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ABSTRACT

In this work, we present a unique set of 3D MRI brain data that is appropriate for testing the intra and
inter-site variability of image analysis methods. A single subject was scanned two times within a 24 hour time
window each at five different MR sites over a period of six weeks using GE and Phillips 1.5 T scanners. The
imaging protocol included T1 weighted, Proton Density and T2 weighted images. We applied three quantitative
image analysis methods and analyzed their results via the coefficients of variability (COV) and the intra cor-
relation coefficient. The tested methods include two multi-channel tissue segmentation techniques based on an
anatomically guided manual seeding and an atlas-based seeding. The third tested method was a single-channel
semi-automatic segmentation of the hippocampus. The results show that the outcome of image analysis meth-
ods varies significantly for images from different sites and scanners. With the exception of total brain volume,
which shows consistent low variability across all images, the COV’s were clearly larger between sites than within
sites. Also, the COV’s between sites with different scanner types are slightly larger than between sites with the
same scanner type. The presented existence of a significant inter-site variability requires adaptations in image
methods to produce repeatable measurements. This is especially of importance in multi-site clinical research.
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1. INTRODUCTION

Large scale clinical studies of MRI images often require the application of quantitative 3D MRI image analysis
methods on datasets that were acquired by multiple sites. However, such methods are most often developed
on datasets from a single MR source. In order to evaluate the variability in regard to different MR sources,
the methods should be tested and validated on a dataset from multiple scanners with different properties using
the same standard protocols. In this work, we present such a set of 3D MRI brain data that is appropriate for
testing the intra and inter-site variability of image analysis methods.

In morphometric studies of psychiatric and neurological disorders such as schizophrenia1 , Alzheimer’s Dis-
ease2 or Multiple Sclerosis3 , it is often necessary to accurately segment brain MR images into their constituent
tissue types prior to measuring structures of interest. Traditional manual and semi-automated tissue classi-
fication methods are prone to intra-rater and inter-rater variability, both of which can weaken the ability to
discriminate subtle morphological differences. Many of these methods do not correct for the bias field created
by MR scanner RF inhomogeneities and thus are prone to misclassifications4 . These problems associated with
traditional methods address the need for an automated, reliable and bias corrected tissue classification method
in the analysis of brain MR images. In this paper, we investigate two methods (see also Park5): 1. an semi-
automated, manual seeding based tissue segmentation without bias field correction. 2. an automated, atlas
seeding based seeding segmentation6 that includes bias field correction.

Following the tissue segmentation, regions of interest are segmented either based on the tissue segmentation
or directly form the original brain MR images. In this paper we investigate a semi-automatic segmentation of
the hippocampus from the original image. The hippocampus is a subcortical structure in the temporal lobe
that is of special interest in schizophrenia1, 7 and Alzheimer’s disease8 research.
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Figure 1. Three orthogonal views (axial, coronal, and sagittal) of the original T2-weighted MR scan (top row) and an
overlay with the tissue classification label maps (bottom row, GM = yellow, WM = purple, CSF = cyan).

2. METHODS

2.1. Dataset for testing intra and inter-site variability

A single female subject (age 25 years) was scanned two times within a 24 hour time window each at five different
MR sites over a period of six weeks. The age of the subject plus the absence of physical or mental illness suggests
that the brain of the subject did not change in the six week period. Thus, the acquired images represent all the
same brain.

The imaging protocol included 3D T1 weighted, Inversion Recovery prepped Spoiled Grass images (SPGR,
0.9375mm x 0.9375mm x 1.5mm, axial slicing direction) and contiguous Proton Density and T2 weighted fast
spin echo images (FSE, 0.9375mm x 0.9375mm x 3.0mm, axial slicing direction). Four of the five sites acquired
the images using a GE Signa 1.5 T scanner and one site was using a Phillips Gyro Scan NT 1.5 T scanner. The
scanning protocols were provided by a central facility, the Duke Image Analysis Laboratory (DIAL). The same
facility collected all data and supervised image quality control. Also, additional phantom data using a Hoffman
brain phantom was acquired for each site. The phantom data allows for geometric fidelity between the images
by normalizing the real field-of-view (FOV) to sub-milliter accuracy.

This dataset allows for an evaluation of reproducibility of image analysis methods within one site, between
sites with the same type of scanner and between sites with different types of scanner. The main sources of
variance in this dataset at the level of data acquisition are patient positioning, scanner geometry, scanner
intensity variation and discrete image artifacts, e.g potion artifacts. At the level of image analysis variance
mainly arises from procedures involving registration, interpolation, intensity bias field correction and manual
interaction.

