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Medial Techniques to Automate Finite Element
Analysis of Prostate Deformation

Jessica Crouch, Stephen M. Piz8gnior Member, IEEE:dward L. Chaney, Marco Zaider

Abstract—Finite element analysis provides a principled an intra-rectal imaging probe. An MRSI can be used to design
method for modeling physical deformation and is an ideal tool to g seed placement pattern that targets the suspected tumor
apply when a medical imaging problem requires the simulation - qanqsits, but the process is complicated by the fact that the

of tissue deformation. The drawback to using finite element tat d in the MRSI d t
analysis for imaging problems is the labor and computational prosiate appears compressed In the ueé 1o pressure

time that is required to construct a finite element model and solve from the imaging probe. Intra-operatively, the prostate is not
the resulting large system of equations. Challenging questions deformed by the MRSI probe and seed placement is guided
include how to (1) generate a mesh from an image, (2) derive ysing ultrasound. Therefore, image registration is required to
boundary conditions from images of deformed objects, and (3) match the planning image with the intra-operative image.

solve the system of finite element equations efficiently. This work Other researchers have approached prostate registration us-
addresses these questions with algorithms based on medial models Ve app p gl lon u

called m-reps. A multiscale meshing algorithm is presented INg both rigid [12] [13] and non-rigid [14] methods. Studies

that automatically generates a hexahedral mesh from an m- have shown that for brachytherapy planning and treatment
rep segmentation of an image, and an m-rep based method for the magnitude of prostate deformation is large enough that it
establishing boundary conditions is described. Additionally, an gpoyid not be ignored [15]. Since the deformation that occurs
eltf't(;:em Sl(t)~|Ut'°r|' alg? mhmf Iti presﬁlmed .f.hat ttf]ikesthadvamage over the course of brachytherapy treatment is predominantly
of the multi-scale nature of the problem. Together, these m-rep _ 'e mdl

based algorithms improve the automation and efficiency of FEM due to mechanical forces, finite element based registration

for non-rigid registration problems. Initial results are presented approaches are especially appropriate. Previous finite element

for the registration of CT images of a prostate phantom. based prostate registration work includes [1] and [2]. The work
Index Terms—registration, elastic, finite element, m-rep, Presented in [1] is most similar to the algorithm presented
prostate here, but differs from this work in that it relied on manual

segmentation and tetrahedral meshing, and a membrane model
of the boundary rather than a solid object model was used in
) . . the computation of boundary conditions. The work presented
INITE element analysis has proven useful in solving, 151 employed a combined statistical and biomechanical
| medical imaging problems for which deformation i 0ach, while the work presented here relies on medial
significant. Most notably, this approach has yielded pos'“‘ﬁfeometry and biomechanics to generate a deformation. The
results for same-subject non-rigid image registration and foggistent use of a medial model framework to automate the
medical simulation applications. Published results includg,,jication of finite element analysis is a feature, described in
image registration for the prostate [1] [2], brain [3] [4] [Slpe next section, that sets this work apart from previous work.
[6], and breast [7] [8], as well as simulation of maxillo-facial ' ag computational power has grown more available, finite
surgery [9], liver surgery [10], and childbirth [11]. element analysis has become a more accessible tool for medi-
The work presented here is potentially applicable to the; inaging research. However, its application is often limited
variety of medical imaging applications that require defok, the research arena due to significant costs of user time
mation modeling. The particular application considered hefg: finite element model construction and computational time
Is non-rigid registration of prostate images that are Usggl geformation calculations. This work focuses on specific
for brachytherapy planning and guidance. Brachytherapy ischniques to make finite element analysis more automatic
volves implanting radioactive seeds in the prostate to regiy efficient for medical imaging applications. Reducing the
prostate cancer. Research is underway to determine whethely nt of human and computer time required to employ finite

brachytherapy outcomes can be improved by placing tRgsment analysis will make it a more attractive and practical
radioactive seeds in a pattern that concentrates the radia§gg| tor poth research and clinical applications.

dose to areas of the prostate that have elevated levels of choIin@I_rep object models can efficiently represent organ shape

and citrate, two chemicals believed to indicate tumor presenggq they carry with them an automated way of defining a finite
These prostate levels can be determined from a magnellement mesh and boundary conditions. Therefore m-reps are a
resonance spectroscopy image (MRSI) that is acquired us{gsy| tool for automating the modeling of organ deformation.

Manuscript received February 1, 2003; revised October 28, 2003. Finan(!i:é?r pr.OState image reg!stratlon, the m-r.ep based deformation
support for this work was provided by NIH grants CA P01 47982 and EB10deling process consists of the following steps.

