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Abstract—This paper presents a multiscale framework based on improve both the accuracy of medical diagnosis and the under-
amedial representation for the segmentation and shape characteri- standing of processes behind growth and disease [9], [10]. We
zation of anatomical objects in medical imagery. The segmentation present a novel shape analysis method that can quantify shape

procedure is based on a Bayesian deformable templates method-. _ . bilit lain it in intuit h derived t d i
ology in which the prior information about the geometry and shape  Vartabliity, €xplain it in intuitive shape-derived terms, and pin-

of anatomical objects is incorporated via the construction of ex- Point the places where variability is most pronounced. We use
emplary templates. The anatomical variability is accommodated our method to analyze the shape of the mid-sagittal slice of the
in the Bayesian framework by defining probabilistic transforma-  corpus callosum. This approach is an extension of work by Pizer

tions on these templates. The transformations, thus, defined are 1531 4ng Fritsch [15] on deformable medial representation of ob-
parameterized directly in terms of natural shape operations, such jects

asgrowth and bending and their locations. A preliminary valida- ) . . .
tion study of the segmentation procedure is presented. We also We adopt a Bayesian approach of incorporating prior
present a novel statistical shape analysis approach based on theknowledge of the anatomical variations and the variation of
medial descriptions that examines shape via separate intuitive cat- the imaging modalities. Following the deformable templates
egories, such as _global variability at the coarse scale and localized paradigm, we construct exemplary templates to incorporate
variability at the fine scale. We show that the method can be used . -

to statistically describe shape variability in intuitive terms such as prlor |nf0rmat|on about the geomet_ry and Shape_ of the z_;mgt_om-
growing and bending. ical objects under study. The infinite anatomical variability
is accommodated in the Bayesian framework by defining
probabilistic transformations on these templates [16]. The
segmentation problem in this paradigm is that of finding the

transformationS of the template that maximizes the posterior

Index Terms—Deformable templates, image segmantation, me-
dial geometry, statistical shape analysis.

|I. INTRODUCTION

o . . P(S|data) < P(datalS)P(S
ODERN anatomical imaging technologies have enabled (Sldata) o< P(datal$) P(5)

extremely detailed study of anatomy, and the developmere P(S) is the prior probability function capturing prior
ment of functional imaging modalities has provided detaifed knowledge of the anatomy and its variability aRgdata|S) is
vivo-associated information regarding physiological functionhe data likelihood function capturing the image data-to-geom-
While modern imaging modalities provide exquisite imagery @try relationship. For efficiency of implementation, we equiva-
the anatomy and its function, automatic segmentation of thgegatly maximize the log-posterior given by
images and the precise quantitative study of the biological vari-
ability exhibited within them continue to pose a challenge. thogP(S|data) = LogP(data|5)
this paper, we present a multiscale medial framework based on +LogP(S), up to an additive constant
deformable templates [7], [12], [16], [20], [22], [26], [28] for ] o o
the automatic extraction and analysis of the shape of anatomical "€ modeling approach taken in this paper for building ex-
objects from the brain and abdomen imaged via magnetic r@gjp_lary templa.tes and assomgted transformatlons.|s baseq ona
onance imaging and computed tomography (CT),respectivé_W.J”_'SCE"e medial representatlo_n. Thg transformatlons defined
The multiscale deformable template approach is based on th&his framework are parameterized directly in terms of natural
medial-axis representation of objects first proposed by Blum [g]'@Pe operations, such taickeningandbending and their lo-

