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Abstract

Knowledge about the biological variability of anatomical objects is essential for statistical shape analysis and discrimination between
healthy and pathological structures. This paper describes a novel approach that incorporates the variability of an object population into the
generation of a characteristic 3D shape model. The proposed shape representation is a coarse-scale sampled medial description derived
from a fine-scale spherical harmonics (SPHARM) boundary description. This medial description is composed of a net of medial samples
(m-rep) with fixed graph properties. The medial model is computed automatically from a predefined shape space using pruned 3D Voronoi
skeletons. A new method determines the stable medial branching topology from the shape space. An intrinsic coordinate system and an
implicit correspondence between shapes is defined on the medial manifold. Several studies of biological structures clearly demonstrate
that the novel representation has the promise to describe shape changes in a natural and intuitive way. A new medial shape similarity
study of group differences between monozygotic and dizygotic twins in lateral ventricle shape demonstrates the meaningful and powerful
representation of local and global form.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction we present a novel framework for building 3D shape
models based on a medial representation to be used for

Quantitative morphologic assessment of individual brain statistical shape analysis of anatomical structures. As
structures in neuroimaging most often includes segmenta- shown in this paper, a medial shape representation differs
tion followed by volume measurements. Volume changes significantly from alternative shape characterization tech-
are intuitive features as they might explain atrophy or niques described below.
dilation of structures due to illness. On the other hand, One of the first to mathematically analyze shape changes
structural changes like bending/flattening or changes was D’Arcy Thomson (Thomson, 1942) in his ground
focused at a specific location of a structure, for example breaking bookOn Growth and Form. Most of the shape
thickening of the occipital horn of ventricles, are not analysis are heavily influenced by D’Arcy’s work. Book-
sufficiently reflected in global volume measurements. The stein (1997) and Dryden and Mardia (1993) were some of
development of new methods for three-dimensional shape the first to develop mathematical methods to analyze 3D
analysis incorporating information about statistical bio- shape based on sampled boundary descriptions.
logical variability aims at tackling this issue. In this paper, Davatzikos et al. (1996) proposed an analysis of shape

morphometry via a spatially normalizing elastic trans-
formation. Inter-subject comparisons were made by com-*Corresponding author. Tel.:11-919-962-1919.

E-mail address: martin styner@ieee.org(M. Styner). paring the individual transformations. The method is
]

1361-8415/03/$ – see front matter   2003 Elsevier B.V. All rights reserved.
doi:10.1016/S1361-8415(02)00110-X

mailto:martin_styner@ieee.org
mailto:martin_styner@ieee.org
mailto:martin_styner@ieee.org


208 M. Styner et al. / Medical Image Analysis 7 (2003) 207–220

applied in 2D to a population of corpora callosa. A similar to this work have been performed by Ogniewicz and Ilg
¨approach in 3D has been chosen by Joshi et al. (1997) to (1992), Naf et al. (1996) and Attali et al. (1997).

compare hippocampi. Using the viscous fluid transforma- This paper is organized as follows. In the next section,
tion proposed by Miller (Christensen et al., 1994), inter- the motivation of our work is presented guided by an
subject comparisons were made by analyzing the trans- example that illustrates the advantages of using medial
formation fields. The analysis of transformation fields in descriptions for shape analysis. Then, we discuss our
both methods has to cope with the high dimensionality of methods to generate a stable sampled medial description
the transformation and the sensitivity to the initial position. automatically from a population of objects. We start with a
Although the number of subjects in the studied populations general description of the scheme and discuss shape space,
is low, both show a relatively stable extraction of shape common medial branching topology and minimal sampling
changes (Csernansky et al., 1998). Thompson and co- in detail. In the result section, several neuroimaging
workers (2000a,b) also use a non-rigid transformation to applications of medial shape analysis are presented.
detect sulcal variability and morphological changes in
normal brain development and in disease specific pro-
gression. The analysis of shape using point distribution 2 . Motivation: shape analysis in an example
models (PDM) and their deformations was investigated by asymmetry study
Cootes et al. (1995).