2.2. Brain tissue segmentation, manual seeding

The first tested image analysis method is a brain tissue segmentation based on the two FSE channels, T2
weighted and Proton Density (PD), which are acquired at the same time and thus no registration is needed. No
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bias field correction is applied as pre-processing step. A semi-automatic extraction of the intra cranial cavity
(ICC) is performed first. ICC is defined as the sum of the brain tissues white matter (WM), gray matter(GM)
and cerebro-spinal fluid (CSF). Then, a human rater selects seed samples on several slices for the tissue classes
WM, GM, CSF and background (BG). These seeds are used by a parzen-window classifier to segment all voxels
of the images into one of the classes (see Figure 1).

The segmentation procedure was performed using the “Multi-spectral Segmentation” module within the
Analyze 3.0 software package.9 A standard operation procedure was established to standardize the ICC
extraction and the locations of the seed samples for the tissue segmentation. Human raters performing the
segmentation have to undergo a training phase, which is followed by a validation study to test for an appropriate
inter-rater and intra-rater variability. This segmentation procedure has been tested and validated in several
large scale multi-site trials with multiple raters.

Four trained human raters segmented each image of the dataset twice in a randomized, blinded study design.
The average coefficients of variance (COV) for all tissue volume measurements were determined for each rater
individually and then averaged over all raters. These COV’s were computed for within one site, between sites
with the same type of scanner and between sites with different types of scanner. The intra-class correlation was
also computed using site, timepoint and rater as nested effects. The results are presented and compared with
the atlas-based tissue segmentation in section 3.2.

A B

Figure 2. A: Three-step iterative algorithm for atlas-based tissue segmentation (illustration courtesy of K. Van Leemput).
B: Tissue classification without bias field correction of PD MR images (top) show misclassifications of gray matter
(bottom) due to a visually imperceptible bias field in the original data.

2.3. Brain tissue segmentation, atlas-based seeding

The second multi-channel brain tissue segmentation technique was proposed and developed by Leemput at al6 .
It is an automated model-based method using a digital probability atlas containing a-priori expectations about
the spatial location of brain tissue classes. The method interleaves a mixture-model Bayesian classification with
an estimation of tissue class parameters and with an estimation of the parameters for a polynomial bias field
correction. Multiple images can be used for the segmentation, after these images have been registered to each
other. Since the T1 images in our dataset have a higher resolution, the T2 and PD images are up-interpolated
to the T1-image resolution using a windowed-sync interpolation. The scheme of the method and an illustration
of the the need for bias field correction is shown in Figure 2.
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The digital atlas is an average probability atlas from 155 normal subjects and is distributed with the SPM9610

package. In order to apply the atlas to the image, it is first registered with a T1 template image provided by
SPM 96 that is already coregistered with the atlas. The registration algorithm is based on maximizing mutual
information.

The circular, iterative segmentation procedure starts with the bias field parameters set to zero, and a rough
estimation of the classification for each pixel using the atlas probabilities. The distribution parameters for the
tissue classes are then estimated from the classification. After this step, the bias field can be estimated from
the classification and the class distributions. Subsequently the class distributions and the bias field lead to a
new estimation of the classification. These steps are repeated for several cycles. The computation of the final
classification is fully deterministic and repeatable.

The segmentation procedure works on single and multi-channel data. We investigated which combination
of the T1, T2 and PD channels gives the best performance for tissue classification (see section 3.1). The best
channel combination is then used for the computation of the intra and inter-site variability. The COV’s and
intra-class correlation were computed in the same way as for the manual-seed based tissue classification. The
results are presented in section 3.2.

2.4. Hippocampus segmentation

Segmentation of the hippocampus is known to be a difficult problem in medical image analysis. No fully
automated algorithm for hippocampus segmentation is evident in the literature. The existing algorithms require
either varying amounts of landmark selection and/or delineation, or extensive post-processing. Our method is a
histogram based morphometric region growing algorithm that requires seeding of the hippocampus on multiple
slices. Additional manual interaction involves restricting the region growing to prevent leakage, as well as small
manual editing. The segmentation was performed using the “Region of Interest” module within the Analyze
3.0 software package9 .

Four trained human raters segmented each image of the dataset twice in a randomized, blinded study design.
The COV’s for the volume measurements were determined for each rater individually and then averaged over
all raters. These COV’s were computed for within one site, between sites with the same type of scanner and
between sites with different types of scanner. The intra-class correlation was computed using site, time point
and rater as nested effects. The results are presented in section 3.3.