for studying shape. Shape analysis is emerging as an importe®#{ons-

area of medical image processing because it has the potential th"iS multiscale approach has many stages of scale; ateach the
geometric primitives are intuitive for that scale. At each scale,
the spacing is proportional to the size of space (modeling aper-
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for the investigation of these properties at various scales frdimally accommodate very fine structure—on the order of the
the coarse scale of entire body sections to the fine scale on Weel dimension of the imaging modality—we define a dense
order of the resolution of the imaging modality. The size promhsplacement field on the boundary of the medially implied
erties derived from the medial description allow the creation object accommodating the fine-scale boundary features. As
natural levels of scale, each suited for shape description at ttids vector displacement field is not medially based, it allows
scale level. the fine-scale features of the boundary to be accommodated
Sections Il and 11l discuss the medial representation of ombustly without introducing topological instability into the
jects; Section lll, in particular, discusses the deformation afiedial-axis description.
models to fitimage data and the geometric measures used in th®l-reps the medial representation used in this paper,
log prior term which measures geometric typicality. Section I'dre based on a hierarchical representation of linked figural
discusses the log-likelihood term measuring the match of a deedels—protrusions, indentations, neighboring figures and
formed model to a target image, and Section V gives segmentaluded figures—which represent solid regions and their
tion results using this method. In Section VI, methodology fdsoundaries simultaneously. The linked collection of figural
the statistical analysis of shape variability is presented. components imply a fuzzy (i.e., probabilistically described)
boundary position with a width-proportional tolerance. At small
scale these figural boundaries are made precise by displacing a
dense sampling of the m-rep implied boundary. A model for a
Many authors in image analysis, geometry, human visioingle figure is made from a net (a mesh or a chain) of medial
computer graphics, and mechanical modeling have come&@ms; each atom describes not only a position and width, but
the understanding that the medial relationship between poifi§o a local figural frame giving figural directions and an object
on opposite sides of a figure is an important factor in th@ngle between opposing, corresponding positiomedfal
object’s shape description. Biederman [1], Marr [19], BurbedRvoluteg on the implied boundary. A figure can be expressed
[5], Leyton [18], and others have produced psychophy8s a sequence over scale of medial nets, implying successively
ical and neurophysiological evidence for the importance &fined (smaller tolerance) versions of the figural boundary.
two-dimensional (2-D) medial relationships in human visiorAt the final stage, a dense displacement field is defined on the
Medial geometry has also been explored in three dimensidigundary of the medially implied object that accommodates
by Nackman [21] and Siddigi [25] and medial-axis modelinghe fine-scale perturbations of the object boundary.
techniques have been applied by many researchers, including | ) o .
Bloomenthal [3] and Sherstyuk [24], Cameron and Robfy: Single-Figure Description via M-Rep
[6], Storti [27], and Blanding [2]. Of these, Bloomenthal The medial representation used is based on the medial frame-
and Sherstyuk created skeletal-based convolution surfaceerk of Blum [4]. In this framework, a geometrical object is
Cameronet al. explored skeleton-based surface deformationgpresented as a set of connected continuous medial manifolds.
and Storti and Blanding did skeletal-based solid modeling ifhese medial manifolds are formed by the centers of all spheres
a CAD framework. (circles, in two dimensions) that are interior to the object and
Our representation, described in [23], expands the notitangent to the object’s boundary at two or more points. The me-
of medial relations from that of a simple medial skeleton bgial description is defined by the centers of the inscribed spheres
1) including a width-proportional tolerance and 2) using and by the associated scalar field of their radii. Each continuous
width-proportional discrete sampling of the medial manifold isegment of the medial manifold represents a medial figure. In
place of a continuous representation. The advantages—relathvie paper, we focus on objects that can be represented by a
to the traditional medial-axis methods descended from Blusingle medial figure.
[4]—are in representational and computational efficiency andIn two dimensions, there at two basic types of medial fig-
in stability with respect to boundary perturbation. One of theral segments with medial manifoldgt of dimension zero and
weaknesses of medial-axis methods for shape analysis is ¢ine. Figural segments with a single point (zero-dimensional)
instability of the medial axis with respect to boundary perturepresent the degenerate case of circular objects. In three dimen-
bations; small perturbations of the boundary can drasticalljons, there are three basic types of medially defined figural seg-
change the topology of the medial axis. In the deformabfeents with corresponding medial manifoldd of dimension
template approach presented in this paper, the medial-az&s0, one, and two, respectively. Figural segments with 2-D me-
topology of objects under consideration is fixed to be that dfial manifolds represent slab-like segments. Tube-like segments
the template. This has the drawback that a given medial-axibere the medial manifold is an one-dimensional (1-D) space
topology cannot define the boundary of an object to an aurve and spherical segments, where the medial manifold con-
bitrary precision. Associating a tolerance with the boundasysts of a single point are degenerate cases. Shown in Fig. 1 are
position provides opportunities for stages of the representatiexamples of slab like and tubular figures.
with successively smaller tolerance. Representations within nondegenerate cases, the medial manifold divides each
large tolerance can ignore detail and focus on gross shapefigiure into two opposing halves. The two halves of the figure’'s
these large-tolerance stages, discrete sampling can be codrsendary come together at a manifold called the crest. In three
resulting in considerable efficiency of manipulation and presedimensions, the crestis a curve that connects the two sides of the
tation. Smaller-tolerance stages can focus on refinements of #teh-like segment. In two dimensions, the crest is composed of
larger-tolerance stages and, thus, capture more local aspectdwippoints at the tips of the object boundary. The points on the

Il. MEDIAL REPRESENTATION OFOBJECTS



540 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

(@) (b)

(c) (d)

Fig. 1. The top row shows an example of a slab-like figure with a 2-D medial manifold. The bottom row shows a tubular figure with 1-D medial manifold.

crest are maxima of boundary curvature. The centers of sphere$he places where the inscribed circle centered tduches

(or circles) inscribed at the crest form the edges of the figuréile two halves of the boundary, indexed by-11, are defined

segments of the medial manifold. The derivatives of the radiasy', y — with respective normala!, n—!, given by

field exhibit catastrophic behavior at these edges, making them L L

difficult to model discretely. [11] n =R(f)b  n " =R(-0)b 1)
yt=x+4+m' yl=x+mm"?! (2)

