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Principal Geodesic Analysis for the Study of
Nonlinear Statistics of Shape
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Abstract—A primary goal of statistical shape analysis is to of a spherical harmonic surface representation of the object.

describe the variability of a population of geometric objects. A An average object vector is computed as the linear average of
standard technique for computing such descriptions is principal e training set;

component analysis. However, principal component analysis is ’ N

limited in that it only works for data lying in a Euclidean vector 1 ‘

space. While this is certainly sufficient for geometric models that = N Z Ts-

are parameterized by a set of landmarks or a dense collection of i=1

boundary points, it does not handlg more complex.representations Principal component analysis (PCA) [16] is then used to find
of shape. We have been developing representations of geometry,, efficient parameterization of the model variability. This is

based on the medial axis description or m-rep. While the medial lished b fi - Ivsis of th |
representation provides a rich language for variability in terms accomplished by computing an eigenanalysis or the sample

of bending, twisting, and widening, the medial parameters are Covariance matrix

not elements of a Euclidean vector space. They are in fact N

elements of a nonlinear Riemannian symmetric space. In this S — l Z(w _ M)(l‘ o 'u)T

paper we develop the method of principal geodesic analysis, a N < ! ! ’

generalization of principal component analysis to the manifold =1

setting. We demonstrate its use in describing the variability If v,,k = 1,...,d are the ordered eigenvectors of the

of medially-defined anatqmical objects. Rgsylts of applying this quadratic formS with corresponding eigenvalues,, then a
framework on a population of hippocampi in a schizophrenia o\ ohiect within the realm of statistically feasible shapes is
study are presented. .

parameterized by

d
I. INTRODUCTION T=p+ Zakvk,

Statistical shape analysis [8], [21], [27] is emerging as i=1
an important tool for understanding anatomical structureghere theay € R are coefficients that control the modes of
from medical images. Given a set of training images, thariation.
goal is to model the geometric variability of the anatomical Shape is often defined as the geometry of objects that is
structures within a class of images. Statistical models giwevariant under global translation, rotation, and scaling. To en-
an efficient parameterization of the geometric variability adure that the variability being computed is from shape changes
anatomy. These models can provide shape constraints dummdy, an important preprocessing step of any shape analysis
image segmentation [6]. Statistical descriptions of shape aeehnique is to align the training objects to a common position,
also useful in understanding the processes behind growth amintation, and scale. The common alignment technique used
disease [7]. is Procrustes alignment [12], which seeks to minimize, with

Deformable model approaches represent the underlyirgspect to global translation, rotation and scaling, the sum-of-
geometry of the anatomy and then use a statistical analysipiared distances between corresponding data points.
to describe the variability of that geometry. Several different While most work on the statistical analysis of shape has
geometric representations have been used to model anatdimgused on linear methods, there has been some work on
Bookstein [2] uses landmarks to capture the important gstatistical methods for nonlinear geometric data. Pennec [25]
ometric features. The active shape model (ASM) of Cooteefines Gaussian distributions on a manifold as probability
and Taylor [6] represents an object's geometry as a derdmnsities that minimize information. Related work includes
collection of boundary points. Cootes et. al. [5] have aughe statistical analysis of directional data [23] and the study
mented their statistical models to include the variability of thef shape spaces as complex projective spaces [20].
image information as well as shape. Kelemen et. al. [19] useLinear shape models treat shape changes as combinations
a spherical harmonic (SPHARM) decomposition of the objeof local translations. Shape changes can also be usefully
geometry. considered as combinations of local translations, rotations, and

In all of these approaches the underlying geometry is paramagnifications. Following that point of view, in our previous
eterized as a Euclidean vector space. The training data is givesrk [17], [26] we have developed methodology based on
as a set of vectorsy, ...,z in a vector spac&’. For active medial descriptions called m-reps. The medial representation
shape models each vector is constructed by concatenatiorpiadvides a powerful framework for describing shape variabil-
the boundary points in an object. For spherical harmonics edth in intuitive terms such as local thickness, bending, and
vector is constructed as the concatenation of the coefficiemtslening. However, the medial parameters are not elements of



medial atom implies two opposing boundary poings, y1,
calledimplied boundary pointswhich are given by