The approach taken by Kelemen et al. (1999) evaluates This section illustrates our motivation to use medial
a population of 3D hippocampal shapes based on a descriptions for shape analysis. A single example is
boundary description by spherical harmonic basis functions presented from which no conclusions in regard to clinical
(SPHARM), which was originally proposed in (Brech- validity should be drawn, but it illustrates the intuitive

¨buhler et al., 1995). The SPHARM shape description understanding and local aspects of shape changes com-
delivers a correspondence between shapes on the bound- puted with medial descriptions. The presented thickness
ary, which is used in the statistical analysis. As in the analysis cannot be done in such fashion using boundary
approaches discussed before, this approach has to handle descriptions. Details of the sampled medial description are
the problem of high dimensional features versus a low omitted in this section and described later.
number of samples. Furthermore, the detected shape The example is an analysis of left / right asymmetry in a
changes are expressed as changes of coefficients that are single hippocampus, a subcortical human brain structure
hard to interpret. which is of interest in neuro-imaging research of schizo-

Golland et al. (1999) in 2D and Pizer et al. (1999) in 3D phrenia, epilepsy and Alzheimer’s disease. Asymmetry is
proposed two different approaches of applying shape defined via the interhemispheric plane, therefore the right
analysis to a medial shape description. In his seminal hippocampus was mirrored at this plane for comparison.
work, Blum (1967) claims that medial descriptions are The hippocampi were segmented from a IRprepped SPGR
based on the idea of a biological growth model and a MRI dataset of a normal control subject as part of a large
‘natural geometry for biological shape’. The medial axis in study on hippocampal volume and shape difference in
2D captures shape intuitively and can be related to human Schizophrenia (Gerig et al., 2002; Schobel et al., 2001).
vision (Burbeck et al., 1996; Siddiqi et al., 1997). Both The segmentation is done via a manual outlining procedure
Pizer and Golland propose a sampled medial model that is based on a strict protocol performed by a clinical expert.
fitted to individual objects. By holding the topology of the The main advantage of medial descriptions is the decou-
model fixed, an implicit correspondence between objects is pling of the local shape properties thickness and position,
given and statistical shape analysis can directly be applied. encoded in the properties of the medial axis. In the

Giblin and Kimia (2000) proposed a medial hypergraph presented case we chose to focus on the thickness in-
in 3D. They showed that the hypergraph completely formation of the medial manifold.
characterizes the shape of an object. Similar to work in 2D Fig. 1 displays the surface and medial description of the
by Siddiqi et al. (1999), this hypergraph could be used for left and right hippocampal structures, clearly illustrating
shape recognition and shape design. To our knowledge, no asymmetry. Volume and medial axis length measurements
studies have been done towards using the medial graph/ indicate the same result that the right hippocampus is

3hypergraph directly for shape analysis. larger than the left: vol52184 mm , vol 52023right left
3In this paper we present a new approach to shape mm ; axis565.7 mm, axis 564.5 mm. But theseright left

analysis using medial descriptions. The medial description measurements do not provide a localization of the detected
is computed automatically from a population of objects asymmetry. However, this asymmetry can easily be com-
described by their boundaries. The topology of the medial puted and intuitively visualized using our medial descrip-
description is calculated by studying the topological tion.
changes of pruned 3D Voronoi skeletons.Voronoi skeletons Analysis of the thickness of the hippocampi along the
as shape representations have been studied intensively in medial axis (the intrinsic coordinate system) reveals a
past. The most influential pruning related studies in regard more localized understanding of the asymmetry. In Fig. 2
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Fig. 1. Visualization of a left / right hippocampus pair with its average structure. Boundary description (left), pruned Voronoi skeleton (right) with thickness
coloring (same range for all objects). The figure on the lower right shows the medial axis and medial grid of the average structure.

Fig. 2. Thickness asymmetry along medial axis (tail to head). Top row: thickness plot and thickness difference plot. Thickness difference showsr 2 r .R L

Bottom row: m-rep descriptions with thickness difference (R2L) shown at medial atoms with radius/color proportional to thickness:r | uR2Lu;
col| (R2 L).
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Fig. 3. Thickness asymmetry for a left / right hippocampus pair. Left: m-rep descriptions with radius/color proportional to the corresponding thickness.
Right: thickness difference (R2 L) at medial atoms with proportional radius/color:r | uR2 Lu; col| (R2 L).

