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Abstract— Finite element analysis provides a principled
method for modeling physical deformation and is an ideal tool to
apply when a medical imaging problem requires the simulation
of tissue deformation. The drawback to using finite element
analysis for imaging problems is the labor and computational
time that is required to construct a finite element model and solve
the resulting large system of equations. Challenging questions
include how to (1) generate a mesh from an image, (2) derive
boundary conditions from images of deformed objects, and (3)
solve the system of finite element equations efficiently. This work
addresses these questions with algorithms based on medial models
called m-reps. A multiscale meshing algorithm is presented
that automatically generates a hexahedral mesh from an m-
rep segmentation of an image, and an m-rep based method for
establishing boundary conditions is described. Additionally, an
efficient solution algorithm is presented that takes advantage
of the multi-scale nature of the problem. Together, these m-rep
based algorithms improve the automation and efficiency of FEM
for non-rigid registration problems. Initial results are presented
for the registration of CT images of a prostate phantom.

Index Terms— registration, elastic, finite element, m-rep,
prostate

I. I NTRODUCTION

F INITE element analysis has proven useful in solving
medical imaging problems for which deformation is

significant. Most notably, this approach has yielded positive
results for same-subject non-rigid image registration and for
medical simulation applications. Published results include
image registration for the prostate [1] [2], brain [3] [4] [5]
[6], and breast [7] [8], as well as simulation of maxillo-facial
surgery [9], liver surgery [10], and childbirth [11].

The work presented here is potentially applicable to the
variety of medical imaging applications that require defor-
mation modeling. The particular application considered here
is non-rigid registration of prostate images that are used
for brachytherapy planning and guidance. Brachytherapy in-
volves implanting radioactive seeds in the prostate to treat
prostate cancer. Research is underway to determine whether
brachytherapy outcomes can be improved by placing the
radioactive seeds in a pattern that concentrates the radiation
dose to areas of the prostate that have elevated levels of choline
and citrate, two chemicals believed to indicate tumor presence.
These prostate levels can be determined from a magnetic
resonance spectroscopy image (MRSI) that is acquired using
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an intra-rectal imaging probe. An MRSI can be used to design
a seed placement pattern that targets the suspected tumor
deposits, but the process is complicated by the fact that the
prostate appears compressed in the MRSI due to pressure
from the imaging probe. Intra-operatively, the prostate is not
deformed by the MRSI probe and seed placement is guided
using ultrasound. Therefore, image registration is required to
match the planning image with the intra-operative image.

Other researchers have approached prostate registration us-
ing both rigid [12] [13] and non-rigid [14] methods. Studies
have shown that for brachytherapy planning and treatment
the magnitude of prostate deformation is large enough that it
should not be ignored [15]. Since the deformation that occurs
over the course of brachytherapy treatment is predominantly
due to mechanical forces, finite element based registration
approaches are especially appropriate. Previous finite element
based prostate registration work includes [1] and [2]. The work
presented in [1] is most similar to the algorithm presented
here, but differs from this work in that it relied on manual
segmentation and tetrahedral meshing, and a membrane model
of the boundary rather than a solid object model was used in
the computation of boundary conditions. The work presented
in [2] employed a combined statistical and biomechanical
approach, while the work presented here relies on medial
geometry and biomechanics to generate a deformation. The
consistent use of a medial model framework to automate the
application of finite element analysis is a feature, described in
the next section, that sets this work apart from previous work.

As computational power has grown more available, finite
element analysis has become a more accessible tool for medi-
cal imaging research. However, its application is often limited
to the research arena due to significant costs of user time
for finite element model construction and computational time
for deformation calculations. This work focuses on specific
techniques to make finite element analysis more automatic
and efficient for medical imaging applications. Reducing the
amount of human and computer time required to employ finite
element analysis will make it a more attractive and practical
tool for both research and clinical applications.

M-rep object models can efficiently represent organ shape,
and they carry with them an automated way of defining a finite
element mesh and boundary conditions. Therefore m-reps are a
useful tool for automating the modeling of organ deformation.
For prostate image registration, the m-rep based deformation
modeling process consists of the following steps.

1) Fit a single medial model (m-rep), to both the prostate in
the undeformed image and the prostate in the deformed
image. The m-rep fitted to the undeformed prostate is
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referred to as themodel, and the m-rep fitted to the
deformed prostate is referred to asmodel′.

2) Build a finite element mesh from themodel.
3) Derive finite element boundary conditions that deform

model into model′ and minimize the energy of the
deformation.