Yo = X+ rng, Y1 =X+rny. 1)

The surface normals at the implied boundary pojnisy; are
given byng, nq, respectively.
We point out that in our previous work [9], [10] we
parameterized medial atoms with a positior R?, a radius
r € R*, an orthonormal framéb, b+, n) € SO(3), and an
object angled € [0, 7r) (see Fig. 1). Here the vectbrpoints in
the direction of the spoke bisectar,is normal to the medial
sheet, ancb ' is chosen to complete the orthonormal frame.
The object angl® is the half-angle between the two spokes.
This representation has the drawback that medial atoms may
Fig. 1. Medial atom with a cross-section of the boundary surface it implid¥0t have a unique representation. For example, consider a
(left). An m-rep model of a hippocampus and its boundary surface (right).medial atom with object anglé = g i.e., the spokes are
aligned in opposing directions. In this case the frame may
. . ._be rotated arbitrarily about the vecter without changing
a Euclidean space. Therefo.re, the stanc_iard linear techniq medial atom. The representation presented in this paper,
of shape anglyss, namely linear averaging and PCA, do I?%Iacing the frame and object angle with two spoke directions,
apply. In this paper we show Fhat the medlal_ parametefyeas not suffer from such multiplicities. For generic atoms
are in fact elements of a certain type of manifold know(%ith 6 ¢ (0,T) there is a well-defined conversion between

. : _ )z
as a Riemannian symmetric space. We then show how two representations.

standard shape analysis techniques can be generalize ¥or three dimensional slab-like figures (Fig. 1) the lattice

handle manifold data. First, we describe how averages 8 medial atoms is a quadrilateral mesh, (i, §) € [1,m] x
. YERSE )
be computed on a manifold. Next, we develop a new methel, ) " the sampling density of medial atoms in a lattice is

namedprincipal geodesic analysigPGA), a generalization of jersely proportional to the radius of the medial description.

PCA, for Qescribing th_e variability of data on a manifold. Given an m-rep figure, we fit a smooth boundary surface to
In Section Il we review the necessary theory of Symmetife model. We use a subdivision surface method [30] that

spaces and m-reps, shpwing that m-rep models are pargillarpolates the boundary positions and normals implied by
eterized by a symmetric space. Section Ill describes h%ch atom

means are computed on manifolds. Principal geodesic analysig medial atom as defined above is a point on the manifold

is developed in Section IV as a method for describing th)?/l(l) — R3 x Rt x S% x S2. Moreover, an m-rep model

variability of Qata on a manifold. The statigtical metho,dEonsisting ofn medial atoms may be considered as a point
are then_ applle_d to the study of medially-defined anatomicgl, e manifoldM (n) = [T, M(1), i.e., the direct product
shapes in Section V. of n copies of M(1). The spaceM(n) is a particular type
of manifold known as a Riemannian symmetric space, which
simplifies certain geometric computations, such as computing
A. M-Rep Overview geodesics and distances. These concepts will be instrumental
The medial representation used in this paper is based iBnour development of principal geodesic analysis, and we
the medial axis of Blum [1]. In this framework, a geometri¢eview them now.
object is represented as a set of connected continuous medial . )
manifolds. For 3D objects these medial manifolds are form& Riemannian Manifolds
by the centers of all spheres that are interior to the object andA Riemannian metricon a manifold M/ is a smoothly
tangent to the object’s boundary at two or more points. Tharying inner product:, -) on the tangent spacg, M at each
medial description is defined by the centers of the inscrib@dint x € M. The norm of a vectow € T, M is given by
spheres and by the associated vectors, cadleakes from ||v|| = (v,v)2. Given a smooth curve segment i, its
the sphere centers to the two respective tangent points length is computed by integrating the norm of the tangent
the object boundary. Each continuous segment of the mediakttors along the curve. The Riemannian distance between two
manifold represents a medial figure. In this paper we focus pointsz,y € M, denotedd(z, y), is defined as the minimum
3D objects that can be represented by a single medial figulength over all possible smooth curves betweeand y. A
We sample the medial manifold over a spatially regulayeodesic curvas a curve that locally minimizes the length
lattice. The elements of this lattice are calleddial atoms between points. Arisometryof M is a diffeomorphic map
A medial atom (Fig. 1) is defined as a 4-tupla = & : M — M that preserves the Riemannian distance, i.e.,
{x,r,ng,n;}, consisting of:x € R3, the center of the d(z,y) = d(®(x),®(y)), for all z,y € M. A manifold is said
inscribed spherer € RT, the local width defined as theto be completeif all geodesics extend indefinitely. This is an
common spoke lengthng,n; € S2, the two unit spoke important property because it implies that between any two
directions (heres? is the sphere iR? with radius one). The points there exists a length-minimizing geodesic.