the right hippocampus is thicker over the full length of the In overview, our scheme is subdivided into three steps
axis, and the difference is most pronounced in the middle as visualized in Fig. 4. We first define a shape space using
part of the axis. In order to relate this thickness in- principal component analysis of parametrized boundary
formation to the appropriate location, we visualize it in the models. From this shape space we generate the medial
medial samples themselves. Each medial atom (sample of model in two steps. First we compute the common
the medial surface) is displayed by a sphere of size and branching topology using pruned Voronoi skeletons. Then
color that is proportional to its thickness. This kind of we compute the minimal sampling of the m-rep model
display can also be used to visualize the thickness differ- given a maximal approximation error in the shape space.
ence of corresponding locations in the right and left M-rep models. A m-rep (Pizer et al., 1999) is a linked
hippocampus. The sphere radius and color is proportional set of medial primitives called medial atoms,m 5

to the difference:r | uR2 Lu; col| (R2L) (see Fig. 2). (x;r;F;u ). The atoms are formed from two equal length
]

As a next step, we take into account a grid of medial vectors and are composed of (1) a positionx, (2) a radius
atoms and perform the same analysis as for the axis (seer, (3) a frameF implying the tangent plane to the medial

]
Fig. 3). We observe that the right object is thicker, but the manifold, and (4) an object angleu. The medial atoms are
difference is most pronounced in the middle part. grouped into figures connected via interfigural links. These

In this hippocampus study the medial description gives a figures are defined as non-branching medial sheets and
better understanding of the observed asymmetry than together form the medial branching topology. The con-
simple measurements like volume or even the length of the nections of the medial atoms and the figures form a graph
medial axis. called ‘medial graph’ with edges representing either inter-

All parts of the processing are described in the methods or intra-figural links.
section. The medial branching topology of one single sheet SPHARM. The SPHARM description is a parametric
is computed with volumetric overlap larger than 98% and surface description that can only represent objects of

¨approximation errorE less than 0.05. spherical topology (Brechbuhler, 1995). The basis func-pop

tions of the parameterized surface are spherical harmonics.
SPHARM can be used to express shape deformations

3 . Model building methods (Kelemen et al., 1999), and is a smooth, accurate fine-scale
shape representation, given a sufficiently small approxi-

The main problem for a medial shape analysis is the mation error. Based on an uniform icosahedron-subdivi-
computation of a stable medial model in the presence of sion of the spherical parameterization, we obtain a point
biological shape variability. Furthermore, skeletonization distribution model (PDM) directly from the coefficients via
procedures are well-known to be very sensitive to small a linear mapping. Correspondence of SPHARM is de-
boundary perturbations. Given a population of similar termined by normalizing the parameterization to the first
objects, how can we automatically compute a stable medial order ellipsoid.
model? The following sections describe the scheme that
we developed to construct a medial m-rep model from a 3 .1. Shape space
population of objects described by boundary parameteriza-
tion using spherical harmonics (SPHARM). More details As a first step in our scheme, we compute a shape space
of the model generation can be found in (Styner and Gerig, using principal component analysis (PCA) of SPHARM
2002). There, we also present a stability analysis inves- objects from a training population. The shape space
tigating the influence of shape changes in the object smoothes the individual objects and the shape variability in
population to the computed medial model. the training population, thus making the skeleton extrac-
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Fig. 4. Computation of an m-rep model from an training population. (1) Shape space definition from training objects. (2) Common medial branching
topology as combination of branching topologies from a minimal set of objects in shape space. (3) Minimal sampling of common medial branching
topology.

tion and pruning more stable. We assume that the shape contribution to the overall object volume:C 5 vol 2ssheet skel

space is an appropriate representation of the object’s vol /vol . The sheets are then pruned using adskel\sheet skel

biological variability. PCA is computed from the topology preserving deletion scheme that successively
SPHARM objects as described by Kelemen et al. (1999) removes non-salient sheets with small volumetric contribu-
resulting in the average coefficient vector and the eigen- tions. Fig. 5 illustrates the pruning of the Voronoi skeleton
modes of deformation. The bases of the shape space are of a lateral ventricle.
the first eigenmodes that cover at least 95% of the Our experiments show that a considerable reduction of
population’s variability. the number of medial sheets is possible with sacrificing

