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Abstract. The correspondence problem is of high relevance in the con-
struction and use of statistical models. Statistical models are used for a
variety of medical application, e.g. segmentation, registration and shape
analysis. In this paper, we present comparative studies in three anatom-
ical structures of four different correspondence establishing methods.
The goal in all of the presented studies is a model-based application.
We have analyzed both the direct correspondence via manually selected
landmarks as well as the properties of the model implied by the corre-
spondences, in regard to compactness, generalization and specificity. The
studied methods include a manually initialized subdivision surface (MSS)
method and three automatic methods that optimize the object param-
eterization: SPHARM, MDL and the covariance determinant (DetCov)
method. In all studies, DetCov and MDL showed very similar results.
The model properties of DetCov and MDL were better than SPHARM
and MSS. The results suggest that for modeling purposes the best of the
studied correspondence method are MDL and DetCov.

1 Introduction

Statistical models of shape show considerable promise as a basis for segmenting,
analyzing and interpreting anatomical objects from medical datasets [5, 14]. The
basic idea in model building is to establish, from a training set, the pattern of
legal variation in the shapes and spatial relationships of structures for a given
class of images. Statistical analysis is used to give a parameterization of this
variability, providing an appropriate representation of shape and allowing shape
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constraints to be applied. A key step in building a model involves establish-
ing a dense correspondence between shape boundaries over a reasonably large
set of training images. It is important to establish the correct correspondences,
otherwise an inefficient parameterization of shape will be determined. The im-
portance of the correct correspondence is even more evident in shape analysis, as
new knowledge and understanding related to diseases and normal development is
extracted based on the established correspondence [10, 21]. Unfortunately there
is no generally accepted definition for anatomically meaningful correspondence.
It is thus difficult to judge the correctness of an established correspondence.

In 2D, correspondence is often established using manually determined land-
marks [1], but this is a time-consuming, error-prone and subjective process. In
principle, the method extends to 3D, but in practice, due to very small sets of
reliably identifiable landmarks, manual landmarking becomes impractical. Most
automated approaches posed the correspondence problem as that of defining a
parameterization for each of objects in the training set, assuming correspondence
between equivalently parameterized points. In this paper we compare methods
introduced by Brechbühler[2], Kotcheff[16] and - [8]. A fourth method is based
on manually initialized subdivision surfaces similar to Wang[24]. These meth-
ods are presented in more detail in sections 2.1-2.4. Similar approaches have also
been proposed e.g. Hill[11] and Meier [18]. Christensen[4], Szeliski[22] and Rueck-
ert[20] describe conceptionally different methods for warping the space in which
the shapes are embedded. Models can then be built from the resulting defor-
mation field [13, 9, 20]. Brett[3], Rangarajan[19] and Tagare[23] proposed shape
features (e.g. regions of high curvature) to establish point correspondences.

In the remainder of the paper, we first present the studied correspondence
methods and the measures representing the goodness of correspondence in order
to compare the methods. In the result section we provide the qualitative and
quantitative results of the methods applied on three populations of anatomical
objects (left femoral head, left lateral ventricle and right lateral ventricle).

2 Methods

Alignment - As a prerequisite for any shape modeling, objects have to be nor-
malized with respect to a reference coordinate frame. A normalization is needed
to eliminate differences across objects that are due to rotation and translation.
This normalization is achieved in studies based on the SPHARM correspon-
dence (section 2.2) using the Procrustes alignment method without scaling. In
the study based on the MSS correspondence (section 2.1) the alignment was
achieved using manually selected anatomical landmarks. MDL and DetCov can
align the object via direct pose optimization, an option not used in this paper.