4) Use a linear elastic mechanical model and compute
the deformation to the desired precision by solving the
finite element system of equations on a coarse mesh
and iteratively subdividing the mesh and solving the
equations on the finer mesh.

5) Apply the computed deformation to the undeformed
image to register it with the deformed image.

Section II details how m-rep object models are used to
automatically generate a mesh from an image. The method for
determining boundary conditions from a pair of m-rep models
is explained in section III. An efficient solution algorithm is
presented in section IV. Results of this process applied to CT
images of a prostate phantom are given in section V, and future
work is discussed in section VI.

II. M ESHING ALGORITHM

The novel meshing algorithm presented here relies on m-
rep object models to provide both global and local object
shape information. An overview of m-rep models is presented,
followed by an explanation of the meshing algorithm.

A. M-Rep Models

The medially based object representation introduced by
Blum [16] consists of a medial surface and a radius function
defined on the medial surface. The intuitive picture is of
spheres of maximal diameter fit inside an object so that they
touch both sides of the object’s boundary. The center point
of each such sphere is a point on the medial surface, and
the radius of each sphere defines the radius function at that
point on the medial surface. The medial surface branches to
represent object protuberances. See Fig. 1 for an illustration.

In the general case, an m-rep consists of a hierarchical
tree of figures, where each figure represents a branch of the
medial surface. The simplest m-rep consists of a single figure
that represents a slab-like region with a non-branching medial
locus. Because the prostate’s shape can be well represented
with a single figure m-rep, the discussion of m-reps here will
be limited to single figure models. Readers are referred to [17]
for a more thorough explanation of m-reps, including multi-
figure models.

A figure is represented by a lattice of medial atoms, each of
which provides a sample of object geometry at a point. Fig. 2

Fig. 1. This 2D figure is inscribed with circles of maximal diameter and
illustrated a branched medial axis.

illustrates the structure of a medial atom and a figure. Medial
atoms are the smallest building blocks of an m-rep, and each
stores the following information:

• x, the position of the medial sheet at a sample point
• r, the radius, which is defined as the distance fromx to

the object boundary
• two vectors that originate atx and point to the boundary

locations that an inscribed sphere atx with radiusr would
touch

• F = (~n,~b,~b⊥), a frame that defines the tangent plane of
the medial sheet atx. The direction~b on the tangent plane
is in the−∇r direction,~n is the normal to the medial
sheet, and~b⊥ is the cross product of~b and~n.

• θ, the angle between~b and a boundary vector

Fig. 2. Left: A diagram of a single medial atom with object properties
labelled. Right Top: A single figure m-rep model composed of a lattice of
medial atoms Right Bottom: M-rep with solid object surface rendering

The lattice arrangement of medial atoms helps to define
the object based coordinate system for m-reps. Any point in
an object can be referenced by its m-rep defined(u, v, t, τ)
coordinates. Theu and v directions coincide with the rows
and columns of medial atoms in the lattice.τ ranges between
0 at the medial surface and±1 at the object surface, while
t measures a fraction of the angle between+θ and −θ in
the crest region of the object. Interpolation is applied to
generate continuous functions that represent the coordinates
of a figure’s medial sheet, boundary, radius, and other atom
properties. Through this interpolation process,(u, v, t, τ) co-
ordinates can be mapped to world space(x, y, z) coordinates.
The following function represents this mapping operation:

[xi yi zi] = MedialToWorld(model, ui, vi, ti, τi) (1)

The object based coordinate system provides spatial and
orientational correspondence between deformed versions of
the same object (Fig. 3). For example, given a prostate m-
rep model that has been fitted to both a compressed prostate
image and an uncompressed prostate image, a set of(u, v, t, τ)
coordinates applied to both model configurations will refer-
ence approximately the same part of the prostate tissue in
each. The object based coordinates establish a geometry based
correspondence that approximates the physical correspondence
but is not identical to the physical correspondence. A geometry
based registration can be performed using these correspon-
dences, but experiments show that a physically based finite



TRANSACTIONS ON MEDICAL IMAGING, VOL. ?,NO. ?, ? 2004 3

Fig. 3. The m-rep figure on the right is a deformed version of the figure on the
left. The m-rep object coordinate system that is shared by both versions of the
figure establishes a correspondence between boundary points.(u1, v1, t1, τ1)
and (u2, v2, t2, τ2) mark two sets of corresponding points.

element model provides better registration accuracy than m-
rep correspondences. These results are presented in Fig. 13.

