r (u, v)of an inscribed ball 
that is bitangent to the surface of the object and 
centered at the hub; and two spoke vectors U−1 (u, v) 
and U+1 (u, v). The inscribed ball intersects the 
object’s boundary at x (u, v)+r (u, v)U±1 (u, v).  

The medial atoms on the edges of the lattice have 
an additional (implied) spoke U0 (u, v)that is the unit 
vector in the direction of (U−1 (u, v)+ U+1 (u, v)) and 
an additional scalingfactor, η (u, v)which is known as 
the elongation. The elongated implied spoke 
intersects the surface at x (u, v)+r (u, v)η (u, v)U0 (u, 
v).  

Fletcher [4] defined a metric on the space of 
medial atoms, but it measures changes in hub 
position independently from changes in spoke 
orientation. Consequently the geodesics under this 
metric are characterized by linear hub paths. 
Interpolation of medial atoms along such a geodesic 
produces a straight-line interpolation of the hubs.  

We now describe rotational-flows interpolation 
between corresponding medial atoms (i.e., those with 
the same (u, v) coordinates) on different instances of 
the same shape. As a notational shortcut we will omit 
the (u, v)indices. We use the orientation of the medial 
axis at x to define the following frame that is used to 
interpolate the hubs using the method described in 
Section 2.2.  

The e1 basis is chosen to be in the direction of U+1 

− U−1 because the difference between the spoke 
vectors is known to be normal to the medial axis. The 
e2 basis is in the direction of ∂x/ ∂u − (∂x/ ∂u e1)e1. 
Because the directional derivative ∂x/ ∂u is estimated 
from the discretely sampled hub positions, the Gram-
Schmidt process is used to ensure e2 truly lies in the 
plane orthogonal to e1. The remaining basis is 
defined by e3 = e1 ×e2.  

The radius and elongation of the m-rep are 
interpolated  

��t ��t geometrically: rt = r0 
r

r

1

0 
and ηt = η0 

η

η

0

1 . 
The  
spoke vectors are interpolated geodesically after 
accounting for rotation of the hubs. Let U 

′
+1 represent 

the U+1 spoke in frame relative coordinates:  
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U 
′
+1 =(U+1 e1, U+1 e2, U+1 e3)

T 
. Let U 

′
+1,0 and U 

′
+1,1 represent those vectors at times 0 and1 
respectively.We define the axis w and angle φ 
as  

φ = cos 
−1 

(U 
′

+1,0 U 
′

+1,1) (11) w =(U 
′

+1,0 ×U 
′

+1,1) (12)  

The spoke is interpolated geodesically in frame 
coordinates,  

U 
′

+1,t = Rw,tφU 
′

+1,0 (13) 3  

U+1,t =(U 
′

+1,t ei,t)ei,t (14) i=1  

The other spoke, U−1 is interpolated in the same 
way. One desirable property of this interpolation is 
that it preserves the normality of the spoke difference 
to the medial sheet. This difference is collinear with 
e1, the direction normal to the interpolated medial 
axis.  

3. Results  

 
3.1. Interpolations of planar curves  

Rotational-flows interpolations of planar curves are 
shown in Fig. 4. In each of these examples, S [0] is 
drawn with the thinnest line. The line thickens at each 
time step with S [1] drawn with the heaviest line.  

The top row shows interpolations between pairs of 
similar ellipses. In pane 1, the reference and target 
curves are congruent. Their size and shape are 
maintained during the interpolation. In pane 2, the 
reference and target curves differ only in scale. None 
of the interpolated shapes have been rotated or 
translated.Pane3showsa full similarity transformation. 
Note that the centers of rotation are similar to the 
original and interpolated shapes.Pane4 shows the 
interpolation between congruent ellipses after their 
correspondence has deliberately been corrupted. 
The interpolated shape are no longer ellipses.  

The center row shows rotational-flows 
interpolation between shapes that are not similar. In 
panes 1 the interpolation is between two ellipses with 
different eccentricity. In the second pane the 
interpolation is between an ellipse and a bent curve. 
In these sequences the interpolated curves are 
visually satisfying. Pane 3 shows an indentation 
forming during the interpolation between ellipses. 
This problem is related to the correspondences 

between S [0] and S [1]. Pane4shows the resulting 
interpolation afterS [1] has been resampled to 
produce better correspondences.  