Il. BACKGROUND THEORY



Given a tangent vectov € T,M, there exists a unique isometries means thdtz,y) = d(g-z,g-y), forall z,y € M,
geodesicyy, (t), with v as its initial velocity. The Riemanniang € G.
exponential map, denotefixp,, mapsv to the point at  As an example consider the symmetric sp8éethe sphere
time one along the geodesig,. The geodesic has constantn R3. Rotations of the sphere are a smooth group action by
speed equal td|dvy,/dt||(t) = |[v||, and thus the expo- the Lie groupSO(3), the 3 x 3 rotation matrices. We choose
nential map preserves distances from the initial point, i.¢he base point to be the north poje= (0,0,1) € S2. It is
d(z,Exp,(v)) = ||v||. The exponential map is a diffeomor-easy to see that the orbit pfis the entire sphere. Thu&® is
phism in a neighborhood of zero, and its inverse in thi& homogeneous space. Also, the isotropy subgroypisthe
neighborhood is the Riemannian log map, dendteg),. Thus group of all rotations about the-axis, which can be identified
for a pointy in the domain ofLog, the geodesic distancewith the group of2D rotations, SO(2). Therefore, S? is

betweenz andy is given by naturally identified with the quotient spac®)(3)/5S0(2).
diz o) — |IL 5 Finally, we turn to the symmetric space of medial atoms,
(,y) = || Log, (y)]. (2) M(1) = R® x Rt x §2 x S2. The groupG = R?® x
RT x SO(3) x SO(3) acts smoothly onM(1). Let g =
C. Lie Groups and Symmetric Spaces (v,s,Rp,Rq) be an element off and m = (x,7,ngp,ny)

Briefly, a Riemannian symmetric space is a connect@§ @ medial atom. Then the group action is given by

manifold M such that at each point the mapping that reverses
geodesics through that point is an isometry. For a detailed
treatment of symmetric spaces see the standard texts [3], [Tf}is action is transitive, and we can choose a base atom
Common examples of symmetric spaces are Euclidean spae@th centerx = 0, radiusr = 1, and both spoke directions,
R", spheres,5", and hyperbolic spacesl{”. Symmetric ng,n;, equal to(0,0, 1). The isotropy subgroug,, is given
spaces, and the methods for computing geodesics and distamgesol x {1} x SO(2) x SO(2). The medial atom space
on them, arise naturally from Lie group actions on manifoldgan thus be thought of as the quotient(1) = R3 x Rt x

A Lie group G is a differentiable manifold that also forms(S0O(3)/50(2)) x (SO(3)/SO(2)).
an algebraic group, where the two group operations, Other examples of symmetric spaces are the compact Lie
groups, such as the rotation group$)(n), and the Euclidean
. groups,R™. These groups act on themselves transitively by
Lix o GG Inverse their group multiplication. Thus the geodesics for such a Lie

are differentiable mappings (the symholused in this way group at the identity are its one-parameter subgroups.
should not be confused with the mean). Many common ge-
ometric transformations of Euclidean space form Lie groups. Geodesics

For example, rotations, translations, magnifications, and affineG desi . ae— /G d
transformations ofR™ all form Lie groups. More generally, eodesics on a symmetric spatk= G/G, are compute