One advantage of the object based coordinate system is that
a mesh defined using an m-rep’s object based coordinates
is automatically individualized to fit any deformed version
of the m-rep model. This occurs because the mesh’s object
based coordinates do not change with deformation; only the
mapping between object coordinates and world space changes
when the m-rep is deformed. Another benefit of the object
based coordinate system is the ability to express distances
as a fraction of object width. This is convenient for mesh
generation as it provides a natural way to size elements
according to the proportions of an object.

In addition to the advantages offered by object based coordi-
nates, m-reps are particularly attractive as part of an automatic
meshing algorithm because they can be used to automatically
segment objects from images [17]. In this work m-reps form
a critical link between the image and the mesh generation
process. Through an automatic segmentation procedure m-
rep models are fit to image data, and then the geometry
information stored in the m-rep is used to automatically
generate a high quality finite element mesh.

An m-rep model building program namedPablo has been
developed by the Medical Image Display and Analysis Group
group at the University of North Carolina at Chapel Hill. This
software can generate m-rep models, and it allows editing of
the position, radius, and other properties of individual medial
atoms. Pablo also has the capability to automatically fit an m-
rep to image data. It uses a conjugate gradient algorithm to
adjust the medial atom properties so that the boundary match
between an m-rep model and a visible boundary in an image
is maximized, subject to certain geometric constraints. All of
the m-rep models presented in this paper were created and
fitted to images using Pablo.

B. Hexahedral Meshing Algorithm

For many finite element applications meshes constructed
with hexahedral elements are preferable to meshes built from
tetrahedral elements due to their superior convergence and
accuracy characteristics. Research has shown that for both
linear elastic and non-linear elasto-plastic problems the error
in a finite element solution is smaller for a mesh of linear
hexahedral elements than for a mesh of similarly sized linear

tetrahedral elements [18]. However, currently available auto-
matic meshing algorithms are more successful at constructing
quality tetrahedral meshes than quality hexahedral meshes.
Some research has been directed toward the development of
hexahedral meshes from images [19], but the development
of automatic hexahedral meshing algorithms is a challenging
problem that continues to motivate current research efforts in
the meshing community [20].

An automatic hexahedral meshing algorithm based on m-
reps has been developed and is summarized here. Readers are
referred to [21] and [22] for details on this meshing method.

The single figure version of the m-rep based meshing
algorithm uses a standard meshing pattern for each figure of
a model and assigns object based coordinates to each node.
The mapping from object based coordinates to world space
coordinates determines the nodes’ placement in world space.
The single figure meshing procedure is illustrated in Fig. 4.

The first step in meshing a m-rep figure is the construction
of a sampling grid on the(u, v) parameter plane of the medial
surface. The vertices of the sampling grid are placed at regular
intervals in(u, v) coordinates, as shown in Figs. 4b and 4c.

From the sampling grid on the medial surface the coor-
dinates of the other layers of nodes can be derived. For
every (u, v) sample point except those around the outer rim
of the medial atom lattice, five nodes are created atτ =
−1,−.5, 0, .5, 1. For sample points in that rim, a slightly
different set of six nodes is created, with the sixth node
sitting out on the object crest. The resulting mesh pattern is
illustrated in Fig. 4d. The mesh construction is guided entirely
by information contained in the m-rep model, so the meshing
process requires no user interaction.

Fig. 4. (a) The m-rep defines and parameterizes the object’s medial surface.
(b) A regular sampling grid is defined in the (u,v) parameter space of the
medial surface. (c) The regular sampling grid is mapped into world space. (d)
Each sample point on the medial surface gives rise to a group of mesh nodes.
For the center region, each sample point leads to 5 nodes placed at constant
u andv and evenly spacedτ .
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C. Mesh Quality Optimization

A three dimensional isoparametric element is defined in a
parameter space (Fig. 5a) and is mapped into world space (Fig.
5b) via the element shape function(x, y, z) = N(ξ, η, ζ). For
an 8-node isoparametric linear hexahedral element, the shape
function is defined as follows [23].