B. Discretized Figural Segments

In this paper, we focus on single-figure objects having sin Y(\éherER(e) Is the rotation matrix.
Paper, gie-g ) 9SING€ b6 10 the catastrophic behavior of the radius field at the

continuous medial manifolds that are discretized. We sampletprgst, we introduce a special medial atom at the ends of medial

medial manifoldM over a spatially regular lattice; the element%hains [Fig. 2(b)] for robust sampling. These medial atoms in-

of this Iattlc_e are callemec_jlal _atoms . . clude an extra parametgithat defines the position of the crest
For 2-D figures, the lattice is a linear chain of medial atomsOint on the obiect boundary and is given b
my,¢ € [1, N]. For three-dimensional (3-D) slab-like figures,p ) y 9 y

the lattice is a quadrilateral mesh;;, (L,J) € [1,N]x[1, M]._ yo=x+rmb, n>10
The number of medial atoms in a lattice is inversely proportional
to the scale of the medial description. wheren = 1.0 represents a circular end cap amd> 1 in-

A 2-D medial atom, shown in Fig. 2(a), carries first-ordecreasing elongation.
geometric information at a point on the 1-D medial manifold. A Following the construction of 2-D medial atoms above,
zeroth-order description consists of the positkoend the radius 3-D interior medial atoms are defined as a four-tuple
r of the inscribed circle centered =t A first-order description m = {x,, F,6} consisting of:x € IR?, the center of the
includes the unit spatial tangehtof the medial manifold ak  inscribed sphere; € IR, the local width defined as the radius
and captures first-order width information by tbbject angle of the sphereF € SO(3), the local frame parameterized by
6, which describes the change in radius along the medial agis b, b+), wheren is the normal to the medial manifol®, is
by the Blum relationshipos ¢ = —dr/ds, for the arc lengths  the direction in the tangent plane of the fastest narrowing of the
on the medial manifold. implied boundary sections; aréd € [0, v /2] the object angle
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(@) (b)

Fig. 2. (a) A 2-D medial atonin represents a double tangency of a circle to the boundary. It is a four-tuple defined by pesitia@ih r, vectorb tangent to
the medial axis, and object angle(b) An end atom is a medial atom with an additional compoment

determining the angulation of the implied sections of boundary

relative tob. The two opposing boundary points implied by n
the medial atom are given by andy—! and the respective 3 "
normals b

nl :R(b,n)(e)bv nil = R(b,n)(_e)b (3)

y]L =X+ 7’n1, yfl =x+m ! 4)

where R, ,)(6) is a rotation by in the (o, n) plane. Fig. 3
shows these relationships.

For stability at the crest, as in two dimensions, medial atoms
on the boundary of the medial manifold also include an extra
elongation parameter determining the crest position.

Both in two dimensions and three dimensions, the above refy. 3. A 3-D medial atom defined by the four-tuple, r, F. 8} with
resentationk gives the central location of the solid section oihvolutes perpendicular to the implied surface.
figure that is being represented by the atem The scalar
gives the local scale and size of the solid section of figure thaty, 4
is being represented by the atom. The object aégled the di-
rectionb also define the gradient of the scalar fieldia

m.» Chosen to satisfy the known normal/tangency and
continuity conditions at the sample points;. The radius func-
tion »(u, v) is also interpolated as a bicubic scalar field on the
above interpolated medial manifold, giveandVr at the mesh
points pointsx; ;. Having interpolated- and its gradient, the
frameF and the object anglé(«, v) are defined via the rela-

FionshipVr(u, v) = —b(u, v) cos 8(u, v). With the continuous
medial manifold thus defined, the continuous implied boundary
in the interior can be calculated as

Vr = —bcosé.

The scalar field- also provides a local ruler for the precise st
tistical analysis of the object.

C. Spline Interpolation of Medial Atoms

For the remainder of this section, we focus on 3-D medial ¥ (u,v) =x(u,v) + rRp n) (6(u, v)) b(u,v) (5)
geometry; 2-D construction follows an analogous, simpler -1 _ ‘R 9 b 6
form. Given a quadrilateral mesh of medial atoms; ;, Y () =x{w,0) + B (=6(u, 0)) by, ). (6)

(¢,5) € [1,..., N x [1,..., M], we define a continuous me-pg enq section of the medially implied boundary is defined via
dial surface via a Bézier interpolation of the discretely sampleg parametric curve(t) from one involute to the other passing

medial atoms. The medial positiat(u,v), v € [i,¢ + 1], through the poink + 7b orthogonally tob. The curve is pa-
v € [,7 + 1] is defined via a bicubic polynomial interpolation, 5 1\ aterized by € [~1,1] and defined by

of the form
3 c(t) =x + m(t) R n)(t0)b where
x(u,v) = Z dy, n ™" (n—1)

m,n=0 n(t) = (cos(tr) + 1) S+ 1.
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(@ (b)

Fig. 4. The m-rep model of the template kidney. (a) The medial atoms and the implied surface are shown. (b) The model overlaid on the associatgd CT imager
is shown.