I. INTRODUCTION

P01 02779 and by a Lucent Foundation GRPW fellowship. 1) Fita single medial model (m-rep), to both the prostate in
J. Crouch, S. Pizer, and E_. Ch_aney are with thg Medical Ima_ge Display the undeformed imaage and the prostate in the deformed
and Analysis group at the University of North Carolina, Chapel Hill g p

M. Zaider is with Memorial Sloan-Kettering Cancer Center image. The m-rep fitted to the undeformed prostate is
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referred to as thenodel, and the m-rep fitted to theillustrates the structure of a medial atom and a figure. Medial
deformed prostate is referred to asdel’. atoms are the smallest building blocks of an m-rep, and each
2) Build a finite element mesh from theodel. stores the following information:
3) Derive finite element boundary conditions that deform , x, the position of the medial sheet at a sample point

model into model’ and minimize the energy of the , j the radius, which is defined as the distance froro
deformation. the object boundary

4) Use a linear elastic mechanical model and compute, two vectors that originate at and point to the boundary
the deformation to the desired precision by solving the  |ocations that an inscribed spherexawith radiusr would
finite element system of equations on a coarse mesh tguch

and iteratively SUdeVIdlng the mesh and solving the o« F = (ﬁ, 57 gJ—)’ a frame that defines the tangent plane of

equations on the finer mesh. the medial sheet at. The directionb on the tangent plane
5) Apply the computed deformation to the undeformed s in the — v direction, 7 is the normal to the medial
image to register it with the deformed image. sheet, and" is the cross product of and .

Section Il details how m-rep object models are used to. ¢, the angle betweeh and a boundary vector
automatically generate a mesh from an image. The method for
determining boundary conditions from a pair of m-rep models
is explained in section Ill. An efficient solution algorithm is
presented in section IV. Results of this process applied to CT
images of a prostate phantom are given in section V, and future ™=
work is discussed in section VI.

Il. MESHING ALGORITHM

The novel meshing algorithm presented here relies on m-
rep object models to provide both global and local object
shape information. An overview of m-rep models is presented, LYo
followed by an explanation of the meshing algorithm.

A. M-Rep Models Fig. 2. Left: A diagram of a single medial atom with object properties
The medially based object representation introduced [pelled. Right Top: A single figure m-rep model composed of a lattice of
Blum [16] consists of a medial surface and a radius functid?]ed'al atoms Right Bottom: M-rep with solid object surface rendering
defined on the medial surface. The intuitive picture is of The lattice arrangement of medial atoms helps to define
spheres of maximal diameter fit inside an object so that théye object based coordinate system for m-reps. Any point in
touch both sides of the object’'s boundary. The center poi object can be referenced by its m-rep defitedy, t, 7)
of each such sphere is a point on the medial surface, afsbrdinates. The: and v directions coincide with the rows
the radius of each sphere defines the radius function at thatd columns of medial atoms in the latticeranges between
point on the medial surface. The medial surface branchesgtat the medial surface anttl at the object surface, while
represent object protuberances. See Fig. 1 for an illustrationmeasures a fraction of the angle betweeé and —6 in
In the general case, an m-rep consists of a hierarchigaé crest region of the object. Interpolation is applied to
tree of figures, where each figure represents a branch of ferate continuous functions that represent the coordinates
medial surface. The simplest m-rep consists of a single figwg a figure’s medial sheet, boundary, radius, and other atom
that represents a slab-like region with a non-branching medgbperties. Through this interpolation procegs, v, t, T) CO-
locus. Because the prostate’s shape can be well represemgfinates can be mapped to world spéeey, z) coordinates.
with a single figure m-rep, the discussion of m-reps here withe following function represents this mapping operation:
be limited to single figure models. Readers are referred to [17]
for a more thorough explanation of m-reps, including multi- [Ti ¥i zi] = MedialToWorld(model, u;, vi, ti, 7:) (1)

figure models. The object based coordinate system provides spatial and

A figure is represented by a lattice of medial atoms, each gfionational correspondence between deformed versions of
which provides a sample of object geometry at a point. Fid-the same object (Fig. 3). For example, given a prostate m-

rep model that has been fitted to both a compressed prostate
image and an uncompressed prostate image, a $et oft, 7)
coordinates applied to both model configurations will refer-
ence approximately the same part of the prostate tissue in
each. The object based coordinates establish a geometry based
correspondence that approximates the physical correspondence
but is not identical to the physical correspondence. A geometry
Fig. 1. This 2D figure is inscribed with circles of maximal diameter ang’ased registration can be performed using these correspon-
illustrated a branched medial axis. dences, but experiments show that a physically based finite
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g ¥4 s Ene) W, v, t,7,) tetrahedral elements [18]. However, currently available auto-
matic meshing algorithms are more successful at constructing
quality tetrahedral meshes than quality hexahedral meshes.
Some research has been directed toward the development of
hexahedral meshes from images [19], but the development
of automatic hexahedral meshing algorithms is a challenging