A discrete description of the shape space is obtained by only little accuracy of the reconstruction. In fact, the
sampling it either uniformly or probabilistically. These pruned skeletons ofall objects studied so far had a
samples form an object set that is a representative sam- volumetric overlap with the original object of more than
pling of the shape space. All subsequent computations of 98%.
the model building are then applied to this object set. Computation of a common branching

topology. August et al. (1999) and Siddiqi et al. (1999)
3 .2. Computing a common medial branching topology showed that the 2D medial branching topology is quite

unstable, which is even more pronounced in 3D. Thus, in
Branching topology of a single object. The branch- order to be able to robustly compare branching topologies,

ing topology for a single object is derived via Voronoi we developed a matching algorithm that is not based on
skeletons from finely sampled PDMs. A face-grouping/ graph matching but on spatial correspondence.
merging algorithm has been developed that groups the All objects to be compared are mapped into a common
Voronoi faces into a set of non-branching medial sheets. spatial frame by a thin plate splines (TPS) registration
The medial sheets are weighted by their volumetric based on the boundary correspondence established by the
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Fig. 5. Voronoi skeleton pruning scheme applied to a lateral ventricles (side views). (a) Original ventricle. (b) Original Voronoi skeleton (|1600 sheets). (d)
Pruned skeleton (2 sheets). (c) Reconstruction from pruned skeleton (E 598.3%).overlap

SPHARM description. In order to minimize the mapping predefined maximal approximation error. The approxima-
distortions, the average object of the shape space is chosen tion error is computed as the mean absolute distance
to provide the common spatial frame. Individual object (MAD) of the implied and the original boundary. In order
skeletons are warped using the TPS interpolation. The to have an error independent of the object size, we
common branching topology is then computed iteratively normalize with the average radius of all skeletons in the
starting with the topology of the average object as the population:E 5MAD/r . Fig. 6 shows the error ofpop avg,pop

initial guess. The spatial location and shape of each medial various sampling parameters. The limiting error is chosen
sheet is characterized by the center and the second order in the range of 5–10% depending on the structure.
statistics. Non-corresponding sheets are identified in a
one-to-many match procedure using the paired
Mahanolobis distance between sheet centers. These non-3 .4. Deforming the m-rep model into an individual
corresponding sheets are added to the current branchingobject
topology. Each sheet of every object in the shape space is
matched by at least one sheet in the final common This section describes the computation of the m-rep
branching topology. description for shape space objects and individual objects

not in the common frame. This computation is done in two
3 .3. Minimal sampling of m-rep model steps. An initial estimate is obtained by a TPS warp of the

m-rep model from the common frame into the frame of the
From the common branching topology we compute the individual object using the SPHARM correspondence on

sampling of the associated sheets by a grid of medial the boundary. From that position we run an optimization
atoms. The m-rep model is determined by the common that changes the features of the m-rep atoms to improve
branching topology and a set of parameters that specify the the fit to the boundary as described by Joshi et al. (2001).
grid dimensions for each sheet. The sampling algorithm is Local similarity transformations as well as rotations of the
based on the longest 1D thinning axis of the edge- local angulation are applied to the medial atoms. The fit to
smoothed 3D medial sheet. The set of grid parameters is the boundary is constrained by a neighborhood dependent
optimized to be minimal while the corresponding m-rep prior that guarantees the smoothness of the medial mani-
deforms into every object in the shape space with a fold.

Fig. 6. Sampling approximation errorsE of the m-rep implied surface (dark blue dots) with the original object boundary (light blue transparent) in apop

hippocampus structure (r 52.67 mm). The m-rep grids are visualized as red lines. The grid dimensions are shown in the second row, and theE errorsavg pop

in the third row.
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Fig. 7. Object alignment. Two left lateral ventricles are aligned to perfectly match the center and axis of the first order ellipsoid. Left: objects; middle: first
order ellipsoids; right: aligned ellipsoids.

4 . Object alignment and scaling though they might have the same shape properties.
Thus, the differences will reflect mixed values of both

As a prerequisite for any shape analysis and shape the shape differences and the size differences.
similarity calculation, objects have to be normalized with (B) Uniform scaling to unit volume: Creating a shape
respect to a reference coordinate frame. Since we are difference measure that is orthogonal in its nature to
interested in measuring shape differences, a normalization the volume measure has the potential to reveal
is needed to eliminate differences that are due to rotation, information additional to size. The volume measure-
translation and magnification. Normalization of translation ments can be incorporated later into a multivariate
and rotation is accomplished by aligning the objects via the statistical analysis as an additional orthogonal feature.
first order ellipsoid (see Fig. 7).