Principal Component Analysis (PCA) model computation - A training
population of n objects described by individual vectors xi can be modeled by
a multivariate Gaussian distribution. Principal Component Analysis (PCA) is
performed to define axes that are aligned with the principal directions. First the
mean vector x̄ and the covariance matrix D are computed from the set of object
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Fig. 1. Left: Visualization of the left and right lateral ventricle in a transparent human
head. Right: The manually selected landmarks on the left ventricle template.

vectors(1). The sorted eigenvalues λi and eigenvectors pi of the covariance matrix
are the principal directions spanning a shape space with x̄ at its origin. Objects
xj in the shape space are described as a linear combination of the eigenvectors
on x̄ (2). The shape space here is defined within [−3 ·

√
λi . . . 3 ·

√
λi].

x̄ =
1
n

n∑
1

xi; D =
1

n− 1

n∑
1

(xi − x̄) · (xi − x̄)T (1)

P = {pi}; D · pi = λipi; xj = x̄+ P · b (2)

2.1 MSS: Manually initialized subdivision surfaces

This method is the only semi-automatic one, all others are fully automatic.
The correspondence starts from a set of predefined anatomical landmarks and
anatomically meaningful curves determined on the segmented objects using a in-
teractive display (e.g. spline on the crista intertrochanterica). After a systematic
discretization of the higher dimensional landmarks, a sparsely sampled point set
results, which is triangulated in a standardized manner and further refined via
subdivision surfaces. The correspondence on the 0th level meshes is thus given
by the manually placed control curves, on the subsequent levels by the subdi-
vision rule: the triangles are split to four smaller ones, the new vertices are the
midpoints of the pseudo-shortest path between the parent vertices. This path is
the projection of the edges connecting in three-space the parent vertices to the
original surface. The direction of the projection is determined by the normals of
the neighboring triangles. This method was successfully applied on organs with
a small numbers of anatomical point-landmarks.

2.2 SPHARM: Uniform area parameterization aligned to first order
ellipsoid

The SPHARM description was introduced by Brechbühler[2] and is a paramet-
ric surface description that can only represent objects of spherical topology. The
spherical parameterization is computed via optimizing an equal area mapping of
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the 3D quadrilateral voxel mesh onto the sphere and minimizing angular distor-
tions [2]. The basis functions of the parameterized surface are spherical harmon-
ics. SPHARM can be used to express shape deformations [15], and is a smooth,
fine-scale shape representation, given a sufficiently small approximation error.
Based on an uniform icosahedron-subdivision of the spherical parameterization,
we obtain a Point Distribution Model (PDM) directly from the coefficients via
linear mapping [15]. The correspondence of SPHARM is determined by aligning
the parameterization so that the ridges of the first order ellipsoid coincide. It is
evident that the correspondence of objects with rotational symmetry in the first
order ellipsoid is ambiguously defined.

2.3 DetCov: Determinant of the covariance matrix

Kotcheff et al [16] and later - [6] propose to use an optimization process that
assigns the best correspondence across all objects of the training population, in
contrast to MSS and SPHARM, which assign inherently a correspondence to
each individual object. This view is based on the assumption that the correct
correspondences are, by definition, those that build the optimal model given
the training population. For that purpose they proposed to use the determinant
of the covariance matrix as an objective function. The disadvantages of the
original implementation was the computationally expensive genetic optimization
algorithm, and the lack of a re-parameterization scheme. The implementation in
this paper is different and is based on the optimization method by - [6], which
efficiently optimizes the parameterization of the objects. This same optimization
scheme was also used for the MDL criterion described in the next section. DetCov
has the property to minimize the covariance matrix and so explicitly favors
compact models.

2.4 MDL: Minimum Description Length

- [6, 8] built on the idea of the DetCov method, but proposed a different objective
function for the optimization process using on the Minimum Description Length
(MDL) principle. The DetCov criterion can be viewed as a simplification of the
MDL criterion. The MDL principle is based on the idea of transmitting a dataset
as an encoded message, where the code originates from some pre-arranged set
of parametric statistical models. The full transmission then has to include not
only the encoded data values, but also the coded model parameters. Thus MDL
balances the model complexity, expressed in terms of the cost of transmitting
the model parameters, against the quality of fit between the model and the
data, expressed in terms of the coding length. The MDL objective function has
similarities to the one used by DetCov [6]. The MDL computations for all our
studies were initialized with the final position of the DetCov method.