\ \ problem that continues to motivate current research efforts in

(U2 V2t ;) Wz Ve, £ T2) the meshing community [20].
i i _ ) ! An automatic hexahedral meshing algorithm based on m-
Fig. 3. The m-rep figure on the right is a deformed version of the figure on the . .
left. The m-rep object coordinate system that is shared by both versions of S has been developed and is summarized here. Readers are
figure establishes a correspondence between boundary paints:1, t1,71) referred to [21] and [22] for details on this meshing method.
and (uz, vz, t2, 72) mark two sets of corresponding points. The single figure version of the m-rep based meshing
algorithm uses a standard meshing pattern for each figure of

a model and assigns object based coordinates to each node.

element model provides better registration accuracy thgn e mapping from object based coordinates to world space

rep correspondences. Thes_;e results are pre_:sented in F'Q- {:%ordinates determines the nodes’ placement in world space.
Oner?dc\llafr_]tage of the object based t():_oordgatedsysten:j}s YL single figure meshing procedure is illustrated in Fig. 4.

a mesh defined using an m-rep's object based coordinateg,, o step in meshing a m-rep figure is the construction

is automatically individualized to fit any deformed versio i . .
of the m-rep model. This occurs because the mesh’s obj%‘:c a sampling grid on théu, v) parameter plane of the medial
|

based coordinates do not change with deformation: only t Eﬁface. The vertices of the sampling grid are placed at regular

: ) . Nervals in(u,v) coordinates, as shown in Figs. 4b and 4c.
mapping between object coordinates and world space changeérom the sampling grid on the medial surface the coor-

when the m-rep is deformed. Another benefit of the object ates of the other layers of nodes can be derived. For

based coordinate system is the ability to express distan %@r e int exceot th ound th ter fim
as a fraction of object width. This is convenient for mesh'C y (u,v) sample point except those arou € oute

generation as it provides a natural way to size eIemeans the medial atom lattice, five nodes are createdr at=

according to the proportions of an object. —1,-.5,0,.5,1. For sample points in that rim, a slightly

In addition to the advantages offered by object based coor }fferent set of six nodes is created, with the sixth node

. . Itting out on the object crest. The resulting mesh pattern is
nates, m-reps are particularly attractive as part of an automaﬁ’

IC A o= ; .
meshing algorithm because they can be used to automatic Pgtrated in Fig. 4d. The mesh construction is guided entirely
segment objects from images [17]. In this work m-reps for

By information contained in the m-rep model, so the meshing
a critical link between the image and the mesh generatig

rocess requires no user interaction.

process. Through an automatic segmentation procedure m-
rep models are fit to image data, and then the geome*~-
information stored in the m-rep is used to automaticall
generate a high quality finite element mesh. E = E = E N E BN

An m-rep model building program namdghblo has been
developed by the Medical Image Display and Analysis Grot
group at the University of North Carolina at Chapel Hill. This
software can generate m-rep models, and it allows editing Y
the position, radius, and other properties of individual medi
atoms. Pablo also has the capability to automatically fit an
rep to image data. It uses a conjugate gradient algorithm
adjust the medial atom properties so that the boundary ma
between an m-rep model and a visible boundary in an ima
is maximized, subject to certain geometric constraints. All
the m-rep models presented in this paper were created
fitted to images using Pablo.

(a) (b)

B. Hexahedral Meshing Algorithm

For many finite element applications meshes construct
with hexahedral elements are preferable to meshes built froin
tetrahedral elements due to their superior convergence amfl4. (a) The m-rep defines and parameterizes the object's medial surface.
accuracy characteristics. Research has shown that for béhA regular sampling grid is defined in the (u,v) parameter space of the

. . i ~ . dial surface. (c) The regular sampling grid is mapped into world space. (d)
linear elastic and non-linear elasto-plastic problems the er@ich sample point on the medial surface gives rise to a group of mesh nodes.

in a finite element solution is smaller for a mesh of lineator the center region, each sample point leads to 5 nodes placed at constant
hexahedral elements than for a mesh of similarly sized lineapndv and evenly spaced.