3. RESULTS

3.1. Optimal channel combination in multi-channel tissue segmentation

We evaluated several combinations of channels for the atlas-based tissue segmentation in order to determine
which combination has best performance. The COV’s were computed over the whole dataset. A low COV means
that the segmentation procedure produces similar volume measurements over all images independent of site or
scanner type. The COV’s for different channel combinations are shown in Figure 3A. The COV’s vary the most
for the CSF volumes, whereas all other tissue classes are segmented equally stable by all combinations. From the
comparison of COV’s alone, it would seem as if the combination of the T2 and PD channels is performing best.
The lower COV’s for the (T2,PD) combination are caused by the inexistence of variance due to registration and
also by the higher signal-to-noise ratio in FSE images compared to SPGR images. The (T2,PD) combination
is also used in our manual-seeding based tissue segmentation.

Besides the stability of the segmentation addressed in studying the COV’s, the segmentation precision has to
be studied as well in order to decide which combination of channels performs best. As can be seen in Figure 3B,
the precision of a tissue segmentation using the higher resolution T1 channel is better than the segmentation
using the low resolution images. Considering that the tissue segmentation is often used to measure small sub-
parts of the brain such as lateral ventricles or deep gray matter structures, we decided that the (T1,T2,PD)
combination performs best. In the remainder of this work, we used this combination for the atlas-based tissue
segmentation.
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Figure 3. Left: Coefficients of Variance (COV) for different tissue classes over the whole dataset computed for different
combinations of channels. The combination of T2 and PD yields the lowest COV’s. Right: Visual comparison of a
segmentation from low resolution (3.0mm) T2,PD channels and high resolution (1.5mm) T1,T2,PD channels (T2,PD
up-interpolated). The segmentation is shown in a sagittal and coronal slice (data has axial slicing direction) overlaid
with the registered T1 image. The precision of the segmentation is clearly improved for the higher resolution channel
combination.

Figure 4. Volume measurements for WM, GM and CSF tissue classes over the whole dataset (GE = GE scanner site, PH
= Phillips scanner site). Left: Average volumes from segmentations using manual seeding on (T2,PD) images, the bar
indicates the range of the measurements over all raters. Right: Volumes from segmentations using atlas-based seeding
on (T1,T2,PD) images.
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3.2. Inter/intra-site variability of brain tissue segmentation

We compared the segmentations of the two proposed tissue segmentation procedures (see Figure 4). The volume
measurements seem to be more stable across the dataset for the atlas-based segmentation. The CSF volumes
are in average 20% smaller in the manual-seed based segmentation. This is mainly due to the different channel
combinations since the T1 image is an additional channel in the atlas-based segmentation. This suggests that
the T2 and PD channels are either underestimating the CSF volume or that the T1 channel overestimates it or
that the truth lies somewhere in-between. The atlas-based segmentation also produces in average 16% smaller
CSF volumes when only the T2 and PD channels are used. Since we do not have ground-truth information,
this matter cannot be solved for this dataset.

Since the atlas-based segmentation is deterministic and thus fully repeatable, the same image will always be
segmented with the same result. This is not the case for the manual-seed based segmentation, which can be seen
from the COV’s values for segmenting the same image in Figure 5. These COV’s are the minimal values for the
manual-seed based segmentation; this method cannot perform better. Not surprisingly, the intra and inter-site
COV’s are all larger than the intra-image COV’s. We also see that these intra-image COV’s are larger than
the COV’s of the atlas-based segmentation. It is thus evident that the atlas-based segmentation is considerably
more stable than the manual based segmentation.

Figure 5. Average COV for tissue segmentation methods: Manual-seed based segmentation = “M”, Atlas-based segmen-
tation = “A”; inter-image COV = “same img”, COV within site = “same site”, COV between sites with same scanner
type = “same type”, COV between sites with different scanner type = “diff type”. Left: Raw tissue volumes, Right:
Tissue volumes normalized with the ICC volume. The atlas-based segmentation is more stable than the manual-seed
based segmentation. The intra-site variability is lower than the inter-site variability.

From the intra class correlation analysis shown in Figure 6A we can conclude the same findings as above.
Additionally, the intra class correlation was computed for the average volume measurements over all raters in
the manual-seed based segmentation. Also the average volumes have a lower intra class correlation than the
volumes from the atlas-based segmentation, and thus are less stable.
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Reasons for the higher stability of the atlas-based segmentation are most likely the additional bias field
correction, the consistent seeding and the reproducibility of the computation. The remaining sources of variance
due to the processing are registration and interpolation errors. The other sources of variance are at the level of
data acquisition, such as patient positioning, scanner geometry, scanner intensity variation and discrete image
artifacts.