2.5 Measures of Correspondence Quality

In this section we present the measures of the goodness of correspondence used
in this paper. Such measures are quite difficult to define, since there is no gen-
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eral agreement on a mathematical definition of correspondence. All methods in
this paper produce correspondences that are fully continuous and have an inher-
ent description of connectivity without any self-crossings. Measures of goodness
evaluating a method’s completeness and continuity (e.g. as suggested in Meier
et al. [18]) are thus not applicable here.

We propose the use of four different measures, each biasing the analysis to its
viewpoint on what constitutes correct correspondence. The first goodness mea-
sure is directly computed on the corresponding points as differences to manually
selected anatomical landmarks. The three other ones are of indirect nature, since
they are computed using the PCA model based on the correspondence. Further
details not discussed in this paper about the following methods can be found in
[7]. These three model based methods are in brief:

– Generalization: The ability to describe instances outside of the training set.
– Compactness: The ability to use a minimal set of parameters.
– Specificity: The ability to represent only valid instances of the object.

Distance to manual landmarks as gold standard - In medical imaging
human expert knowledge is often used as a substitute for a gold standard, since
ground truth is only known for synthetic and phantom data, but not for the
actual images. In the evaluation of correspondence methods this becomes even
more evident, because the goal is not clearly defined, in contrast to other tasks
such as the segmentation of anatomical structures. We propose to use a small set
of anatomical landmarks selected manually by a human expert on each object
as a comparative evaluation basis. We computed the mean absolute distance
(MAD) between the manual landmarks and each method’s points corresponding
to the same landmarks in a template structure. For comparison, we report the
reproducibility error of the landmark selection.

Model compactness - A compact model is one that has as little variance as
possible and requires as few parameters as possible to define an instance. This
suggests that the the compactness ability can be determined as the cumulative
variance C(M) =

∑M
i=1 λi, where λi is the ith eigenvalue. C(M) is measured as

a function of the number of shape parameters M . The standard error of C(M)
is determined from training set size ns: σC(M) =

∑M
i=1

√
2/nsλi

Model generalization - The generalization ability of a model measures its
capability to represent unseen instances of the object class. This is a fundamental
property as it allows a model to learn the characteristics of an object class
from a limited training set. If a model is overfitted to the training set, it will
be unable to generalize to unseen examples. The generalization ability of each
model is measured using leave-one-out reconstruction. A model is built using all
but one member of the training set and then fitted to the excluded example.
The accuracy to which the model can describe the unseen example is measured.
The generalization ability is then defined as the approximation error (MAD)
averaged over the complete set of trials. It is measured as a function G(M) of
the number of shape parameters M used in the reconstruction. Its standard error
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SPHARM DetCov MDL

Fig. 2. Visualization of the correspondences of a set of landmarks from the template
(see Figure 1) in three selected objects from the two ventricle populations using the
different methods. The manually determined landmarks are shown as star-symbols and
the SPHARM, DetCov and MDL corresponding locations are shown as spheres.

σG(M) is derived from the sampling standard deviation σ and the training set
size ns as: σG(M) = σ/

√
ns − 1

Model specificity - A specific model should only generate instances of the
object class that are similar to those in the training set. It is useful to assess
this qualitatively by generating a population of instances using the model and
comparing them to the members of the training set. We define the quantitative
measure of specificity S(M) (again as a function of M) as the average distance
of uniformly distributed, randomly generated objects in the model shape space
to their nearest member in the training set. The standard error of S(M) is given
by: σS(M) = σ/

√
N , where σ is the sample standard deviation of S(M) and N is

the number of random samples (N was chosen 10′000 in our experiments). The
distance between two objects is computed using the MAD.