N(ξ, η, ζ) =
8∑

i=1

Ni(ξ, η, ζ) · [xiyizi] (2)

where [xiyizi]are the coordinates of nodei and

Niis defined as

N1 = 1
8 (1− ξ)(1− η)(1− ζ)

N3 = 1
8 (1 + ξ)(1 + η)(1− ζ)

N5 = 1
8 (1− ξ)(1− η)(1 + ζ)

N7 = 1
8 (1 + ξ)(1 + η)(1 + ζ)

N2 = 1
8 (1 + ξ)(1− η)(1− ζ)

N4 = 1
8 (1− ξ)(1 + η)(1− ζ)

N6 = 1
8 (1 + ξ)(1− η)(1 + ζ)

N8 = 1
8 (1− ξ)(1 + η)(1 + ζ)

(3)

Fig. 5. Left: Hexahedral element in its(ξ, η, ζ) parameter space Right:
Hexahedral element that has been mapped into world space

Whether a valid finite element solution exists on a mesh
depends onJ , the Jacobian of the shape functionN(ξ, η, ζ).
Although a solution can be computed as long as the measure
of element volume, det(J), is non-negative [24], when det(J) is
scaled to the interval [-1, 1] desirable elements have a value of
at least 0.5. Smaller det(J) values are associated with strongly
distorted elements that can negatively impact the condition
number of the finite element stiffness matrix and reduce the
accuracy of the computed solution. It is sufficient to check the
det(J) values at the Gauss integration points in each element
[25]. The computation of the stiffness matrix involves the
numerical evaluation of an integral over the volume of the
entire mesh, and the Gauss integration points are the locations
inside each element where this integral is evaluated.

As gauged by det(J), the element quality of the majority of
hexahedral elements generated by the m-rep based meshing
algorithm is good, but some elements generated near the
corners of the parameterized medial surface or in areas of
higher curvature can have poorer shape. Therefore, after mesh
construction an optimization is performed to improve the shape
of the less desirable elements.

The mesh quality improvement procedure first assigns to
each element a score that is the minimum value of det(J)
evaluated at each of the Gauss integration points in the
element. A list is compiled of all elements with det(J) values
less than .5 and the immediate neighbors of those elements.
For each element on the list, the coordinates of its nodes

Fig. 6. Histograms of det(J) for elements of the prostate mesh (a) before
element quality optimization and (b) after element quality optimization

are varied in an optimization procedure that maximizes the
element’s det(J) value. The optimization algorithm applied is
a Nelder-Mead simplex search [26].

Because the mesh is constructed with medial object
(u, v, t, τ) coordinates, but node positions do not actually have
four degrees of freedom, coordinate transforms are applied
in the optimization process. For nodes in the interior of a
figure the parameters optimized are(A,B,C) coordinates,
whose derivation from(u, v, t, τ) coordinates is explained
in the appendix.(A,B, C) coordinates are better for the
optimization purpose than(x, y, z) world coordinates because
they are closely based on the medial object coordinates and the
mapping between(u, v, t, τ) and(A,B,C) is easily invertible,
unlike the mapping between(u, v, t, τ) and (x, y, z). For
nodes on the surface of a figure the parameters optimized are
(a, b). The derivation of the(a, b) to (u, v, t, τ) coordinate
mapping is also given in the appendix. Optimization in this
two-dimensional parameter space implicitly constrains surface
nodes to remain on the surface. The benefit of using these
coordinate transformations in the optimization process is that
the number of coordinate variables needed to specify node
positions is reduced, thereby making the optimization process
more robust and efficient.

This optimization process successfully produced a hexahe-
dral prostate mesh for which det(J)> 0.5 for all elements. This
mesh is shown in Fig. 7, and histograms of element quality
before and after optimization are in Fig. 6.

D. Meshing Space External to M-reps

In a multi-object deformation problem the space between
modeled objects needs to be meshed, and in a single object
situation it is often useful to mesh space outside the modeled
object so that a deformation can be applied to the surrounding
space. The m-rep meshing algorithm does not address the
problem of meshing non-modeled areas. Instead, a layer of
pyramids is built on top of the hexahedral elements generated
by the m-rep meshing algorithm so as to cause all the resulting
exposed faces to be triangles. Then tetrahedra are used to
fill the remainder of the volume of interest. The construction
of the tetrahedral mesh is performed using the tetrahedral
meshing capability found in CUBIT, a meshing program
from Sandia National Laboratories. CUBIT takes the exposed
surface triangles as input and provides a tetrahedral meshing
as output. The pyramid and tetrahedral elements that fill the
space external to the models are shown in Figs. 7 and 7e.
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Fig. 7. (a) M-rep model of a prostate (b) Prostate m-rep with implied surface (c) Base level prostate mesh (d) Sliced view of the meshed volume of interest
(e) Exterior view of the meshed volume of interest

III. B OUNDARY CONDITIONS

A. Initial Approximation

In order to compute a deformation with finite element
analysis, boundary conditions must be specified for some of
the nodes either in terms of forces applied to the nodes or
node displacements.

With an image registration problem, neither forces nor point
displacements are available directly from the images. What is
visible in the images is shifting and/or change in the shape of
the object boundary. M-reps provide a way to derive an initial
approximation to point displacements from observed boundary
changes in an image.