(c) (d)
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15, 15,

C. Mesh Quality Optimization

A three dimensional isoparametric element is defined in a
parameter space (Fig. 5a) and is mapped into world space (Fic

5b) via the element shape function, y, z) = N (&, 7, (). For
an 8-node isoparametric linear hexahedral element, the shap ° | °
function is defined as follows [23]. |] |i I
1 I
.5 1 0.5 (;) 05 1

o,
% %

(a)

8
N(En, Q) = > Ni6n,Q) - [wiyiz] )
i=1

= . Fig. 6. Histograms of det(J) for elements of the prostate mesh (a) before
where [z;y:2;)are the coordinates of nodeand element quality optimization and (b) after element quality optimization

N;is defined as
1-HA-n(1—-¢) N2=
( ) Nu=
(1+¢) Ng=
(1+¢) Ng=

Ny
N3

¢) are varied in an optimization procedure that maximizes the
8 element’s det(J) value. The optimization algorithm applied is
¢)

a Nelder-Mead simplex search [26].

Because the mesh is constructed with medial object
(u,v,t, ) coordinates, but node positions do not actually have
four degrees of freedom, coordinate transforms are applied
in the optimization process. For nodes in the interior of a
figure the parameters optimized afd, B,C) coordinates,
whose derivation from(u,v,t,7) coordinates is explained
in the appendix.(A, B,C) coordinates are better for the
optimization purpose thafe, y, z) world coordinates because
they are closely based on the medial object coordinates and the
mapping betweelu, v,t, 7) and(A, B, C) is easily invertible,
unlike the mapping betweefu,v,t,7) and (z,y,z). For
nodes on the surface of a figure the parameters optimized are
(a,b). The derivation of the(a,b) to (u,v,t,7) coordinate
Fig. 5. Left: Hexahedral element in it&,n,{) parameter space Right: mapp!ng |s.also given in the app(_andD.(..Optlmlzau_on in this
Hexahedral element that has been mapped into world space two-dimensional parameter space implicitly constrains surface

nodes to remain on the surface. The benefit of using these

Whether a valid finite element solution exists on a mesfhordinate transformations in the optimization process is that
depends or/, the Jacobian of the shape functidn(¢,n.¢). the number of coordinate variables needed to specify node
Although a solution can be computed as long as the measygitions is reduced, thereby making the optimization process
of element volume, det(J), is non-negative [24], when det(J)isore robust and efficient.
scaled to the interval [-1, 1] desirable elements have a value ofthjs optimization process successfully produced a hexahe-
at least 0.5. Smaller det(J) values are associated with strongly| prostate mesh for which det(3)0.5 for all elements. This

distorted elements that can negatively impact the conditighesh is shown in Fig. 7, and histograms of element quality
number of the finite element stiffness matrix and reduce th@fore and after optimization are in Fig. 6.

accuracy of the computed solution. It is sufficient to check the
det(J) values at the Gauss integration points in each element )
[25]. The computation of the stiffness matrix involves th- Meshing Space External to M-reps
numerical evaluation of an integral over the volume of the In a multi-object deformation problem the space between
entire mesh, and the Gauss integration points are the locatiomsdeled objects needs to be meshed, and in a single object
inside each element where this integral is evaluated. situation it is often useful to mesh space outside the modeled
As gauged by det(J), the element quality of the majority abject so that a deformation can be applied to the surrounding
hexahedral elements generated by the m-rep based meskipgce. The m-rep meshing algorithm does not address the
algorithm is good, but some elements generated near fiteblem of meshing non-modeled areas. Instead, a layer of
corners of the parameterized medial surface or in areaspyfamids is built on top of the hexahedral elements generated
higher curvature can have poorer shape. Therefore, after mbghhe m-rep meshing algorithm so as to cause all the resulting
construction an optimization is performed to improve the shapgposed faces to be triangles. Then tetrahedra are used to
of the less desirable elements. fill the remainder of the volume of interest. The construction
The mesh quality improvement procedure first assigns o6 the tetrahedral mesh is performed using the tetrahedral
each element a score that is the minimum value of detf@eshing capability found in CUBIT, a meshing program
evaluated at each of the Gauss integration points in tirem Sandia National Laboratories. CUBIT takes the exposed
element. A list is compiled of all elements with det(J) valuesurface triangles as input and provides a tetrahedral meshing
less than .5 and the immediate neighbors of those elemeiats.output. The pyramid and tetrahedral elements that fill the
For each element on the list, the coordinates of its nodggace external to the models are shown in Figs. 7 and 7e.
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Fig. 7. (a) M-rep model of a prostate (b) Prostate m-rep with implied surface (c) Base level prostate mesh (d) Sliced view of the meshed volume of interest
(e) Exterior view of the meshed volume of interest

I1l. BOUNDARY CONDITIONS B. Boundary Condition Optimization
N o We assume that given multiple sets of boundary conditions
A. Initial Approximation that result in the observed boundary shape change, the most

. N likely set is associated with the deformation that requires the
In order to compute a deformation with finite elemenlte?St amount of energy

analysis, boundary conditions must be specified for some Olrhe boundary conditions are applied only to nodes lying

the nocjes either in terms of forces applied to the nodes & an object surface, so the optimization is most efficiently
nodg dlsplfacements: _ _ _performed using the nodesi, b) surface coordinates that are
With an image registration problem, neither forces nor poitpjained in the appendix. For thé" surface node(a;, b;)
displacements are available directly from the images. Whatiserences a point on the surface of the originaldel and
visible in the images is shifting and/or change in the shape QJ’- b;) denotes a point on the surface of the deformeie!’.