In order to normalize for magnification, an appropriate
scaling method has to be defined. The choice of the scaling
method depends on the task and the type of objects. There5 . M-rep shape analysis
is no clear agreement in literature in regard to which
choice is best. We investigated in this paper two possi- The main advantage of a medial shape analysis over a
bilities (see also Fig. 8), but there are other valid scaling boundary shape analysis is the separate analysis of the two
methods: medial shape properties local position and thickness. Fig. 9
(A) No scaling correction: The computation of shape demonstrates how thickness and position capture different

differences without any scale normalization reveals forms of shape deformation, i.e. thickness changes are due
differences between small and large objects even to locally uniform growth forces and positional changes

are due to local deformation forces. Since these two
features are viewed to be mainly decoupled, we investigate
them separately, which provides additional statistical
power to our analysis.

When computing group differences instead of pair-wise
differences, we designate the average medial description of
all groups to be the reference object. Our medial shape
analysis computes for each subject the difference to this
reference object. In this paper, the presented group study
involves pair-wise differences resulting in scalar values,
thus there was no need for a reference object.

Using the m-rep description, we can perform a global
and a local shape analysis. In the global analysis, we
integrate the properties over all atoms of the whole m-rep
to compute one position and one thickness feature per
m-rep. In the local analysis, we study each atom’s prop-Fig. 8. Object scaling. Pairs of right lateral ventricles (MZ twin pair)
erties individually to detect locations of significant differ-unscaled (left) and scaled to unit volume (right). In this example, the

scaling procedure corrected for an existing size difference. ences. In this paper, we treat the atoms to be independent
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Fig. 9. Medial shape analysis (schematically shown in 2D). The differences in the thickness (radius, top graph) and position properties (lower graph)
between two m-reps can be studied separately. The properties express different kinds of underlying processes (growth versus deformation).

of each other. This viewpoint is not fully accurate, but
appropriate for a preliminary analysis.

6 . Applications

6 .1. Medial model computation

The new model building scheme has been applied to
different neuroimaging studies with populations of several
human brain structures; the overall number of processed
cases is shown in parenthesis: hippocampus–amygdala (60
cases), hippocampus (200), thalamus (56), pallide globeFig. 11. Medial models of anatomical brain structures. All these models
(56), putamen (56) and lateral ventricles (80). The com- are multi-figure models. From left to right: hippocampus–amygdala

complex (4 figures), pallide globe (2 figures) and thalamus (2 figures).puted medial shape models are shown in Figs. 10 and 11.
Three of the model building studies are presented in more

The model was built on a population that included thedetail in the following paragraphs.
objects of all subjects on both sides, with the rightHippocampus schizophrenia study. We investigated
hippocampi mirrored at the interhemispheric plane prior tothe hippocampus structure of an object population with
the model generation. The hippocampi were segmentedschizophrenic patients (56 cases) and healthy controls (26
from IRprepped SPGR MRI datasets using a manualcases). The goal of this study was to assess shape
outlining procedure based on a strict protocol and wellasymmetry between left and right side objects, and also to
accepted anatomical landmarks (Duvernoy, 1998). Theanalyze shape similarity between patients and controls.

Fig. 10. Medial models of anatomical structures in the left and right brain hemisphere. All these models are single-figure models. From outside to inside:
lateral ventricle, hippocampus, pallide globe.
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segmentation was performed by a single clinical expert Thus, the common medial topology resulted in a single
(Gerig et al., 2002; Schobel et al., 2001) with intra-rater sheet. The minimal sampling of the medial topology was
variability of the segmented volume measurements at 0.95. computed with a maximalE < 0.10 in the shape space.pop