The defined boundary is comprised of the two opposing inteeundary and is the signed distance (interief negative, ex-

rior sections, defined by (5) and (6) and the end section definetior = positive) from the boundary in multiples of the local

above which contains the crest of the object. radiusr of the medial point aty, v). We are currently studying
We have also been exploring the inverse construction by fitsie implications of an object-based metric based on this figural

defining a continuous spline boundary fitted to the points parameterization.

y—*. The spline boundary is then used to find the exact contin-

uous medial manifold. This method is used to produce the 2B Construction of M-Rep Figures

results. Using the visualization and computer-aided design tech-
nigues developed for 2-D and 3-D medial modeling, we have
D. Figural Coordinate System built numerous models of anatomical objects. In this paper, we

For both imaae seamentation and shape analvsis. we re ijcl)rcus on the automatic segmentation of the kidney as imaged
9 9 P ysIs, BNCT for radiation treatment for cancer. Shown in Fig. 4 is

conglstent correspondfences betyvegn object boundaries. Fur ﬁertemplate m-rep model of the kidney built from a CT of the
for image segmentation, the likelihood measure (deforme
; : abdomen.

model to target image match) requires correspondence between
template intensities at positions IR* relative to the model
and target image intensities at positionslii relative to the
deformed model. Both of these correspondences are made viblaving defined the construction of typical anatomical objects
the medial geometry. via m-rep figures, anatomical variability is accommodated by

For 3-D objects, the 2-D continuous medial manifold of defining a cascade of transformatiofi§, & = 0,..., N, in-
figure is parameterized by:(v), with « andwv taking the atom creasing in dimensionality. These transformations are applied
index numbers at the discrete mesh positions. In two dimegiobally to the entire object as well as locally to individual
sions, the corresponding 1-D linear medial manifold is parardtoms at various scales. Each transformation is applied at its
eterized via a single parameter In both two dimensions and own level of locality to each of the primitives appearing at that
three dimensions, interior boundary points use a single paraewel. At each level of locality—by the Markov random field
etert € {—1,1} designating the side of the medial manifoldramework—the primitive is related only to immediately neigh-
on which the point lies. On the end section of the boundaryporing primitives at that level. Each level's result provides both
varies continually between1 and 1 passing through 0 at thea initial value and a prior for the primitives at the next finer scale
crest. For single figures, boundary correspondences are defifegl. The transformation at the last (finest) scale level is a dense
via the common parameterization, ¢/, t) for 3-D objects and displacement field applied to the boundary of the figure on the
(u, t) for 2-D objects. scale of the voxel resolution of the imaging modality.

This also permits parameterization in the neighborhood of the ) o )
m-rep. Positions in the image in the neighborhood of the inft: OPject-Level Similarity Transformation
plied boundary are indexed by, (v, ¢, cZ), where {, v, t) is the We begin with a similarity transformatios = (a, O, t) €
parameterization of the closest point on the medially impligdR™ x SO(3))x IR*] is defined on the scale of the entire object

Ill. TRANSFORMATION OFM-REP FIGURES
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and is applied to the whole medial manifole. The similarity y. The integral in the above prior is implemented as a discrete
transformations® scales, translates and rotates equally all trsaim over a set of boundary points by defining a sampling of the

medial atoms of the object, that is (u, v, t) coordinate space and calculating the associated implied
L 0 boundary before and after an atom deformation. Again the 2-D
m; ; = 5" om; ; = {a0x;; +t,ar,0 o F,6}. construction is analogous.

Notice that the similarity transformation does not affect the olaf
ject angle. As the medial representation is invariant under the
similarity transformation, this is equivalent to applying the sim- At the final stage, the implied boundary of the figure is dis-
ilarity transformationS® to the implied boundan of the me- placed in the normal direction using a dense displacement field
dial mesh to yield the transformed boundady. defined on the implied bounda#y?
A prior is induced on the above transformation based on p 3 2
the displacement of the implied boundary of the objects. y €B =y+nly)dy)yeB
Throughout, an independent Gaussian prior on bounda,(,y]eren(y) is the normal to the implied boundary ate 32
displacement is used with variance proportional to the locghdd(y) is the scalar displacement field. The definition of this
radiusr(y) with the proportionality constant. For the whole dense displacement field allows us to accommodate the local,
object similarity transformatios® the log-prior becomes small-scale boundary features. These small-scale features are
0 2 the main cause of the instability in the traditional, Blum medial
_ Md descriptions of objects. As the vector field is nonmedial based,
5 2(0r(y))’ the small-scale boundary features are robustly accommodated.
In two dimensions, the similarity transformation and the prior

As with the local atom transformations, the prior is induced
are analogous with the rotation matrix beingd(2) and the on the dense displacement field using a Markov random field
translation inlR?.

Dense Boundary Displacement Field Transformation

LogP (S%) = [

prior derived from energetics associated with thin elastic mem-
branes to guarantee smoothness. The log-prior on the displace-

B. Atom Level Transformation ment fieldd(y) becomes
Having accomplished the gross placement of the figure, |d(y)[2 )
attention is now focused on the subsections of the figurebogP (d(z)) = /132 (or(y)) _/132 IVd(y)|"dy | - (8)

defined by each of the medial atoms. At this stage local
similarity transformations and rotations of the local angulatiomhe above prior is implemented via a discrete approximation
St =(,0.t,8);; € [(RT x SO3)) x R*] x [-7/2,7/2], as follows. Lety; € B? i = 1,...,N be the set of discrete
are applied to the medial atom; that is boundary points on the implied bounda#y. Let A/ (y;) be the

9 1 set of neighbors of the poist;; then

_ ¢l
m; ; =5; ;om;