In the prostate case, the m-rep model that was fitted to
the original image and used to guide mesh construction is
transferred onto the image of the deformed prostate and
automatically fit to it. The original and deformed m-rep models
have the same topology, and their object based coordinates
span exactly the same parameter space. This means that the
m-rep’s object based coordinate system defines a one to one
geometry based correspondence between points in the original
and deformed prostate, as illustrated in Fig. 3. For each surface
node with medial coordinates(ui, vi, ti, τi) the approximate
displacement vectordi is defined in the following way.[

xi yi zi

]
= MedialToWorld(model, ui, vi, ti, τi)[

x′i y′i z′i
]

= MedialToWorld(model′, ui, vi, ti, τi)
di =

[
x′i y′i z′i

]
−

[
xi yi zi

]
(4)

The nodes on the exterior surface of the whole meshed volume
are assumed to be fixed, so their displacements are set to
0. These exterior surface nodes are the ones lying on the
outermost faces of the tetrahedra seen in Fig. 7e.

Using this set of boundary conditions will result in a
deformed object that evidences the shape change observed in
the image and captured by the m-rep. However, this geometry
based approximation of the boundary conditions is not the only
set of boundary conditions that accomplishes the desired shape
change. In order to improve the accuracy of the computed
deformation the boundary conditions applied to the surface of
the modeled object(s) are optimized so that the energy of the
deformation is minimized, as described in section III.B.

B. Boundary Condition Optimization

We assume that given multiple sets of boundary conditions
that result in the observed boundary shape change, the most
likely set is associated with the deformation that requires the
least amount of energy.

The boundary conditions are applied only to nodes lying
on an object surface, so the optimization is most efficiently
performed using the nodes’(a, b) surface coordinates that are
explained in the appendix. For theith surface node,(ai, bi)
references a point on the surface of the originalmodel and
(a′i, b

′
i) denotes a point on the surface of the deformedmodel′.

The displacementdi is defined as follows:[
xi yi zi

]
= SurfaceToWorld(model, ai, bi)[

x′i y′i z′i
]

= SurfaceToWorld(model′, a′i, b
′
i)

di =
[
x′i y′i z′i

]
−

[
xi yi zi

]
(5)

The SurfaceToWorld transform involves mapping the
(a, b) coordinates to medial(u, v, t, τ) coordinates using the
relations detailed in the appendix, and then applying the
MedialToWorld transform to the(u, v, t, τ) coordinates.

Initially (a′i, b
′
i) = (ai, bi). In the optimization process the

(a′i, b
′
i) coordinates are adjusted by a Nelder-Mead simplex

search optimization algorithm [26] so that the energy of the
resultant deformation is minimized. The variation of thea′

andb′ coordinates is illustrated in Fig. 8.
The energy of a linear elastic deformation, also known as

the strain energy, is defined as follows [27] [28]:

PE =
1
2

∫
V

σ · ε dV where σ is the stress (6)

ε is the strain

For the prostate phantom registration problem, the boundary
condition optimization resulted in a 20% reduction in the
energy of the deformation and an average change of 1.2
mm in the optimized boundary displacement vectors that
were applied to nodes on the prostate surface. Registration
error estimates for both optimized and unoptimized boundary
conditions are provided in section V Table I. Interestingly, the
boundary condition optimization had a negligible impact on
the accuracy of the deformation for points in the interior of
the prostate. A possible explanation for the boundary condition
optimization not resulting in improvement in the accuracy of
the prostate deformation is that the m-rep prediction algorithm
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Fig. 8. In the boundary condition optimization process,(u, v, t, τ) co-
ordinates are converted to the more compact(a, b) surface coordinates.
Corresponding points are then allowed to slide along the object surface, as
shown on the right, to minimize the energy of a deformation.

may provide a sufficiently accurate boundary condition esti-
mate for deformations that involve little or no torsion or other
complicated warp. Further testing of the boundary prediction
algorithm with a variety of objects and deformations will be
useful in determining the limits of the algorithm’s reliability.

IV. SOLUTION ALGORITHM

A. Solution on the Initial Mesh

To compute the deformation of a three dimensional object,
a 3N × 3N finite element system of linear equation must be
solved, where N is the number of nodes in the object’s mesh.
An initial approximation to the solution can be derived from
the m-rep model correspondences in the same way that the
initial approximation to the boundary conditions was derived.
For each nodeni in the mesh, an initial approximation to
the node’s displacement vectordi is defined by equation 3. A
preconditioned conjugate gradient solver is used to iteratively
improve the initial approximate solution.