The SPHARM coefficients were normalized for rotation The application of this model to the whole population
and translation using the first order ellipsoid. The size was generatedE errors in the range of [0.057. . . 0.15] withpop

normalized to unit volume. The shape space was defined an average error of 0.094 (see Fig. 13 for a subset of
by the first 13 eigenmodes with each of the remaining objects). The average radius is 2.26 mm so that the average
eigenmodes holding less than 1% of the variability in the error becomes 0.21 mm.
population. All objects in the shape space had a medial Hippocampus–amygdala schizophrenia study. This
branching topology of a single medial sheet with a section presents our scheme applied to a hippocampus–
volumetric overlap of more than 98%. Thus, the common amygdala population from a schizophrenia study (30
topology resulted in a single sheet. The computed minimal subjects). The structures were segmented from SPGR MRI
grid sampling of 338 had anE error of less than 5% for datasets using a manual outlining procedure based on apop

all objects in the shape space. The application of this strict protocol performed by a single clinical expert
model to the whole hippocampus population of 164 objects (Shenton et al., 2002). The segmentations were performed
generated E boundary errors in the range of at the Brigham and Women’s Hospital, Boston. As in thepop

[0.048. . . 0.088] with an average error of 0.058 (see Fig. previously described studies the same post-processing has
12 for a subset of objects). The average radius is 3.0 mm been applied. The SPHARM coefficients were determined
and thus the absolute average error is 0.17 mm. The and normalized regarding rotation and translation using the

2original sampling is 0.937531.5 mm, which indicates first order ellipsoid. The scale was normalized to unit
that the individual m-reps are computed with sub-voxel volume. The shape space is defined by the first six
accuracy. eigenmodes, which cover 97% of the variability in the

Lateral ventricle twin study. Another study analyzed population. The medial branching topologies in the object
the lateral ventricle structure in a population of 10 mono- set varied between two to five medial sheets with a
zygotic and 10 dizygotic twins. Details of the segmentation volumetric overlap of more than 98% for each object. The
protocol are described in Section 6.2. The same post- common branching topology was computed to be com-
processing has been performed as in the previously de- posed of four sheets. The minimal sampling of the medial
scribed study. The SPHARM coefficients were normalized topology was computed with a maximalE < 0.10 in thepop

for rotation and translation using the first order ellipsoid. shape space. The application of this model to the whole
The size was normalized to unit volume. The first eight population generatedE errors in the range ofpop

eigenmodes defined the shape space, which holds 96% of [0.035. . . 0.112] with an average error of 0.084 (see Fig.
the variability of the population. The medial branching 14). The average radius is 3.6 mm and the average error
topologies in the object set varied between one to three becomes 0.30 mm.
medial sheets with a volumetric overlap better than 98% Discussion of model building results. The presented
for each object. The single medial sheet topology of the studies of medial model building show that we tested our
average object matched all sheets in the common frame scheme with anatomical structures of different complexity
since the matching algorithm allows one-to-many matches. leading to single and multi figure models. The models are

Fig. 12. Six individual m-rep descriptions of the hippocampus study. The visualizations show m-rep grids as red lines, the m-rep implied surface as dark
blue dots, and the original object boundary in transparent light blue.
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Fig. 13. Four individual m-rep descriptions of the lateral ventricle study. The visualizations show m-rep grids as red lines, the m-rep implied surface as
dark blue dots, and the original object boundary in transparent light blue.

computed in a stable fashion and describe individual clinical expert to assure the anatomical correctness of all
objects with an appropriately low approximation error. segmentations. The intra-rater variability of this method
These models can now be used for shape analysis, shape was measured as 0.97.
recognition and model based segmentation (Joshi et al., In this study, we were mainly interested in investigating
2001). the degree of similarity of the lateral ventricles between

In the following section we present an application of a subject pairs. Thus, the goal of the study was to determine
single figure medial model for statistical shape analysis. whether MZ twins have more similarly shaped lateral
Multi-figure models can be built reliably, but shape ventricles than DZ twins or unrelated (NR) subject pairs.
analysis has not yet been performed on such models. Knowledge about biological variability and influence by

genetic information is essential for any type of mor-
6 .2. Shape analysis for group difference phological neuroimaging study. The population size of

each group in this study is very small, so the observed
The lateral ventricle study presented before is investi- effect must be quite large for the statistical analysis to

gated for group differences between monozygotic (MZ, 5 yield a significant result. A previous study was performed
pairs) twins, dizygotic (DZ, 5 pairs) twins and unrelated by Bartley et al. (1997) on the same datasets with the goal
(NR, 10 pairs) subjects. All groups are gender, age and of distinguishing the groups. They compared cortical gyral
handedness matched. The original brain images were patterns and the total brain volumes. Both measures
provided by D. Weinberger, NIMH Neuroscience in showed significant differences between the MZ and DZ
Bethesda, MD, USA. The segmentation method used a groups.
single gradient-echo channel (T1w, matrix 25632563