= (i ;05 X} + i jy 0 7 5,04 o FL 5 01+ B ) = ldyalt d(y;) — d(y:) |
(0,504 %0 b g, v 3 5, O g o T, 015+ ) Logp(dx)%_zg (()'))—Z 5 ) —du)
() =1 T i=1 jEN (v;) lly; = will

The resulting implied boundary is defined B3. A prior on  pecomes the discrete approximation to (8).
the local atom transformations; ; is also induced based on

the displacemen.t of th_e implied boundgry with an add_itional IV. IMAGE DATA LOG-LIKELIHOOD
Markov random field prior on the translations, guaranteeing the . i ) . )
smoothness of the medial manifold. In keeping with the level of Having defined the transformation and the associated prior

locality, let 3, be the portion of the implied boundary affecte€rgetics, we now define the data likelihood function needed
J . The prior energy on the local transformatiorio" defining the posterior. We construct this function by defining

by the atomm! ;
S{ of the atorm. . becomes correlation between a predefined template imAgg,, and the
" " dataly.;, in the neighborhood of the boundary of the medially

. ly — Y'||2 defined object5. Letting ¢ be the size of the collar around the
LogP (5%) = —/ ———-dy object in multiples of-, the local radius, the data log-likelihood
s, (o7(y)) function becomes

n,m=

1 b — by m2 5 R R R
Sy Mt |||‘2 | Feww (30) s (v ) ayad @

1
2,5 n,m=—1 sz‘,j - xi—l—n,j-l—rn

wherey is the corresponding position on the figural boundamywhere (y, cZ) e IR? is the point in the template image at dis-
implied by the transformed atom? andt; ; is the translation tancerd from the boundary poing and ¢, d) is the point in
component of the local transformaticﬁ’ij. Good association the data image at distaned from the boundary poing’ in the
between points on the boundayyand the deformed boundarytransformed object8’. This association between points in the

y’ is made using the figural coordinate system describe in Séemplate image and the data image is made using the object cen-
tion II-D. The pointy’ is the point on the deformed modeltered coordinate system described in Section II-D. Image posi-

having the samey(, v, t) coordinates as that of the original pointions in the neighborhood of the implied boundary are indexed
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(b)

Fig. 5. (a) Axial, (b) coronal, and (c) sagittal slices through the subject kidney CT data set. The contours show the results of the object ainsilarthation

and the atom deformation. Notice the improvements in the results at the places marked.

'
m
(b)

Fig. 6. (a) Axial, (b) coronal, and (c) sagittal slices through the subject kidney CT data set. The improvement in the segmentation of the kitieedeafter t
displacement field deformation. The contours show the results of the atom transformation and the dense displacement field deformation.

by (u,v,t, d) where ¢, v, t) is the parameterization in the ob-optimizing the posterior with respect to the dense displacement
ject centered coordinate system of the closest point on the méititd d(y) we use a simple steepest decent algorithm.
ally implied boundary3 andd is the signed distance (interier
negative, exterioe positive) from the boundary in multiples of
the local radius: of the medial point at:(, v). In implementing
the correlation defined in (9), care must be taken in computingWe have used the automatic segmentation procedure in three
the surface integral by a discrete voxel summation. The templdienensions for extracting the kidney parenchyma, including
image needs to be normalized by the determinant of the Jacoltiaa renal pelvis, in subjects undergoing radiation treatment for
associated with the implied model surfa@eAt model-building cancer. We present, in detail, results from a series of three data
time, intensities in the template image,,, are associated with sets. Taking a few seconds, the user rigidly places the template
their positions’ ¢, v, ¢, d) values. As the model deforms, a targetnodel in the subject data set. This initialization of the algorithm
image position is calculated for each templatey ¢, d) value is followed by the automatic hierarchical segmentation which
using the deformed model and the intensity interpolated at thakes on the order of 5 minutes for convergence. At the first
target image position is associated with the corresponding teseale level, an object similarity transformation is estimated
plate intensity. accommodating gross size and orientation differences between
We have have been using two basic types of templates: an e template model kidney and the subject’s kidney.
alytical template computed from the derivative of the GaussianThe next scale level in the hierarchical procedure is the atom-
and an empirical template learned from an example image frataeformation process accommodating local shape differences at
which the template medial model was built. the scale of individual atoms. Fig. 5, shows the improvement
Using the data likelihood defined above and the prior defined the segmentation as a result of the atom-deformation, thus
in the previous section, the log posterior is defined as a weighteccommodating more local object shape changes.
sum of the two terms, with weights chosen by the user. For op-The arrow in Fig. 6 highlights the improvement due to the
timizing the log-posterior with respect to the global object sinfinal stage of the deformation, as the dense displacement field
ilarity transformation and the local atom-by-atom transforma@accommodates the fine featured variation in the shapes of the
tion, we use a conjugate gradient optimization algorithm; fdidney.

