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R
ecent advances in tissue-engineered cartilage open the door to new clin-
ical treatments of joint lesions. Common to all therapies with in-vitro-
engineered autografts is the need for optimal fit of the construct to
allow screwless implantation and optimal integration into the live joint.
Computer-assisted surgery (CAS) techniques are prime candidates to

ensure the required accuracy, while at the same time simplifying the procedure.
A pilot study has been conducted aiming at assembling a new set of methods to
support ankle joint arthroplasty using bioengineered autografts. Computer assis-
tance allows planning of the implant shape on a computed tomography (CT)
image, manufacturing the construct according to the plan, and interoperatively
navigating the surgical tools for implantation. A rotational symmetric model of
the joint surface was used to avoid segmentation of the CT image; new software
was developed to determine the joint axis and make the implant shape parameter-
izable. A complete cycle of treatment from planning to operation was conducted
on a human cadaveric foot, thus proving the feasibility of computer-assisted
arthroplasty using bioengineered autografts. 

Introduction
Tissue-engineered articular cartilage has been a subject of research for a num-
ber of years (eg., [1], [2]). Although difficulties with cartilage structure and
integration still persist, techniques based on combined grafts using cancellous
bone and autologous cartilage are approaching clinical application [3]–[5].
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CAS techniques have the potential to ensure both the
required accuracy and simplify the therapy. A pilot study
was hence conducted, aiming at assembling a set of meth-
ods to realize and prove the feasibility of computer-assist-
ed arthroplasty using bioengineered autografts. The ankle
joint was chosen as a first target because of the lack of
suitable alternatives: posttraumatic osteoarthritis can be
diagnosed in patients as young as 20 years old, where
classic therapies like total ankle joint arthroplasty using
an artificial prosthesis or arthrodesis with fixation screws
have considerable drawbacks (loss of mobility, poor long-
term outcome expectation, difficult revision).

At the Universitätsklinikum Freiburg, Germany, one
case of posttraumatic osteoarthritis has been treated with a
bioengineered implant. The intervention was conducted in
two steps: one for arthrotomy and defect molding and a
second for implanting the bioengineered construct.
Between the two operations, several weeks were needed to
proliferate autologuous chondrocytes and integrate them
into a cancellous bone construct shaped after the defect
mold. Albeit clinically successful, this procedure does not
lend itself well to routine application: the two-step opera-
tion, the long period of treatment, and the high-cost of
individually constructed autografts make it a time-consum-
ing and costly alternative to classical therapies. Using CAS

technologies, the procedure can be significantly simplified
and generalized to allow prefabrication of implant parts.
The revised procedure consists of planning based on CT
image data, harvesting mesenchymal stem cells by needle
biopsy, constructing the autograft according to the plan-
ning, and conducting one single intervention for the arthro-
tomy and construct implantation. The defect debridement
has to be accurate enough to fit the preconstructed graft;
proving this accuracy in the context of a complete cycle of
treatment was a main goal of this initial study.

Methods

Rotational Symmetric Ankle Joint Model
Based on the hingelike articulation of the upper ankle joint,
a rotational symmetric joint was assumed in the region of
interest for arthroplasty, allowing shape determination
using a small number of points on the joint surface. A new
software was developed to define the ankle joint shape
model interactively on this basis. It consists of two steps:
determine the joint axis and define the rotational profile. To
determine the joint axis, arbitrary joint surface points are
identified on sagittal planes in the region of interest. On
each plane, the software performs a least-mean-square fit-
ting of a circle to the points (Figure 1).

A second least-mean-square
fit is performed in three-dimen-
sion (3-D) to find the optimal
approximation of a line through
all circle centers, which is used
as the joint axis. The accuracy
of this axis calculation depends
on the number of points select-
ed and on the anatomy of the
individual joint.  Selecting
40–80 surface points in a rota-
tional symmetric region of the
talus and/or tibia usually gives
good results; in this study,
about 100 points on the talus
were used for talus grafts and
about 100 points on the tibia for
tibia grafts. Once the joint axis
is established, a model for the
joint follows in a straightfor-
ward way by rotating a joint
profile around the axis.

Preoperative Planning
The preoperative arthroplasty
planning consists of four steps.Fig. 1. Joint axis from joint surface points.