2128, resolution 0.937531.5 mm) with manual seeding for
6 .2.1. Volume similarity analysisParzen-window based non-parametric supervised statistical

We studied each twin pair’s similarity using the normal-classification. Manually guided 3D connectivity was used
ized absolute volume difference:Dvol 5uvol 2vol u /to extract the left and right lateral ventricles. The seg- T T T1,2 1 2

(vol 1vol ). As shown in Fig. 16, there is a trend visiblemented structures were postprocessed using a morphologi- T T1 2

cal closing operation to provide simply connected 3D in both brain hemispheres, but no significant conclusions
objects (see Fig. 15). Minor manual editing was done by a can be drawn since the volume measurement distributions

Fig. 14. Three m-rep descriptions of the hippocampus–amygdala study. The visualizations show m-rep grids as colored lines, the m-rep implied surface as
dark blue dots, and the original object boundary in transparent light blue.
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Fig. 15. (A) Three-dimensional rendering of the skin and bone structures of one subject’s head (transparent) and the lateral ventricles. (B) Visualization of
the right-side lateral ventricles of all twin pairs (same color for pairs) scaled to unit volume. Top row: MZ twins. Bottom row: DZ twins.

Fig. 16. Plot of pairwise relative volume differencesDvol between MZ twins (red squares), DZ twins(blue diamonds) twin, and non-related subjectsT1,2

(black triangles). Results of the left and right ventricles are shown in the left and right figures. No significant conclusions can be drawn.

local shape analysis. Eventual differences can manifest in
are overlapping. TheP value for discriminating the two the medial properties of thickness and position (see Section
groups is at 0.15/0.16, which is non-significant at a 5% 5), each of them potentially at different locations.
significance level (see Table 1). In the global medial shape analysis, we integrate the

local differences between corresponding m-rep atoms. The
6 .2.2. Medial shape similarity analysis position and the thickness properties display a higher level

Prior to the medial shape analysis, the objects have been of similarity between MZ twins than between DZ twins at
normalized to unit volume. The goal of the medial shape a significantp value (5% significance level) on the right
analysis was to detect global shape differences and also to side (see Fig. 17 and Table 1). No significance can be
pinpoint the locations of significant group difference in a detected on the left side. When studying the joined feature

space of both thickness and position differences, this result
Table 1 becomes even more pronounced. Furthermore, when com-
P values for group mean difference testing between MZ and DZ twin paring the MZ group to the population of non-related pairs,
pairs and unrelated pairs we observe that the similarity in MZ twins significantly

MZ/DZ MZ/NR DZ/NR differs from the similarity of non-related pairs. This is not
the case for dizygotic twin pairs, thus suggesting that thereLeft Volume diff. 0.151 0.333 0.486

M-rep global thickness diff. 0.316 0.356 0.959 isn’t a difference between DZ and unrelated pairs that can
M-rep global position diff. 0.157 0.068 0.75 be detected with our methods. We also analyzed the global

boundary shape in (Gerig et al., 2001) using the SPHARMRight Volume diff. 0.167 0.377 0.500
a aM-rep global thickness diff. 0.016 0.011 0.646 description, which had the same outcome as the medial
a aM-rep global position diff. 0.026 0.005 0.91 analysis, but with slightly different significance for the test

a Indicates numbers that are significant at 5% significance level. statistics.
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Fig. 17. Plots of pairwise medial shape differences of the thickness (1st column) and position (2nd column) property. In the 3rd column, a combined
analysis is shown, which displays the quartile ellipsoids of the three groups (MZ5red squares, DZ5blue diamonds, NR5black triangles). Top row: left
ventricle; bottom row: right ventricle. It can be seen that the effect is much stronger for the right ventricle than for the left.