V. SEGMENTATION RESULTS
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For quantitative comparisons of the segmentations of the TABLE |

method with manual segmentations, we have used two metricsTABLE SHOWING RELATIVE OVERLAP AND MEAN SURFACE DISTANCE
BETWEEN THE MANUAL AND THE AUTOMATIC SEGMENTATIONS AT

from a geometric scoring package developed by Guido Gerig e DiFrereNT STAGES OF THEHIERARCHICAL PROCEDURE FOR
and Matthieu Jomier called VALMET: relative overlap and THE THREE DATA SETS
mean surface distance. The relative overlap measure is defire~t——— —

as the ratio of the intersection of the two segmentations divid———= 2|

Relitve Orverliap | Serfsce Dmilanc: (nm

e s e e

by the union. Although the relative overlap is commonly use ; TR | o | i | &.n
in the literature for scoring segmentations, it is sensitive totl ~ “** o S . S
size of the object and is not very effective in characterizine e =18 Feddelemaion | 090 o
shape differences between two segmentations. The symme S L

mean surface distancB, between the boundary of the two . fyn e | i | hal o4
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Shown in Table | is the summary of results from the study (.g 024
the three data sets. The results shown in Figs. 5 and 6 ab 3
are typical of the three data sets and are from Data set 6§ 015 1
The segmentation improves at each stage of the algorithm 'g
all three data sets.

To study the performance of the procedure, the left and t
right kidneys in 12 data sets were hand segmented by an exj
rater. As the aim the validation study is to compare the perfc
mance of the automatic segmentation with real clinically us¢
segmentations, the hand segmentations where performed u:
the segmentation module of our clinically used radiation tree
ment planning system. Each of the kidneys in the data sets were @
than segmented using the hierarchical deformable procedure dpd—
scribed. Fig. 7 shows the relative overlap and the mean surf:
distance between the hand segmentations and the result of
final stage of the hierarchical procedure.

The average relative overlap between the human segmet
tion and the automatic procedure for the 24 kidneys segmen
is 89% with a standard deviation of 3.60%. The average me
surface distance is 0.18 cm with a standard deviation of 0.
cm. All 12 data sets were processed at an isotropic resoluti
of 0.2 cm. From the results, it can be seen that the accuracy
the segmentation, as measured via the mean surface distan
on the order of the resolution of the data set and is on avera
within one pixel of the hand segmentation. 078 7

In the results presented, a Gaussian derivative image temp
was used. The Gaussian derivative template is designed to ¢
increased response at boundaries of objects defined by high ¢
dient. In the CT image, the kidney sits in an environment whe
part of its boundary is distinctly darker, but part of its boundary
r.eglon is formed by th_e "V‘?r' In t,h|$ region, there 'S, either Veryig. 7. The mean surface distance between the hand segmentation and the final
little contrast, or the liver is a bit lighter, or there is a narroWtage of the hierarchical procedure is shown in (a). The relative overlap is shown
strip of dark between the kidney intensity and the liver intensitip. (b).

We expect substantial improvements in the results by the use of
a training image template in place of the Gaussian derivativeore by a statistical model of this image template, reflecting
template. This model to image match would be improved ev@nage intensity variations relative to the geometric model. We
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are in the process of implementing a statistical active appeeatios between different object-related distances either explicitly
ance model following [8] to capture these intensity variationsor as sines or cosines of angles.
Two types of features are computedarse featuredescribe
VI. STATISTICAL ANALYSIS OF SHAPE the coarse m-rep/, andrefinement featuredescribe the dif-

) ) . ferences betweel/; andMj, thus capturing only the local fine
The goal of this work is not only to develop efficient repreg.gje information.

sentation and robust segmentation of individual objects, but alsqcy5rse features capture shape information contained in me-

to develop statistical shape descriptions that capture anatqfly aioms and in relationships between adjacent atoms. They,
ical yar|ab|I|ty across a population in an |nt.umve and Iocallzegws, describe shape in terms of either bending or local growth;
fashion. The statistical shape representations that we have tﬂ%‘wth refers to the widening or elongation of a part of the ob-

veloped are based on the medial geometry and provide segt relative to the rest. Of the five coarse features computed, the
rate descriptions in terms of geometrical properties (bendingf&t two measure bending. The feature
growth), scale (coarse or fine) and location (the whole object or

alocal region). We achieve this by building a set of medially de- o & —x) X (ki —xic)l| L
rived features that are separable in these terms and are invariant fi = |(iwr — x| (i — xi—1)]|” ‘=
under similarity transform. Application of principal component ) . o .
analysis to these features allows us to visualize and compg@scribes how the figure bends at each of the interior medial

the different types of variability. In this section, we present oioms. The norm of the cross product gives the sine of the angle
early results in two dimensions. We are currently generaliziigtween the neighboring atoms.

2-.on—1

the procedure to three dimensions. The feature

We present results of analyzing the mid-sagittal cross sections bixGeii=xll ;g1
of the corpus callosum of 71 subjects. The data consists of bi- 2= { ”]!(_»;&1 —_x;)ll ol
nary hand-segmented images divided into 31 normals and 40 m i=n

schizophrenics. These images serve well for testing our method S
because the shape of the corpus callosum can be appropridf&psures the_angle between the vebtand the line joining the
approximated with a single chain of medial atoms. atom to its neighbor.