Using CAS technologies, the procedure can

be significantly simplified and generalized

to allow prefabrication of implant parts.
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Determine the Joint Axis
As described in “Rotational Symmetric Ankle Joint Model,”
arbitrary points are selected on sagittal planes in the region of
interest. The software performs an optimal fit of a rotational
symmetric body to the points selected to calculate the joint axis.

Determine the Lateral Graft Profile
A “hub view” is defined along the joint axis (Figure 2).

In this view, a “U” profile can be defined determining the
front, bottom, and rear face of the implant. The hub view can
be shifted along the joint axis to determine the optimal section
of the joint to be replaced.

Determine the Frontal Graft Profile
A “cut view” is defined through the joint axis (Figure 3).

The axis is always shown horizontally, with the current
view rotating around it. In this view, a profile can interac-
tively be defined consisting of a “U” shape and a spline-
interpolated curve following the joint surface. For further
processing, the profile location is set at an arbitrary position
to localize the U shape in 3-D.

Visualize the Resulting Construct Shape
Having defined the implant shape from hub view and from cut
view, the visualization is done using the CAD software
SolidWorks (SolidWorks Corporation, Concord, Massachusetts)
as shown in Figure 4.

Construct Manufacturing
The CAD part description of the planned implant shape was
used to program a CAM device to manufacture the dummy
implant. The implants were custom milled according to this
plan in PU plastic “ep-Dur” (Emaform AG, Gontenschwil,
Switzerland). To improve the intraoperative flexibility, every
implant was manufactured in two sizes: target size and target
size minus 0.5 mm on the three faces relevant for press-fitting
it. During operation, the appropriate size can be chosen
according to the accuracy achieved.

Designing Tools for Arthrotomy
The first choice from the surgical point of view is an anterior
access (avoiding osteotomy of the fibula) using a chisel. Tests
have been carried out with angled chisels to study their behav-
ior in human bone and the feasibility limits of possible con-
struct shapes. Experiments on a human cadaver showed that
angled or straight chisels are well suited for generating the
planned defects; for the rear face of the defect, a milling device
is required to achieve an optimal smoothness of the surface.

Preparing the CAS Environment
At our institute, a modular CAS platform has been developed
that allows efficient and reusable implementation of applica-
tions for CAS. New algorithms and therapies can easily be
tested and used in a variety of system configurations according
to the requirements of collaborating clinics. This study was
conducted using an active Optotrak optical tracking system
from Northern Digital Inc., Waterloo, Ontario, Canada.
Infrared markers were attached to the bone under treatment
and to every surgical tool used. In-house image processing
algorithms were used to establish the correspondence between
bone, tools, and the visualized CT image (pair-point matching
of landmarks on the bone, refining the result by matching arbi-

trary surface postoperative CT, hub view dimensions mea-
sured points). The planned implant shape and position were
imported into the MEM Center CAS system. The contours of
the implant were visualized in the CT image to allow navigat-
ed operation according to the plan.

Fig. 4. The resulting implant shape visualized with SolidWorks.

Frontal Profile

Lateral Profile

Fig. 3. Determining the frontal (“cut view”) profile.

Fig. 2. Determining the lateral (“hub view”) profile.
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Pretrial Using a Plastic Model
A first trial combining the main elements of the target therapy
was made using a plastic foot model from 3B Scientific
GmbH, Hamburg, Germany. One talar implant shape was
planned based on a preoperative CT. The operation was con-
ducted using the chisels and analyzed with postoperative CT.
In the case of the trial with the plastic model, no dummy
implant was manufactured. The defect was analyzed compar-
ing distances on preoperative and postoperative CT images
and doublechecking them with measures on the plastic model.
They are shown in Figure 5 and listed in Table 1. 

Accuracy analysis revealed an error displaying the
implant shape, which affected the lateral face of the
planned defect. Measurement of the other distances
showed very encouraging results.

Results
A trial operation was conducted on one cadaveric human foot.
For the first time, a closed cycle of treatment was simulated
from preoperative planning to implanting a custom graft
shaped using the rotational symmetric model. A first intuitive
result is how well the implant fits into the defect made. In the
experiment, proper fixation of the graft was ensured by dri-
ving it into the defect using a hammer and pestle. Visual
inspection showed a good restoration of the joint surface, with
some locations where the bone had broken off due to the chis-
eling. Figures 6 and 7 document the results showing pre- and
postoperative volumetric CT images of the operating sites.
The same characteristic measurements were taken manually
on those images as for the pretrial analysis. They are shown in
Figure 5(b) and listed in Table 2. Live bone, being less brittle

than cadaveric, can be expected to allow even
better results. 