B. Mesh Subdivision

If accuracy greater than that provided by the initial coarse
mesh is desired, the initial mesh can be subdivided. The
result is a mesh with smaller elements that provides a finer
representation of the solution.

The hexahedral elements that represent the m-rep modeled
objects have nodes with both world space(x, y, z) coordi-
nates and medial(u, v, t, τ) coordinates. By subdividing these
elements using their medial node coordinates, an improved,
smoother approximation to the object geometry is achieved
with the subdivided mesh. Straightforward subdivision with
world space coordinates would provide better resolution for
representing the solution but would have the same error in
its geometric representation. The medial coordinate based
subdivision process allows for increased precision in both
the geometry and the solution. The advantage of increased
geometric precision is a reduction in deformation error in
the vicinity of the boundary. Subdivision using world space
coordinates is compared to subdivision using medial object
coordinates in Fig. 9.

The result of applying medial coordinate based subdivision
to a prostate mesh is shown in Fig. 10. The size of a mesh
grows quickly with subdivision, as shown by the node and
element counts reported for each mesh level in Fig. 11. For

Fig. 9. (a) Coarse mesh. (b) Subdivision of coarse mesh using Euclidean
coordinate midpoint computations. (c) Subdivision of coarse mesh using
medial coordinate midpoint computations. The subdivision in (c) is a smoother
approximation of the object’s boundary than the subdivision in (b).

Fig. 10. Top row: Surface of a prostate mesh at subdivision levels 1 - 3
Bottom row: Sliced view of a prostate mesh at subdivision levels 1 - 3

prostate meshes, the element shape quality remained high after
two subdivision steps. However, if an m-rep model had areas
of very high surface curvature, element shape quality could be
degraded through subdivision using medial object coordinates.
In this case mesh quality optimization as described in section
II.C could be applied to subdivided mesh levels. In practice
this has not been necessary for the prostate application.

C. Solution on a Subdivided Mesh

The system of equations that results from a subdivided mesh
is much larger than the original system of equations. The
increase in the node count at each subdivision level can be
seen in Fig. 11. The new larger system of equations can be
efficiently solved by taking a multiscale approach and using
sparse matrix data structures.

The approach taken here is to solve the finite element system
of equations on the initial mesh using the procedure outlined
in section IV-A and then interpolate that solution to the subdi-
vided mesh and solve again using a conjugate gradient solver.
The number of iterations required to converge to a solution is
reduced due to the good initial approximation provided by the
solution on the coarser mesh. The subdivision - interpolation
- solution process may be repeated as many times as desired
to get an increasingly fine representation of the geometry and
solution. In practice two or three mesh levels have provided
sufficient accuracy for the prostate deformation problem. Fig.
11 shows the number of conjugate gradient iterations required
for solution convergence at three subdivision levels and shows
that the computational savings gained by starting with the m-
rep predicted solution increases with the subdivision level.
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Fig. 11. The number of nodes, elements, and solution iterations for
prostate mesh subdivision levels 1 - 3. The rightmost graph compares the
solution iteration counts required using a zero displacement initial solution
approximation compared to the iteration counts required using m-rep predicted
displacements as the solution approximation.

V. REGISTRATION EXPERIMENT

Because the clarity and resolution of CT images are superior
to MRSI and ultrasound images, the initial validation study
was performed using CT prostate images. CT images were
acquired at Memorial Sloan-Kettering Cancer Center of a male
pelvis phantom with an inflated and deflated MRSI probe in
the phantom rectum. The phantom prostate was implanted
with seeds, so the accuracy of the computed deformation can
be examined by comparing the computed seed displacements
with the observed seed displacements. For this experiment,
the single object prostate m-rep model was used and the area
around the prostate was represented as a homogeneous region.

The linear elastic model has two elastic constants that
describe a material’s deformable characteristics:E, Young’s
modulus, andν, Poisson’s ratio. In this experiment, the effect
of forces applied to the prostate was captured by displace-
ment type boundary conditions. Since no force type boundary
conditions were specified, the deformation did not depend on
Young’s modulus [22]. The prostate was assignedν = .495,
indicating near incompressibility. The meshed area exterior to
the prostate was assignedν = 0.3.

A view through the center of the deformed base level
prostate mesh is shown in Fig. 12. In Fig. 14 the computed
deformation is applied to a slice of the phantom’s CT.