The significant shape differences found with a global local medial shape analysis is visualized in Fig. 18 by
shape analysis immediately pose a subsequent research marking locations of significant group differences between
question: Are there subregions that are mainly responsible MZ and DZ twins. These locations are not the same for the
for similarity /dissimilarity? We used the medial m-rep thickness and position features. As in the global analysis,
descriptions to test also for local group differences. The the right ventricle shows a much larger effect than the left

Fig. 18. Local medial shape analysis of MZ versus DZ twin pairs. Lateral ventricles are shown in side view. The radius of the medial atoms is proportional
to the significance of the group difference at its location of either the thickness or position property. A clustering in the anterior and posterior part is visible
in the right side position analysis (bottom right).
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ventricle. It is also clearly visible that the locations of scheme. The investigation of the SPHARM corre-
significant difference cluster in the posterior and anterior spondence is ongoing research in our group. We are
part regarding theposition analysis. This suggests that the currently comparing our method with the minimum de-
main shape difference between MZ and DZ twin pairs in scription length approach of Davies et al. (2002). Also,
this study can be explained in MZ twin pairs having less Meier and Fisher (2002) compared the SPHARM corre-
deformation differences in the posterior and anterior part spondence with an improved method.
of the right lateral ventricle than DZ twin pairs. The correlation between different medial samples is

The results of the medial shape analysis reveals interest- captured in the medial model, and thus there is the
ing new information about the structure of brain ventricles possibility that local effects remain unnoticed in the global
in genetically identical MZ twin pairs, non-identical DZ analysis. The presented global shape analysis can be
twins, and non-related but age and gender matched pairs. enhanced using other measures of global shape difference
We are well aware that we have to be cautious with such as the median values and quantile values. In the
conclusions due to the small sample size. The size presented studies all of these other global measures
normalized right ventricles reveal that MZ twin pairs indicated the same results as the presented ones. It is
present a very small shape difference, with low variability, essential that we are doing additionally to the global
suggesting that after normalization the objects are indeed analysis, also a local analysis. This is done not just for the
very similarly shaped. Surprisingly, this strong and signifi- localization of effects, but also to capture a real shape
cant effect is not found in the left ventricles, where there is difference that might not be captured in the global analysis.
only a trend indicating more similar ventricle shape in MZ The MZ/DZ twin study demonstrates that shape mea-
as compared to DZ. The statistics further illustrate that DZ sures reveal new information additional to size measure-
twin pairs didn’t differ from unrelated pairs using the ments, which might be relevant for improved understand-
proposed analysis scheme. ing of structural differences in normal populations but also

Additionally to the sample size, there is a variety of in comparisons between healthy control groups and pa-
other factors that influence the results of a shape analysis tients. Twin studies offer the advantage of reduced natural
study like the presented one. The main additional factors biological variability by choosing subjects with identical
include the choice of the segmentation method, the scaling genes. Our twin study demonstrates that significant differ-
method and the alignment method. The effects of these ences between MZ and DZ pairs could not be found by
factors on the shape analysis is part of ongoing research at volume measurements but by shape analysis. There is a
our laboratory. significant group difference between MZ and DZ twin

pairs for the right but not for the left ventricle. We have no
obvious explanation for this finding but hope to get more

7 . Summary and conclusions insight through close collaboration with experts in neuro-
biology and neurodevelopment. A follow-up study current-

We present a new approach to description and analysis ly analyzes differences between MZ twins discordant for
of shape for 3D objects in the presence of biological schizophrenia to reveal insight into hypothesized mor-
variability. The proposed shape description is a medial phologic changes due to illness. Analysis of shape changes
description derived from a boundary description. The similar to the presented case study might become im-
generation of the medial description takes into account the portant in longitudinal assessments of morphologic change
biological variability of a set of training objects, which is a due to developmental or degenerative processes.
novel concept. We have shown that we can compute a As next steps, we have to study more thoroughly the
stable medial description for a population of objects. Using robustness of our scheme. Furthermore, the local statistical
the medial description we can visualize and quantitate analysis, currently applied independently at each node,
globally and locally computed shape features regarding needs to take into account local correlation. Additional
similarity. The correspondence given on the medial mani- applications to clinical studies in schizophrenia and other
fold directly leads to global and local statistical analysis. neurological diseases are in progress. Currently we are not

The choice of afixed m-rep topology has several using all the properties of the medial representation. The
advantages, e.g. enabling an implicit correspondence for use of the additional information for shape analysis is
statistical analysis. On the other hand, a fixed topology ongoing research as indicated in (Yushkevich and Pizer,
m-rep model on a single scale cannot precisely capture the 2001).
topology of an individual object. The m-rep is therefore
always an approximation to the object.
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