The outcome was further analyzed using post-
operative MRI imaging (Figure 8). Visual regis-
tration using landmarks visible in the CT
volume was used to compare the pre- and post-
operative MRI images. The dummy autograft,
being manufactured in PU plastic, is not visible
in the figure. 

Discussion
As a proof of concept, the study showed that
CAS techniques can successfully be applied to
support ankle joint arthroplasty using bioengi-
neered autografts. It is possible to make a cus-
tom-built bioimplant in a parameterizable
shape planned on the basis of CT images and
to implant it successfully at the planned site.
The proof of this hypothesis was done assum-
ing a rotational symmetric shape model of the
ankle joint surface, which is only correct for a
limited part of talus and tibia. A more general
model could improve the matching of implant
surface and surrounding joint surface, while at
the same time making the technique applicable
to other joints with different articulation. A big

Fig. 5. Postoperative analysis of the pretrial: (a) the postoperative CT, hub view, and (b) the dimensions measured.
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Table 1. Postoperative measurements of the pretrial operation.

Planned Achieved  Error

Distance Value [mm] Value [mm] [mm]

a Medial depth 14.58 14.10 0.48

b Medial height 8.87 8.40 0.47

c Rear width 15.45 15.20 0.35

d Lateral height 11.02 9.50 1.52

e Lateral depth 17.17 14.10 3.07

Table 2. Accuracy measurement using the postoperative CT image.

Planned Achieved  Error

Distance Value [mm] Value [mm] [mm]

a Medial depth 15.80 15.1 0.7

b Medial height 9.64 9.5 0.1

c Rear width 10.27 9.3 1.0

d Lateral height 9.11 10.3 1.2

e Lateral depth 15.26 16.4 1.1
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advantage of the rotational symmetric model is that no pre-
operative segmentation of the CT volume is required—a task
which is difficult to achieve automatically, especially in
joints with a narrow cavity. Manual segmentation is a very
time-consuming alternative and would make the method
impractical for clinical application. The determination of the
ankle joint axis from the joint surface as developed in this
project could be an interesting base for further studies: for
example, the axis derived from the tibial or talar surface
could be compared with each other or with the axis derived
from the ankle movement and used for diagnosing patholo-
gies. For that purpose, a closer investigation of its accuracy
is required, which was not part of this study. No separation
was made between different sources of error. The overall
accuracy measured covers all aspects, from scanning a foot
to implantation of a custom-made graft. A more detailed
analysis, however, only makes sense if looking at specific
aspects of the procedure; from a clinical perspective, the
restoration of the joint surface is the only relevant result, pro-
vided the graft is properly fixed in the defect made. The
cadaveric bone used in this study had a rather brittle charac-
teristic and tended to break on chiseling edges. Clinical

experience leads to the expectation that live bone will behave
better in that respect; a systematic study of this fact has not
been performed. This could also affect the choice of tools
used for the intervention. In view of the rather small ankle
joint, further optimization of the tools could also reduce the
risk of damaging the untreated joint surface. The study used
only one single cadaveric test to verify the feasibility of the
target therapy. A spare construct was manufactured in PU
plastic to accommodate for possible errors. This is sufficient
as a proof of concept but not sufficient to allow the applica-
tion of the therapy in clinical practice.

Future Work
The study described is a useful base for further development
towards clinical use but also for studies in different directions.
As mentioned in discussing the rotational symmetric joint
model, studies on the axis of joints with hingelike articulation
can be conducted using the software developed for ankle joint
arthroplasty; a whole range of diagnostic and other applica-
tions could profit from joint axis determination. In cases
where segmentation is practical, diagnosis could be supported
by analyzing the differences between individual joint surfaces

Fig. 7. Lateral view of the operative result: (a) the planned profile and (b) the postoperative CT.
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Fig. 6. The dorsal view of the operative result: (a) planned profile and (b) postoperative CT with damaged edge (encircled).
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and a parameterized joint model. As for arthroplasty using
bioengineered autografts, our next steps focus on generaliza-
tion and clinical applicability. Using statistical shape models
([6]) instead of a rotational symmetric one, the concept can be
applied to any joint; verification on a series of cadaveric bones
will finally pave the way to the clinic for a large number of
bioengineered cartilage constructs.
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