We now outline the basic segmentation procedure which The remaining three features measure chal growth. Thg fea-
is performed on each image in the population. Following tHs® fi=ri/Li=1-n, captures the width at the medial
segmentation framework developed in the previous section@M, Wherel = 1/(n —1) > ;" [|xi11 — x| is the mean in-
coarse-scale single-figure 5-atom m-rep template of the corpGgatom distance. Featufg = cosf, i = 1---n, describes the
callosum is constructed manually. The template is deformed%3ange in width at the atom. The final coarse feaffjre= 7,
fit a binary image with large tolerance producing a coarse scale 1 @ndn, is only defined at end atoms and measures the elon-
segmentatiomV,. The coarse m-rep/, is interpolated and 9ation of the object’s ends. S
resampled, forming a 9-atoprediction m-repM},, which is the Tc_) de;cnb_e fine-scale local ;hape that is similarity trans_for—
initial estimate at the finer scaldZ}, is again deformed to fit mation invariant, we base the fmg-scale features on the differ-
the same image with lower tolerance, giving us the finer-sc#i8¢€s between the coarse and fine m-reps. Sife@nd M
segmentationV/; . The procedure can be repeated to produd@Ply the same boundary and, andM; have an atom-to-atom
yet finer scale description&/s - - - corresppndence, we use the differences betngan_dM{).

In order to establish correspondence, the distances betweehhe first two refinement features represent the displacement

adjacent medial atoms are forced to be equal during segmeﬁ’t‘i’ﬂt—he_ﬁne/r“ediaI atom i/, with respect the corresponding
tion of coarse m-reps. During the segmentation of fine m-regd0m In M. Feature

the medial atoms in the prediction m-reps are allowed to move

- . . (x; — x}) - (bH)*
only orthogonally to the direction of the medial manifold as gh =" DL AT =
given byb. L
o wherex!, b} are elements of the medial atomsiify;, measures
A. Statistical Features the component of this displacement in the direction perpendic-

Having segmented the images, we now develop the statistie' to the medial axis of/. For internal medial atoms, this
shape description thatis fundamentally invariant under the sirfsRmMponent captures all of the displacement since these atoms
larity transform. In the literature, methods such as the Procrusfé§ not allowed to move along the axis during segmentation.
algorithm have been used to align objects in space to achid¥ed atoms are allowed to move freely and feature

this invariance [7], [13]. A drawback of these methods is that p p

one is not able to get a truly local description of variability, as 9 =7 = 1andn

the alignment procedure itself is global in nature and based on

all the data. is used to capture their movement along khéirection.

Instead of aligning m-reps, we compute a set of statistical The remaining features measure differences in the direction
features that intuitively describe shape and are both globatifthe medial axis¢} = ||b; x b%||, = 1---n), object angle
and locally invariant under the similarity transform. The featurdg = sin(6; — 6),i = 1---n), width (g7 = (r; —7!)/L,i =
used are unit-free and magnification invariant, as they describe . ., n) and end elongatioryf = n — 7/, = 1 andn).
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The above features completely capture the information in . oo
m-rep which can, therefore, be reconstructed up to a similar
transform. Given the absolute position, orientation and radius
just one medial atom, we can use the information contained
the coarse features to rebuild the coarse m#&p Similarly,
given a reconstructed m-rejd, and the refinement features, :
we can reconstrud¥/; . The reconstruction algorithm is derived :
simply from the feature definitions; since the sampling distan
is not one of the features, reconstruction relies on enforcing re i :
ular sampling of atoms during segmentation. ’ !

B. Statistical Analysis

Following Cooteset al. [7], we use Principal Component
Analysis to define the shape variability. Lgt, ...,y be a
collection ofp x 1 feature vectors. Each feature vector contair

statistical features associated with a segmentation of one cor-0%; o 2
callosum image. The feature vectors contain subsets of the fea- Class 1 Olass 2

tures defined above. For example, for a statistical analysisggf g coarse features of schizophrenic and normal corpora callosa projected
coarse scale bending, we use into the Fisher linear discriminant.

o= [ i g 2

Let Z,,x, be a feature matrix whosgh row is zJT For some
integerk, the mapping from feature space to theimensional
coefficient space is given by thiedimensional reduction func-
tion based orZ

Leave-one-out applied to schizophrenic and normal corpora
callosa, yields false-positive error of 0.52 and false-negative
error of 0.49. The results of classification are negative, as are
similar classification results reported by other researchers [17].

D. Visualization of Shape Variability

— — T
w=Qyu(z) = (2-2) e o (z—2)- ex (10) Each point in the coefficient space corresponds to a point in
’ VA VAL the feature space, which in turn corresponds to a shape that can
wherez is the mean o;, Ay, ..., A, are the eigenvalues of be visualized. Importantinsigh_t can be gained by reconstructing
3,—the covariance matrix ofZ—in decreasing order and shapes that correspond to points sampled along one of the co-

ordinate directions in coefficient space. Variability captured by
utltéejth principal mode can be visualized by first finding the fea-
ture vectors

ei,...,e, are the corresponding eigenvectorsf.
The corresponding mapping from coefficient space to feat
space is given by

k z(t) = QL (16;)  (t=—2.0,-1.9,...,2.0) (13)
zZ = Qg}k(w) =z+ Z wie; /. (11) wh
j=1 wheref3, . .., 5; are the unit basis vectors in coefficient space
and then reconstructing the m-reps correspondiref#p
Alignment of the reconstructed object is necessary to produce
k n a visually meaningful animation because the coarse statistical
Z Aj > QZ)\]» (12) features lack information about the absolute placement of the
J=1 J=1 m-rep. Thus, for visualization only, we apply the Procrustes al-
gorithm [13] to the locations of the medial atoms belonging to
wherec € (0,1) is the fraction of total variability that we want 5| of the reconstructed coarse m-reps.
the coefficient space to capture. A typical value usedaf0s  Fig 9 summarizes the global variability in the coarse m-reps
0.95, discarding 5% of the shape variability, which we attribugs the schizophrenic corpus callosum. It displays m-reps and