It is common when studying brain tissue volumes to normalize the tissue volumes with the ICC volume. This
normalization usually helps in dealing with gender and age effects in the studied population since it leads to a
higher degree of similarity between volume measurements of different subjects. The COV’s for the normalized
tissue volumes are also displayed in Figure 5 and exhibit the same patterns as the non-normalized volume
measurements.

The analysis of the COV’s also shows that the ICC volumes are most stable across the dataset, followed
by GM, WM and CSF. The CSF volumes are clearly the least stable. The same pattern can be seen in the
analysis of the ICC normalized volumes. This COV pattern correlates with the volume size, i.e. a larger tissue
volume leads to a lower COV. This suggests that segmentations of large objects have a smaller relative error
than segmentations of smaller objects.

With the exception of the ICC volume, which shows low variability across all tests, the COV’s are clearly
larger between sites than within sites. Thus, the intra-site variability is, as expected, lower than the inter-site
variability. The picture is less clear when comparing inter-site variability between sites with same and different
scanner types. The variabilities are quite close and due to the small sample size no conclusive findings can be
drawn. However, a trend is visible that the inter-site variability between sites with the same scanner type is
slightly lower.

Figure 6. Left: Intraclass correlation for the volumes from the tissue segmentation : Manual-seed based segmentation
= “M”, Atlas-based segmentation = “Atlas”; correlation based on all measurements = “all”, correlation based on
averaged measurements = “Avg”. The atlas-based segmentation is more stable. Right: Average COV for hippocampus
segmentation: COV within site = “same site”, COV between sites with same scanner type = “same type”, COV between
sites with different scanner type = “diff type”. The intra-site variability is lower than the inter-site variability. The
inter-site variability for sites with same scanner type is lower than for sites with different scanner type.
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3.3. Inter/intra-site variability of hippocampus segmentation

The analysis of the COV’s for the segmentation of the left and right hippocampus present a similar pattern
similar as the tissue segmentations. The intra-site variability is lower than the inter-site variability. In contrast to
the tissue segmentation analysis, the inter-site variability between sites with same scanner type is considerably
lower than for sites with different scanner type. This disparity could be partially due to the fact that the
hippocampus segmentation is based purely on the SPGR T1 images. The SPGR protocol seems to lead to
images with an increased variability between scanner types compared to the FSE protocol. A single channel T1
tissue segmentation also shows an increased variability between sites with different scanner types.

We also computed the intra class correlation for the hippocampus segmentation, which is for the right
hippocampus 0.93 and for the left 0.92. These values and the COV analysis suggest that our method allows a
stable segmentation of the hippocampus.

4. DISCUSSIONS

In this paper, we have presented a unique dataset that allows the assessment of intra-site and inter-site variability.
We have applied three image analysis methods to the dataset and analyzed its results. The results show that
the outcome of image analysis methods varies significantly for images from different sites and scanners. With
the exception of total Brain volume, which shows consistent low variance, the COV’s were clearly larger between
sites than within sites. Also, the COV’s between sites of different scanner type are larger than between sites
with the same scanner type. The low sample size of the dataset slightly hampers the generalization of the latter
finding.

The presented existence of a significant inter-site variability suggest a need for adaptations in image analysis
methods to produce repeatable measurements across sites. This is especially of importance in multi-site clinical
research.

Our dataset can also be used to find for the optimal combination of image channels in a multi-channel tissue
segmentation. Our results suggest that a (T2,PD) channel combination produces the most stable results. Adding
a higher resolution T1 channel and up-interpolating the T2 and PD channels leads to a higher precision of the
segmentation while maintaining good stability. We suggest the use of this (T1,T2,PD) channel combination
since small structures, such as lateral ventricles or deep gray matter structures, are often measured on tissue
segmentations. These structures demand a higher precision than the FSE’s 3.0mm slice thickness.

We also used the dataset to compare two different tissue segmentations. The outcome showed that the
atlas-based method showed better stability than the manual-seed based method. The stability of measuring
whole brain volume was very good in both methods. The stability of measuring CSF volume was decreased in
both methods, but to a larger extend for the manual-seed based method.

We plan to use this dataset to assess intra and inter-site variability of all our image analysis algorithm that
are used in multi-site studies of brain morphometry. Since we think our dataset represents an important mean
to test image analysis methods, we plan to make access to it publicly available via internet.
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