A minimal model specificity is important in cases when newly generated
objects need to be correct, e.g. for model based deformation or shape prediction.
Model specificity is of lesser importance in the case of shape analysis since no
new objects are generated.
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Fig. 3. Table with errors graphs of compactness (C(M)), generalization (G(M)) and
specificity (S(M)) for the two ventricle studies (left column: left lateral ventricle, right
column: right lateral ventricle). The plot view is zoomed to a M value below 30, since
for higher M the plot values did not change.
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Method Left ventricle Right ventricle
Mean Max Min Mean Max Min

SPHARM 4.47 mm 6.57 mm 1.72 mm 4.32 mm 6.70 mm 1.11 mm

DetCov 4.00 mm 6.16 mm 1.50 mm 4.28 mm 6.69 mm 1.10 mm

MDL 4.00 mm 6.15 mm 1.48 mm 4.28 mm 6.68 mm 1.10 mm

Table 1. Table with mean, maximal and minimal MAD between the manual landmarks
and the studied methods for the ventricle studies. It is clearly visible that there is little
change between DetCov and MDL. On the left side, DetCov and MDL have better
results than SPHARM. For comparison, the mean landmark selection error was 1.9mm.

3 Results on 3D anatomical structures

In the following sections we present the results of the application of the studied
correspondence methods to 3 different population: a left femoral head popula-
tion of 36 subjects, and a left and a right lateral ventricle population of each 58
subjects. The application of the model constructed from the femoral head popu-
lations is the femoral model-based segmentation from CT for patients undergoing
total hip replacement. The application of the two ventricle populations is shape
analysis for finding population differences in schizophrenia. In this document,
we focus only on the correspondence issue. It is noteworthy that the studied
populations are comprised not only of healthy subjects, but also of patients with
pathologically shaped objects.

3.1 Lateral ventricles

This section describes the studies of the left and the right lateral ventricle struc-
ture (see Figure 1) in a population of 58 subjects. The segmentation was per-
formed with a single gradient-echo MRI automatic brain tissue classification [17].
Postprocessing with 3D connectivity, morphological closing and minor manual
editing provided simply connected 3D objects. The manual landmarks were se-
lected by an expert with an average error of 1.9mm per landmark.

In Figure 2 the results of the correspondence methods in three exemplary
cases are shown. The first row shows the good correspondence with the manual
landmarks, as it is seen in the majority of the objects in this study. The second
row shows the frequent case in the remaining objects, in which all three meth-
ods have a rather large difference to the manual landmarks. In most cases of
disagreement with the manual landmarks, all methods produced similar results.
The last row shows the rare case in which SPHARM is clearly further away from
the landmarks than DetCov and MDL. The opposite case was not observed.

Table 1 displays the landmark errors and Figure 3 displays the error plots,
which both suggest that DetCov and MDL produce very similar results. Both
show smaller errors than SPHARM.
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Fig. 4. Visualization of bad alignment in the first femoral head study on 3 example
objects seen from the same viewpoint. A large rotational alignment error is clearly
visible for a rotation around the long axis of the first order ellipsoid, which is close to
the femoral neck-axis.

Fig. 5. Left: Display in MSS tool with a single femur head object and manually placed
anatomical curves (anterior viewpoint). Right: Visualization of the femoral head tem-
plate (posterior viewpoint) and four of its anatomical landmarks (Fovea, center lesser
trochanter, tip greater trochanter).

3.2 Femoral head

This section describes the results on a population of objects from the head region
of the femoral bone. The segmentations were performed from CT-images with a
semi-automated slice-by-slice explicit snake algorithm [12]. The correspondence
study was done in 2 steps. Initially we only computed SPHARM, DetCov and
MDL on all available cases (30 total). We realized that the SPHARM corre-
spondence was not appropriate, so the results of the following computation were
meaningless (discussed further down). In a second step, we selected only those
cases, which contained the lesser trochanter in the dataset. For these cases (16)
we then computed MSS, SPHARM, DetCov and MDL.