The bottom rows shows an interpolation where a 
concave region becomes convex. The curves S [0] 
and S [1] were formed by applying a bending 
transformation to an ellipse. Pane 1 is unsatisfactory 
because the interpolated shape S [0.5] has two 
protrusions at each end: one from the downward 
bend and one from the upward bend. Pane 2 shows 
the rotational-flows interpolation using the standard 
ellipse asakeyframe. This useof an intermediatekey 
frame is a well known technique in the graphics 
literature. Another corrective technique from the 
graphics literature is to prealign shapes prior to the 
morph. In our experience, a translational alignment 
between shapes can lead to a more satisfying 
interpolation. In pane 3, the shapes have been 
prealigned and the interpolation is forced to pass 
through the standard ellipse. Our method is sensitive 
to the correspondences between the oriented points 
in S [0] and S [1]. The fourth pane shows our 
interpolation on the original curves, after 
correspondences have been improved so that the 
curves are understood as rotated copies of each 
other.  
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(1) (2) (3) (4) Figure 4. Rotational-
flows interpolation in two dimensions. In each example the 
time axis is denoted by line thickness. (Top) Interpolations 
between pairs of similar ellipses. (1) A rigid transformation. 
(2) Uniform scaling only. (3) A full similarity transformation. 
(4) A rigid transformation with poor correspondence 
between S[0] and S[1]. (Center) Interpolation between non-
similar curves. (1) Affine scaling and translation of the 
ellipse. (2) Bending of the ellipse. (3) A full affine 
transformation. In this case the interpolations deviate from 
the desired shape spaces of ellipses. (4) Correspondences 
from (3) have been redefined to produce a more satisfying 
interpolation. (Bottom) Interpolation between shapes where 
a concave region becomes convex. (1) The original 
interpolation, note the pair of protrusions at each end of 
S[0.5]. (2) The interpolation has been forced to pass 
through an ellipse at t =0.5. A single protrusion still exists at 
the ends of S[0.25] and S[0.75]. (3) The shapes have been 
prealigned and S[0.5] is forced to be the ellipse. Each S[t] 
appears to be a bent version of the ellipse. (4) 
Correspondences have been redefined so that the 
interpolation is a shape-preserving rotation.  

3.2. Shape preservation during three-
dimensional The value of fa () ranges from 0 for a 
shape-preserving  

interpolation transformation to 1 for a transformation that collapses the shape onto

The top row of Fig. 5 shows the rotational-flows 
interpolation between two similar surfaces. As 
predicted, S [0] 

Using S [0] and S [1]] as defined in the top row of Fig. 
is 

not similar to S [t]for almost all 0 <t< 1. However, 
5, we 

compared the fractional anisotropy of the transfor
 

we demonstrate that interpolated S [t]’s produced by rota-
mation from S 

[0] to S [t] for straight-line and rotational 
tional flows are more like S [0] than the intermediate 
shapes 

flows interpolations. The left pane of Fig. 6 shows that 
 

produced by a linear interpolation. 
the rotation

Let S [0] and S [1] be similar shapes, and let M be 
the 

more shape preserving than straight-line interpolation. 
4×4matrix 

such that when the points in S [0] and S [1] are To 
further understand the performance of rotational-
expressed in homogeneous coordinates, S [1] = MS 
[0]. flows interpolation versus straight-line 
interpolation, we ran Let M

3 
denote the upper 3 ×3 

block of M. We use the the following experiments. 
We took the similarity trans-fractional 
anisotropy(FA)[1]ofM

3
, to measure the degree 

formation that took S [0] to S [1] in the previous 
example, to which the transformation preserves 
shape. Let, λ

1 
≥ and generated new target surfaces, 

Sφ [1] by setting the anλ
2 
≥ λ

3 
be the square roots of 

the eigenvalues of M
3
M

3 

T 
. gle of rotation in the 

transformation to be φ while holding Let λ¯= 
1 �3 

λ
i
. 

FA is defined as the other parameters constant. For 
each φ we measured 
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��� �2 from S [0] to 

Sφ [t]over t ∈ [0, 1] for 
rotational-flows and 

 � 1 λ¯ 

 

� 2 i 
λi − 

straight-line interpolations. We performed a similar exper 

fa (λ1,λ2,λ3)= 
1 
� (15) 3 i λi 

2 

iment we varied 
only the scale 
parameter of the 
similarity 

 
transformation.The results of these 
experiments are plotted in the central panes 
of Fig. 6.  