(i

the object boundary. M-reps provide a way to derive an initigl,g displacement; is defined as follows:
approximation to point displacements from observed boundary

changes in an image. (i yi 2| = SurfaceToWorld(model, a;, b;)
In the prostate case, the m-rep model that was fitted to [} v} 2/ | = SurfaceToW orld(model’, a}, b))
the original image and used to guide mesh construction is di = (@) 2] — [z yi =] (5)

transferred onto the image of the deformed prostate and

automatically fit to it. The original and deformed m-rep modelsThe Sur faceToWorld transform involves mapping the
have the same topology, and their object based coordinatesb) coordinates to medialu,v,t,7) coordinates using the
span exactly the same parameter space. This means that'@i@tions detailed in the appendix, and then applying the
m-rep’s object based coordinate system defines a one to ddedialToW orld transform to the(u, v,t,7) coordinates.
geometry based correspondence between points in the origindhitially (aj,b;) = (a;,b;). In the optimization process the
and deformed prostate, as illustrated in Fig. 3. For each surfdeé b;) coordinates are adjusted by a Nelder-Mead simplex
node with medial coordinategu;,v;,t;,7;) the approximate search optimization algorithm [26] so that the energy of the

displacement vectad; is defined in the following way. resultant deformation is minimized. The variation of tie
and?d’ coordinates is illustrated in Fig. 8.
[2; yi 2] = MedialToW orld(model, u;, v;, t;, 7;) The energy of a linear elastic deformation, also known as
[z, 2] = MedialToWorld(model',u;, vi, i, 73) the strain energy, is defined as follows [27] [28]:
di = |2} y; 2] = (2 yi 2] 4) PE = %/ o-¢dV where o isthe stress (6)
|4

The nodes on the exterior surface of the whole meshed volume e s the strain

are assumed to be fixed, so their displacements are set t@or the prostate phantom registration problem, the boundary
0. These exterior surface nodes are the ones lying on #hdition optimization resulted in a 20% reduction in the
outermost faces of the tetrahedra seen in Fig. 7e. energy of the deformation and an average change of 1.2
Using this set of boundary conditions will result in anm in the optimized boundary displacement vectors that
deformed object that evidences the shape change observediéne applied to nodes on the prostate surface. Registration
the image and captured by the m-rep. However, this geometnyor estimates for both optimized and unoptimized boundary
based approximation of the boundary conditions is not the ordgnditions are provided in section V Table I. Interestingly, the
set of boundary conditions that accomplishes the desired shapendary condition optimization had a negligible impact on
change. In order to improve the accuracy of the computdte accuracy of the deformation for points in the interior of
deformation the boundary conditions applied to the surface thie prostate. A possible explanation for the boundary condition
the modeled object(s) are optimized so that the energy of thptimization not resulting in improvement in the accuracy of
deformation is minimized, as described in section Ill.B.  the prostate deformation is that the m-rep prediction algorithm
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/(u1,v1,t1,r1):(a1,b1) (@ire,,, bi+e,,)

N

(U, v,,t,T,) =@, b)) (a,+€,,, by*Ey)

(a) (b) (©

Fig. 8. In the boundary condition optimization proce¢s, v,¢,7) CO- Fjg 9. (a) Coarse mesh. (b) Subdivision of coarse mesh using Euclidean
ordinates are converted to the more compéetb) surface coordinates. coordinate midpoint computations. (c) Subdivision of coarse mesh using
Corresponding points are then allowed to slide along the object surface,n@sgial coordinate midpoint computations. The subdivision in (c) is a smoother
shown on the right, to minimize the energy of a deformation. approximation of the object’s boundary than the subdivision in (b).

may provide a sufficiently accurate boundary condition esti-
mate for deformations that involve little or no torsion or other
complicated warp. Further testing of the boundary prediction
algorithm with a variety of objects and deformations will be

useful in determining the limits of the algorithm’s reliability.
IV. SOLUTION ALGORITHM
A. Solution on the Initial Mesh

To compute the deformation of a three dimensional object,
a 3N x 3N finite element system of linear equation must be
solved, where N is the number of nodes in the object’'s me%’f{t
An initial approximation to the solution can be derived from
the m-rep model correspondences in the same way that the
initial approximation to the boundary conditions was derivegyostate meshes, the element shape quality remained high after
For each node:; in the mesh, an initial approximation totwo subdivision steps. However, if an m-rep model had areas
the node’s displacement vectdy is defined by equation 3. A of very high surface curvature, element shape quality could be
preconditioned conjugate gradient solver is used to iterativedggraded through subdivision using medial object coordinates.