The locations of 75 seeds implanted in the phantom prostate
were identified manually in both the uninflated and inflated
CT images with 0.7 mm within slice resolution and 3 mm
slice thickness. The average amount of seed movement due to
the inflation of the MRSI imaging probe was 9.4 mm. Seeds
lying next to the rectum experienced moved more than seeds
further from the rectum; the 25 seeds closest to the rectum
moved an average of 11.6 mm. The accuracy of the manual
seed labelling was limited by the image resolution.

The computed deformation was applied to seed locations in
the uninflated image to predict seed locations in the inflated
image. The predicted seed locations were then compared to
observed seed locations in the inflated image. The results of
this comparison are given in Table I and Fig. 13. Fig. 15
contains histograms of the x, y, and z components of the error
estimates. Registrations computed using the second and third
level prostate meshes met the goal of 2 mm registration error.

The component of registration error in the lower resolution
z direction is significantly larger than the x and y error
components. This is due to seed segmentation error that con-

Fig. 12. Left: A slice through the meshed prostate volume after the
deformation has been computed. The mesh shown has not been subdivided.
Right: The computed deformation applied to a regular grid.

Fig. 13. Average seed registration error is graphed for the group of 75
implanted seeds in the prostate phantom. For the directional components of
the error, horizontal bars indicate the CT voxel size in that direction. The
”m-rep predicted” category shows how well the m-rep geometry based corre-
spondences registered the seeds without the use of finite element modeling.

Fig. 15. Histograms of the separated x, y, and z components of the error
estimates for predicted seed locations in the Uninflated→ Inflated mapping
are shown. The horizontal axis is millimeters of registration error.

tributed to the registration error estimate. It was not possible
to separate the error due to segmentation from the error due
to inaccuracies in the deformation.

The tissue nearest the rectum deforms the most due to
intra-rectal probe inflation. Larger deformations are more non-
linear, so the actual deformation deviates most strongly from
the predictions of a linear elastic model in the area of largest
deformation. This is evidenced by the graph in Fig. 16 that
compares the registration accuracy of the entire group of seeds
to the registration accuracy of the seeds nearest the rectum.

Since the finite element code used for this experiment was
implemented in Matlab, execution times could be improved
with a compiled and optimized implementation of the algo-
rithms presented. With the current implementation, a defor-
mation of prostate mesh level 1 or 2 could be computed on
a desktop workstation in several minutes. A solution on mesh
level 3 required about 12 hours. Given the large difference in
computation time and the small difference in accuracy between
the second and third level meshes, the second level mesh is
the best choice for prostate registration.
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TABLE I

THE ERROR ESTIMATES LISTED ARE FOR THE UNINFLATED PROBE→ INFLATED PROBE PROSTATE IMAGE MAPPING AND ARE BASED ON THE DIFFERENCE

BETWEEN (A) THE OBSERVED SEED LOCATIONS IN THE INFLATED IMAGE AND(B)THE PREDICTED SEED LOCATIONS THAT RESULT FROM APPLYING THE

COMPUTED DEFORMATION TO THE SEED LOCATIONS IN THE UNINFLATED IMAGE. ERRORS ARE IN MILLIMETERS AND REPRESENT AVERAGES OVER ALL

75 SEEDS. x AND y COMPONENTS LIE IN A .07MM RESOLUTION IMAGE PLANE. THE z COMPONENT LIES ACROSS IMAGE PLANES WITH A3MM SPACING.

Mesh Level total error total std. dev. x error x std. dev. y error y std. dev. z error z std. dev.
unoptimized 1 2.273 0.934 1.043 0.642 0.696 0.641 1.608 1.036

boundary 2 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893
conditions 3 1.999 0.808 0.763 0.580 0.764 0.599 1.392 0.930
optimized 1 2.705 0.869 1.308 0.785 1.026 0.776 1.730 1.057
boundary 2 2.054 0.799 0.852 0.605 0.679 0.547 1.485 0.900
conditions 3 2.000 0.807 0.766 0.580 0.761 0.598 1.393 0.928

Fig. 14. Left: CT Slice of the phantom prostate with uninflated probe; Center: Same slice as left, after computed deformation has been applied; Right:
CT slice of the phantom prostate with inflated probe. The goal was to register the prostate volume, not the bones, rectum, or surrounding tissue. Therefore
only the prostate was explicitly modeled and the area outside the prostate was represented as a homogeneous region. No attempt was made to minimize the
discrepancies in the registration outside the prostate.

Fig. 16. Total average registration error for the entire group of seeds is less
than for the subset of seeds nearest the rectum. Also in the x and y directions,
for which the seed segmentations are most reliable, the seeds nearest the
rectum have higher registration error.