In both experiments, the rotational-flows 
interpolation was more shape preserving 
than straight-line interpolations. Moreover, 
the level of fractional anisotropy was quite 
low for all scales we considered and for the 
majority of rotation angles we explored. 
However, as the angle of rotation 
approached 180 degrees, our method lost 
its ability to maintain the shape of the 
interpolated objects.  

In the general case, when S [0] and S [1] 

are not similar, the three-dimensional 
rotational-flows interpolation frequently 
produces intermediate shapes that appear 
reasonable. An example of such is shown in 
the bottom row of Fig. 5. Although there is 
no linear transformation from S [0] to S [t]in 
this example, the fractional anisotropyof the 
least squares estimates of such a 
transformation has its maximum at t =1. As 
shown in the right pane of 6, this compares 
favorably with interpolation by linear paths. 
In that case, there is a spurious maximum of 
fractional anisotropyfor an interpolated 
shape.  

 
3.3. An example using mreps  

We fit m-rep models to a time series of lung 
segmentations using the method of Han et al.[7]. 
Figure 7 shows the rotational-flows interpolation from 
our model at peak inspiration to our model at peak 
expiration. Informally, our interpolated surfaces 
exhibit the behavior we expect from a lung during 
exhalation. The lung is decreasing in volume, and the 
most visible motion is where the inferior portion rises 

away from the diaphragm.  

4. Discussion  
We have proposed a novel method for shape 

interpolation that moves oriented points along easily 
computed and understood rotational paths that 
combine changes in position and orientation. This 
interpolation offers superior shape maintenance 
when compared with linear interpolation of the points 
without regard for their orientation. We have 
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demonstrated our method with interpolations of 
synthetic data sets in two and three dimensions and 
with interpolations of medial shape models derived 
from patient data.  

Our method cannot guarantee that it will produce 
diffeomorphic transformations. Our future work 
includes developing a better understanding of 
conditions on our target and reference objects that 
lead to two interpolated points occupying the same 
position at some intermediate time. Similarly we need 
to develop a method to automatically modify the 
interpolation to overcome such a failure. Once these 
failures and their recovery are better understood, we 
will be able to explore extrapolating the paths from 
our interpolation to deform an entire image volume.  

Asecond line of future work that we plan to pursue 
is using this interpolation scheme to define a metric 
on shapes. Initially such a metric would be used for 
alignment and computation of a Fre´chet mean 
shape. Further work is needed to compute higher 
order statistics using this metric.  
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Figure 5. Rotational-flows interpolation in three dimensions. 

(Top) between similar shapes. (Bottom) between non-
similar shapes.  

0.35     0.35    1   
 Straight Line    Straight Lines   Straight Lines  

 Rotational Flows    Rotational Flows 
0.9  

Rotational Flows  

0.3    0.3     

 
Maximum of Fractional Anisotropy 

0.25  

0.2  

0.15  



     To Appear, Proc. of Workshop on MMBIA,  
  IEEE Computer Society, 2008 

0.1  
Maximum of Fractional Anisotropy 

0.8  
0.35  

Fractional Anisotropy 
0.25 0.7  

0.6  
0.5  
0.4  

Fractional Anisotropy 
0.3  

0.25  
0.2  

0.15 0.15 0.3  

0.1 

0.2  

0.05 0.05  
0

 
0 0 0  0  

0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 45 90 135 180 0 0.20.40.60.8 1 Time Scale Rotation (degrees) 
Time  

Figure 6. Comparing fractional anisotropy for 
transformations produced by rotational flows with those 
produced by straight-line interpolation. (Left)FA of the 
linear transformation from S[0] to S[1] for the top example 
of Fig. 5. (Inner-Left) As scale varies, max0<t<1 FA of the 
transformation from S[0] to S[t]. (Inner-Right) As angle of 
rotation varies, max0<t<1 FA of the transformation from S[0] 
to S[t]. (Right)FA of the linear approximation of the 
transformation from S[0] to S[1] for the example in the 
bottom row of Fig. 5.  

S [0.00] S [0.25] S [0.50] S [0.75] S [1.00]  

Figure 7. Rotational-flows interpolation of m-rep lung 
models. S[0] corresponds with peak inspiration. S[1] 

corresponds with peak expiration. (Top) The m-rep object. 
(Bottom) The implied surface boundary.  