10. Top row: Surface of a prostate mesh at subdivision levels 1 - 3
om row: Sliced view of a prostate mesh at subdivision levels 1 - 3

improve the initial approximate solution. In this case mesh quality optimization as described in section
[I.C could be applied to subdivided mesh levels. In practice
B. Mesh Subdivision this has not been necessary for the prostate application.

If accuracy greater than that provided by the initial coarse
mesh is desired, the initial mesh can be subdivided. The Solution on a Subdivided Mesh
result is a mesh with smaller elements that provides a finerThe system of equations that results from a subdivided mesh
representation of the solution. is much larger than the original system of equations. The

The hexahedral elements that represent the m-rep moddlectease in the node count at each subdivision level can be
objects have nodes with both world spage y, z) coordi- seen in Fig. 11. The new larger system of equations can be
nates and medidlu, v, ¢, 7) coordinates. By subdividing theseefficiently solved by taking a multiscale approach and using
elements using their medial node coordinates, an improvegarse matrix data structures.
smoother approximation to the object geometry is achievedThe approach taken here is to solve the finite element system
with the subdivided mesh. Straightforward subdivision witbf equations on the initial mesh using the procedure outlined
world space coordinates would provide better resolution far section IV-A and then interpolate that solution to the subdi-
representing the solution but would have the same errorvied mesh and solve again using a conjugate gradient solver.
its geometric representation. The medial coordinate basEde number of iterations required to converge to a solution is
subdivision process allows for increased precision in botbeduced due to the good initial approximation provided by the
the geometry and the solution. The advantage of increasaution on the coarser mesh. The subdivision - interpolation
geometric precision is a reduction in deformation error insolution process may be repeated as many times as desired
the vicinity of the boundary. Subdivision using world spact get an increasingly fine representation of the geometry and
coordinates is compared to subdivision using medial objeslution. In practice two or three mesh levels have provided
coordinates in Fig. 9. sufficient accuracy for the prostate deformation problem. Fig.

The result of applying medial coordinate based subdivisidil shows the number of conjugate gradient iterations required
to a prostate mesh is shown in Fig. 10. The size of a mef&ir solution convergence at three subdivision levels and shows
grows quickly with subdivision, as shown by the node anithat the computational savings gained by starting with the m-
element counts reported for each mesh level in Fig. 11. Fap predicted solution increases with the subdivision level.
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Nodes Per
Subdivision Level
20,000 16,530
15,000
10,000

5,000 2,157

Elements Per
Subdivision Level
80,000
61,632
60,000
40,000

20,000

Conjugate Gradient Solution
Iterations Required Per
30 Subdivision Level 2

294 935 7.608

0 [

Zero Vector Initial Approximation
W M-rep Predicted Initial i

Fig. 11. The number of nodes, elements, and solution iterations for
prostate mesh subdivision levels 1 - 3. The rightmost graph compares the
solution iteration counts required using a zero displacement initial solutigryy. 12.
approximation compared to the iteration counts required using m-rep predic]
displacements as the solution approximation.

Left: A slice through the meshed prostate volume after the
ormation has been computed. The mesh shown has not been subdivided.
Right: The computed deformation applied to a regular grid.

Seed Registration Error
V. REGISTRATION EXPERIMENT

Because the clarity and resolution of CT images are super
to MRSI and ultrasound images, the initial validation stud
was performed using CT prostate images. CT images we
acquired at Memorial Sloan-Kettering Cancer Center of a me
pelvis phantom with an inflated and deflated MRSI probe
the phantom rectum. The phantom prostate was implant
with seeds, so the accuracy of the computed deformation can
be examined by comparing the computed seed displacemetigs13. Average seed registration error is graphed for the group of 75

with the observed seed displacements. For this experimé lanted seeds in the prostate phantom. For the directional components of
the' error, horizontal bars indicate the CT voxel size in that direction. The

the single object prostate m-rep model was used and the arr_ﬁ-?ep predicted” category shows how well the m-rep geometry based corre-
around the prostate was represented as a homogeneous regpondences registered the seeds without the use of finite element modeling.