The first study was based on the full 30 cases including 14 datasets with
missing data below the calcar. The distal cut of the femoral bone was performed
through the calcar perpendicular to the bone axis. The alignment was performed
using the Procrustes alignment based on the SPHARM correspondence. MSS was
not computed in this case. We observed a bad alignment due to the SPHARM
correspondence. In Figure 4 we visualize this inappropriate alignment in three
cases. As a consequence the DetCov and MDL results were inappropriate. The
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Landmark error table
Method Femoral head

Mean Max Min

MSS 3.13 mm 6.48 mm 1.73 mm

SPHARM 7.24 mm 12.2 mm 6.07 mm

DetCov 3.24 mm 7.36 mm 1.71 mm

MDL 3.40 mm 6.41 mm 1.71 mm

Fig. 6. Top row, Bottom row left: Table with Errors graphs of compactness (C(M)),
generalization (G(M)) and specificity (S(M)) for the femoral head study. Bottom row
right: Table with mean, maximal and minimal MAD between the manual landmarks
and the studied methods for the femoral head study. There is little change between
DetCov and MDL. SPHARM shows clearly the worst results of all studied methods.
For comparison, the mean landmark selection error was 2.5mm.

bad SPHARM correspondence resulted from a rotational symmetry along the
long first order ellipsoid axis, which is close to the neck-axis. Due of the bad
correspondence, we do not present here the error analysis of these cases.

The second study was based on a subset of the original population comprising
only of those datasets that include also the lesser trochanter. The distal cut of
the femoral bone was performed by a plane defined using the lesser trochanter
center, major trochanter center and the intertrochanteric crest. For the MSS
method the anatomical landmarks for the subdivision surfaces were chosen as
follows: the fovea, the half-sphere approximating the femoral head, the circle
approximating the orthogonal cross-section of the femoral neck at its thinnest
location, the intertrochanteric crest and the lower end of the major trochanter.
The landmarks for the MSS alignment were the lesser trochanter, the femoral
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head center, and the center of the circle approximating the neck at its smallest
perimeter. Each landmark was selected on the respective 3D femur model either
directly on the reconstructed bone surface or using 3D spherical primitives. The
manual landmarks for the comparison were selected by a different expert with
an average error of 2.5mm per landmark. The landmarks sets for the MSS and
the comparison were not exclusive, due to the scarceness of good landmarks.

All correspondences were based on the MSS alignment. We observed that
the SPHARM correspondence was visually better behaved in this study due
to the inclusion of the lesser trochanter, which eliminated some problems with
the rotational symmetry. However, figure 6 shows that the landmark errors for
SPHARM alignment are clearly the worst of the studied methods. MSS shows
the best average agreement with the manual landmarks, which is not surprising
since the landmarks contained points used also to construct MSS. MDL was
surprisingly better than both DetCov and MSS in regard to the minimal and
maximal MAD, although the MAD differences are rather small. In figure 6 it is
clearly visible that MDL and DetCov have similar and better modeling properties
than SPHARM and MSS. Only for G(M) MSS is better than SPHARM.

4 Conclusions

In this paper, we have presented a comparison of the SPHARM, DetCov, MDL
and MSS correspondence methods in three populations of anatomical objects.
The goal in all of the presented studies is a model-based application. We have
analyzed both the direct correspondence via manually selected landmarks as
well as the properties of the model implied by the correspondences, in regard to
compactness, generalization and specificity.

The results for SPHARM of the first femoral head study revealed that in case
of rotational symmetry in the first order ellipsoid, independent of the higher order
terms, the correspondence is inappropriate. Since correspondence and alignment
are dependent on each other, such a bad correspondence cannot be significantly
improved using methods like MDL and DetCov. In all studies, DetCov and MDL
showed very similar results. The model properties of DetCov and MDL were
better than both SPHARM and MSS. The findings suggest that for modeling
purposes the best of the studied correspondence method are MDL and DetCov.

The manual landmark errors are surprisingly large for all methods, even
for the MSS method, which is based on landmarks. This finding is due to the
high variability for the definition of anatomical landmarks definition by human
experts, which is usually in the range of a few millimeters.

In the lateral ventricle studies we plan to do the following shape analysis
with the model built on the MDL correspondence. Other current research in our
labs suggest that the shape analysis could gain statistical significance by using
MDL rather than SPHARM. In the femoral head study, we plan to use the MDL
model for shape prediction in the shape space. The results of the specificity error
is in this study very relevant, since it is desired to generate ’anatomically correct’
objects from the shape space.
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