VI. CONCLUSIONS ANDFUTURE WORK

In summary, the steps of an automated, finite element
based image registration algorithm have been described. M-
rep shape models have been employed to link together the
tasks of image segmentation, mesh construction, and boundary
condition specification. Fig. 17 illustrates the flow of the
registration algorithm.

The initial validation experiments have been conducted with
prostate phantom CT images. This has enabled careful analysis

Fig. 17. These steps result in a deformation field that can be applied to
Image A to register it with Image B.

of registration accuracy because the phantom provided a highly
controlled environment and the CT images had higher reso-
lution and clarity than typical MRSI and ultrasound clinical
images. However, application of this methodology to clinical
images is an important next step.

Clinical validation is complicated because it involves using
a non-rigid image registration to guide brachytherapy seed
placement. The errors in seed placement will depend both
on registration errors and on needle insertion and guidance
errors. Therefore a goal will be to show that seed placements
observed in a post-operative image more closely match the
pre-operative plan when the non-rigid image registration is
applied intra-operatively to the treatment planning image.

For large deformations of the prostate, a hyperelastic or
viscoelastic mechanical model may provide better registration
results. A related research effort is aimed at modeling the
way soft tissue deforms during needle insertion. Combining a



TRANSACTIONS ON MEDICAL IMAGING, VOL. ?,NO. ?, ? 2004 9

needle insertion model with non-rigid image registration may
provide a highly precise method for designing and delivering
brachytherapy treatment.

Future plans include the development of a local subdivision
method that would allow a mesh to be refined in areas
where the solution or geometry require higher resolution. This
approach would be more computationally efficient than the
global subdivision method currently in use.

Planned experiments also include the use of a five object
male pelvis model that includes the rectum, bladder, and pubic
bone objects in addition to the prostate. The use of a multi-
object model would allow not only the prostate but also the
surrounding structures to be accurately registered.

APPENDIX I
MEDIAL OBJECTCOORDINATE TRANSFORMS

An m-rep figure is an inherently three-dimensional object,
and its surface is inherently two-dimensional. However, medial
object coordinates use four(u, v, t, τ) parameters. For effi-
ciency, coordinate transforms are defined to map(u, v, t, τ)
coordinates into the three-dimensional(A,B,C) parameter
space and to map figure surface coordinates into the two-
dimensional(a, b) parameter space.

An m-rep figure can be divided into five regions: a center
region and four rim regions, labelledRA, RB , RC , RD and
RE in Fig. 18 (a). In any one of the regions only three of
the four medial coordinates are needed to uniquely identify
a point. For the entire center region,RE , all points can
be referenced by(u, v, 1, τ); t does not need to vary. In
each rim region, eitheru or v maintains a constant value.
Therefore, the(u, v, t, τ) parameter space can be viewed
as five three-dimensional parameter spaces rather than as
one four-dimensional space. The(A,B,C) parameter space
simply maps these five three-dimensional segments into one
continuous three-dimensional space. For the center region, the
mapping is direct.

A = u B = v C = τ (7)

For the rim regions, a more complicated mapping is neces-
sary because thet and τ medial object coordinates for the
rims are essentially polar coordinates, while the(A,B, C)
coordinates form an object based Cartesian type coordinate
system. (See Fig. 18 (c) and (d)) The(A,B, C) coordinates
for each rim span a wedge shaped region, as shown in Fig.
18 (b). The equations of the(u, v, t, τ) → (A,B, C) mapping
for each rim region are as follows.

α =
1

tan
(

tπ
2

)
+ 1

RA : A = v (1− |τ |α) + (1− v)(−|τ |α)
(

umax + 1
umax − 1

)
B = v

RB : A = u

B = (umax + 1− u) (vmax + |τ |α)

+(u− umax)(vmax − 1 + |τ |α)
(

vmax + 1
vmax − 1

)

RC : A = (vmax + 1− v) (umax + |τ |α)

+(v − vmax)(umax − 1 + |τ |α)
(

umax + 1
umax − 1

)
B = v

RD : A = u

B = u (1− |τ |α) + (1− u)(−|τ |α)
(

vmax + 1
vmax − 1

)
RA, RB , RC , RD :

C = τ (1− α)

(a, b) medial object surface coordinates are defined using
the (A,B,C) coordinates described above. The(a, b) param-
eter space is basically the surface of the(A,B,C) parameter
space unfolded along the(umax + 1) edge.

a =
{

A if C ≥ 0
2 (umax + 1)−A if C < 0

b = B
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