The linear elastic model has two elastic constants that
describe a material's deformable characteristi€s:Young's
modulus, and’, Poisson’s ratio. In this experiment, the effec,
of forces applied to the prostate was captured by displac;
ment type boundary conditions. Since no force type bounde-
conditions were specified, the deformation did not depend of
Young’s modulus [22]. The prostate was assigmeg: .495,

indicating near incompressibility. The meshed area exterior to
the prostate was assignad: 0.3. Fig. 15. Histograms of the separated X, y, and z components of the error

. estimates for predicted seed locations in the Uninflatednflated mapping
A view through the center of the deformed base levgle shown. The horizontal axis is millimeters of registration error.

prostate mesh is shown in Fig. 12. In Fig. 14 the computed
deformation is applied to a slice of the phantom’s CT.

The locations of 75 seeds implanted in the phantom prostaiéuted to the registration error estimate. It was not possible
were identified manually in both the uninflated and inflatewb separate the error due to segmentation from the error due
CT images with 0.7 mm within slice resolution and 3 mnto inaccuracies in the deformation.
slice thickness. The average amount of seed movement due tFhe tissue nearest the rectum deforms the most due to
the inflation of the MRSI imaging probe was 9.4 mm. Seedstra-rectal probe inflation. Larger deformations are more non-
lying next to the rectum experienced moved more than seditgar, so the actual deformation deviates most strongly from
further from the rectum; the 25 seeds closest to the rectuhe predictions of a linear elastic model in the area of largest
moved an average of 11.6 mm. The accuracy of the mand@formation. This is evidenced by the graph in Fig. 16 that
seed labelling was limited by the image resolution. compares the registration accuracy of the entire group of seeds

The computed deformation was applied to seed locationstmthe registration accuracy of the seeds nearest the rectum.
the uninflated image to predict seed locations in the inflatedSince the finite element code used for this experiment was
image. The predicted seed locations were then comparedrtplemented in Matlab, execution times could be improved
observed seed locations in the inflated image. The resultswith a compiled and optimized implementation of the algo-
this comparison are given in Table | and Fig. 13. Fig. 16thms presented. With the current implementation, a defor-
contains histograms of the x, y, and z components of the ermation of prostate mesh level 1 or 2 could be computed on
estimates. Registrations computed using the second and thkirdesktop workstation in several minutes. A solution on mesh
level prostate meshes met the goal of 2 mm registration erri@vel 3 required about 12 hours. Given the large difference in

The component of registration error in the lower resolutiocomputation time and the small difference in accuracy between
z direction is significantly larger than the x and y errothe second and third level meshes, the second level mesh is
components. This is due to seed segmentation error that cthe best choice for prostate registration.

Y error

Total error

‘ M-rep Geometry Predicted

B Subdivided Mesh, Level 2

@ Initial Mesh, Level 1
& Subdivided Mesh, Level 3

5 5
4 4
3 3
2 2
1 1
0

0

1 2 3 4
x component of error

0o 1 2 3 4 5 0o 1 2 3 4
y component of error z component of error
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TABLE |
THE ERROR ESTIMATES LISTED ARE FOR THE UNINFLATED PROBE> INFLATED PROBE PROSTATE IMAGE MAPPING AND ARE BASED ON THE DIFFERENCE
BETWEEN (A) THE OBSERVED SEED LOCATIONS IN THE INFLATED IMAGE AND(B)THE PREDICTED SEED LOCATIONS THAT RESULT FROM APPLYING THE
COMPUTED DEFORMATION TO THE SEED LOCATIONS IN THE UNINFLATED IMAGEERRORS ARE IN MILLIMETERS AND REPRESENT AVERAGES OVER ALL
75 SEEDS x AND y COMPONENTS LIE IN A.07MM RESOLUTION IMAGE PLANE. THE z COMPONENT LIES ACROSS IMAGE PLANES WITH ABMM SPACING.

Mesh Level| total error| total std. dev.| x error | x std. dev.| y error | y std. dev.| z error | z std. dev.
unoptimized 1 2.273 0.934 1.043 0.642 0.696 0.641 1.608 1.036
boundary 2 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893
conditions 3 1.999 0.808 0.763 0.580 0.764 0.599 1.392 0.930
optimized 1 2.705 0.869 1.308 0.785 1.026 0.776 1.730 1.057
boundary 2 2.054 0.799 0.852 0.605 0.679 0.547 1.485 0.900
conditions 3 2.000 0.807 0.766 0.580 0.761 0.598 1.393 0.928

Fig. 14. Left: CT Slice of the phantom prostate with uninflated probe; Center: Same slice as left, after computed deformation has been applied; Right:
CT slice of the phantom prostate with inflated probe. The goal was to register the prostate volume, not the bones, rectum, or surrounding tissue. Therefore
only the prostate was explicity modeled and the area outside the prostate was represented as a homogeneous region. No attempt was made to minimize th

discrepancies in the registration outside the prostate.