The valuek is chosen as the smallest integer that satisfies

to noise. implied boundaries corresponding to coefficient space points
o —261, 0 and +23; in Fig. 9(a) and—235, 0 and +2/3, in
C. Corpus Callosum Classification Fig. 9(b).

To discriminate between a pair of classésand B, we use Fig. 10(a) summarizes the PCA performed on coarse features
a technique based on the Fisher linear discriminant [14], a &y plotting the eigenvalues of the covariance matrix and their
rection in feature space which under projection yields the tlieemulative sums. This plot shows thatg; = 10 dimensions
greatest separation between the means of two classes. are needed to capture 95% of the variability. Fig. 10(b) shows

Fig. 8 shows the projections of the coarse m-rep featurespybjections of the coefficient vectoss onto the coordinate di-
each member of the schizophrenic class and each member ofraions in coefficient space. Aside from a few outliers, training
normal class onto the Fisher linear discriminant. There is littkhapes lie within two standard deviations from the mean and
separation between the classes. their distribution is strikingly Gaussian.
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Fig. 9. Shapes reconstructed along the first two primary modes of variability in coarse featuresZsoim 2o. All coarse features are combined in this figure,
without separation into growth and bending. (a), (b) Shows the medial axis and (c), (d) shows the implied boundary.
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Fig. 10. Summary of PCA on coarse features. (a) Eigenvalues of the covariance matrix of features computed from coarse m-reps (schizophréluswo)pus ca

(b) Distribution of coarse shapes in PCA coefficient space.

The ability to separate variability into localized component8CA to only these features. The change in bending is primarily
and the ability to decompose global variability into bending arekplained by the fact that some corpora callosa are curved like
growth are strengths of our method. The bending informationasC’ while others are straighter. In this and the subsequent two
captured by the first two featurgs andf2. lllustrated in Fig. 11 figures, the shapes at2, 0 and+2 standard deviations along
is the primary mode of variation resulting from applying théhe mode are shown. The left panel shows medial geometry and
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Fig. 11. First principal mode of variability computed using coarse featftresnd 2 which capture the bending of the corpus callosum in the population.
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Fig. 12. First principal mode of variability computed using coarse featfiteg*, andf> which capture the growth of the corpus callosum in the population.

\
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e

Fig. 13. First principal mode of variability computed using all fine features at the posterior of the organ which capture local fine-scale shitiye Vag&CA
is performed only on the features computed from the last two medial atoms. The mean on the population is used to reconstruct the remainder of the figure.

right panel shows the implied boundaries. Growth variability isaper were generated using a Gaussian derivative template for
captured by the featurg®, f*, andf®. Fig. 12 shows the first the data-likelihood. Although these results show that our cur-
mode of variability associated with these coarse growth featuresnt methodology can segment structures in the abdomen such
Notice that the primary component of growth variability is thas the kidney with high level of accuracy, we expect that the re-
uniform widening of the corpus callosum. sults would be substantially improved by the use of a training
Fig. 13 shows the primary mode of variability resulting fronimage template in place of the Gaussian derivative template,
applying the PCA to all the fine scale features associated withus allowing a spatially varying template to capture the dif-
the last two medial atoms at the posterior of the corpus callosuf@ent gray scale characteristics of the kidney boundaries. The
Here elongation is the main component of shape variability. model-to-image match would be further improved by a statis-
tical model reflecting image-intensity variations across a popu-
lation of subjects. We are currently extending this frame-work
VIl DISCUSSION ANDFUTURE WORK to the deformation of objects with multiple attached subfigures
It can be seen from the quantitative analysis of the segmemd multiple objects, with priors that reflect the knowledge of
tations that the accuracy of the automatic segmentation as mts@-associated relative typical geometry.
sured via the average surface distance is on the order of the reAnother major contribution of this paper is the development
olution of the imaging modality. All the results shown in thiof a shape analysis methodology that leverages the intuitive



550

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

and multiscale properties of the medial representation. Oursg] T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor, “A unified
statistical features have distributions that qualitatively appear
Gaussian, although some features have outliers. Statistical
methods that do not assume normality may further improve(9]
analysis.

In this paper, statistical methods have been applied to one

level of detail at a time. Analysis on combined features appearigo]

promising because it can detect correlation between local vari-
ability at fine scale and global variability at coarse scale.

We are extending the statistical analysis method to three di11]

mensions and multifigural complexes.

(12]
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