Seed registration error of the entire group of Image | segment
seeds compared to the subset of seeds A
closest to the rectum

organ(s)

— Deformation
Finite Element N
Analysis Solution

Image | segmenf] o A\ | Boundary
B organ(s) Conditions

Fig. 17. These steps result in a deformation field that can be applied to
Image A to register it with Image B.

total error X error y error Z error

- of registration accuracy because the phantom provided a highly

N entire ?roup of 75 seeds ‘ X K R

B subset of 25 seeds closest to the rectum controlled environment and the CT images had higher reso-
lution and clarity than typical MRSI and ultrasound clinical

Fig. 16. Total average registration error for the entire group of seeds is | At ; s
than for the subset of seeds nearest the rectum. Also in the x and y directigﬁ,ages' However, appllcatlon of this methOdOIOQy to clinical

for which the seed segmentations are most reliable, the seeds nearestiM@ges is an important next step.
rectum have higher registration error. Clinical validation is complicated because it involves using

a non-rigid image registration to guide brachytherapy seed

placement. The errors in seed placement will depend both

VI. CONCLUSIONS ANDFUTURE WORK on registration errors and on needle insertion and guidance

In summary, the steps of an automated, finite elemesitrors. Therefore a goal will be to show that seed placements

based image registration algorithm have been described. ®bserved in a post-operative image more closely match the

rep shape models have been employed to link together re-operative plan when the non-rigid image registration is
tasks of image segmentation, mesh construction, and bouncdapyplied intra-operatively to the treatment planning image.

condition specification. Fig. 17 illustrates the flow of the For large deformations of the prostate, a hyperelastic or

registration algorithm. viscoelastic mechanical model may provide better registration

The initial validation experiments have been conducted witksults. A related research effort is aimed at modeling the

prostate phantom CT images. This has enabled careful analyséy soft tissue deforms during needle insertion. Combining a
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needle insertion model with non-rigid image registration mayRc : A = (Umaz + 1 — 0) (Umaz + |7|@)
provide a highly precise method for designing and delivering
brachytherapy treatment. (v = Vmaz) (Umar — 1+ |7]) (
Future plans include the development of a local subdivision B
method that would allow a mesh to be refined in areas, ., _
where the solution or geometry require higher resolution. This 2~ “* —
approach would be more computationally efficient than the B=u(l—|r|a)+ (1 —u)(—|r|a) (
global subdivision method currently in use.
Planned experiments also include the use of a five objectRA’ Rp, Rc,Rp:
male pelvis model that includes the rectum, bladder, and pubic C=7(1-a)
bone objects in addition to the prostate. The use of a multi-
object model would allow not only the prostate but also the
surrounding structures to be accurately registered.

Umaz — 1

Umaz + 1)

e <

Umaz + 1)

Umazx — 1

(a,b) medial object surface coordinates are defined using
the (A, B, C) coordinates described above. Theb) param-
eter space is basically the surface of the B, C') parameter
space unfolded along the,,,... + 1) edge.

B A if C>0
o 2 (Umaz +1)— A IfC <0

APPENDIXI
MEDIAL OBJECT COORDINATE TRANSFORMS

An m-rep figure is an inherently three-dimensional object, a
and its surface is inherently two-dimensional. However, medial
object coordinates use fouw,v,t,7) parameters. For effi-
ciency, coordinate transforms are defined to nfapv, ¢, 7) ACKNOWLEDGMENT
coordinates into the three-dimension@al, B, C) parameter
space and to map figure surface coordinates into the two-We thank Gregg Tracton for assistance with image process-

b = B

dimensional(a, b) parameter space. ing and Gilad Cohen for the prostate phantom design.
An m-rep figure can be divided into five regions: a center
region and four rim regions, labelle® 4, Rz, Rc, Rp and REFERENCES

Rg in Fig. 18 (a). In any one of the regions only three of{1] A. Bharatha, M. Hirose, N. Hata, S. Warfield, M. Ferrant, K. Zou,
the four medial coordinates are needed to uniquely identify E. Suarez-Santana, J. Ruiz-Alzola, A. D’Amico, R. Cormack, R. Kikinis,

. = h . . I . F. Jolesz, and C. Tempany, “Evaluation of three-dimensional finite
a point. For the entire center regiol®z, all points can element-based deformable registration of pre-and intraoperative prostate
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tm 2001.
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Fig. 18. (a) Five regions of an m-rep figure (b) Diagram of (be B, C') parameter space with the five m-rep regions labelled (c) & (d) A sliced view of
one of the rim regions, with the polar type medial object coordinates shown on the left and the correspdnding’) parameter space on the right.
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