Lie groups can be used to describe transformations of smomﬁc_)ugh the. group action. S'.ndé 'S & group of Isometries
manifolds. actmg transitively on\/, |.t suffices to con3|der oqu geodesics
Given a manifold)M and a Lie groupG, a smooth group starting at the base point For an arbitrary pointt € M,

actionof G on M is a smooth mapping' x M — M, written 9ECUESICS starting at are of the formg - 7, wherex = g p
(g,) — g -z, such that for allg, h € G, and allz € M we and~ is a geodesic withy(0) = p. Geodesics are the image

havee - = z, and (gh) - = (g - (h - 2)), wheree is the of the action of a one-parameter subgroupGoacting on the

identity element ofG. The group action should be thought O]base pomn. ) _ )

as a transformation of the manifoltl/, just as matrices are Returning to the spheré/”, the geodesics at the base point

transformations of Euclidean space p = (0,0, 1) are the great circles throughi.e., the meridians.
The orbit of a pointz € M is defiﬁed asi(z) = {g - o - These geodesics are realized by the group action of a one-

g € G}. In the case thaf/ consists of a single orbit, we parameter subgroup &§O(3). Such a subgroup consists of

call M a homogeneous spaand say that the group action@!! rqtations about a fixed axi52ﬂi3 perpendicular tgp. We
is transitive The isotropy subgroupf z is defined as?, = consider a tangent vector If,5* as a vectow = (v1, v, 0)
(g G:g-x=a}, ie.,G, is the subgroup o that leaves in the z-y plane. Then the exponential map is given by
the pointz fixed.

Let H be a closed Lie subgroup of the Lie groGp Then Exp,(v) = <“1 ’
the left cosetof an elemeny € G is defined ag/H = {gh :
h € H}. The space of all such cosets is denot@@H and where ||[v|| = +/v? +v3. This equation can be derived as
is a smooth manifold. There is a natural bijecti6f{z) = a sequence of two rotations that rotate the base poiat
G /G, given by the mapping - = — gG,. Now let M be a (0,0,1) to the pointExp,(v). The first is a rotation about
symmetric space and choose an arbitrary base gomt)M/. the y-axis by an angle of, = ||v||. The second, aligning
We can always writél/ as a homogeneous spaktk= G/G,, the geodesic with the tangent vector is a rotation about
where G is a connected group of isometries df, and the the z-axis by an angle ofp,, wherecos(¢,) = v1/||v|| and
isotropy subgrouygs,, is compact. The fact thak is a group of sin(¢.) = va/|[v]|.

g.m:(X+V78.raR0'n0aR1'n1)'

e (z,y) — xy i GxG—G Multiplication

sin ||v sin ||v
L S cos o). @

[ll] [lol]



The corresponding log map for a point= (z1,22,25) € M of the sum-of-squared Riemannian distances to each point.

S? is given by Thus the intrinsic mean is
0 0 O )
Log,(z) = (=1 - snd’ *2 s ) (4) 0= argeg\r}and(x,xi) , (5)

i=1
whered = arccos(z3) is the spherical distance from the bas@vhered( )

: : . , : . -,-) denotes Riemannian distance 8f. This is the
point p to the pointz. Notice that the antipodal pointp is  yafinition of a mean value that we use in this paper.
not in the domain of the log map.

The idea of an intrinsic mean goes back t@dfret [11],

who defines it for a general metric space. The properties
lll. M EANS ONMANIFOLDS of the intrinsic mean on a Riemannian manifold have been

The first step in extending statistical methods to manifoldgudied by Karcher [18]. Moakher [24] compares the properties
is to define the notion of a mean value. In this sectionf the intrinsic and extrinsic mean for the group of 3D
we formulate two different notions of means on manifoldgotations. Since the intrinsic mean is defined in (5) as a
We then describe a method for computing the mean ofrainimization problem, its existence and uniqueness are not
collection of data on a manifold. Throughout this sectioansured. However, Kendall [22] shows that the intrinsic mean
we consider only manifolds that are connected and haveexists and is unique if the data is well-localized.
complete Riemannian metric.

B. Computing the Intrinsic Mean

A. Intrinsic vs. Extrinsic Means Computation of the intrinsic mean involves solving the
Given a set of pointszy,...,zy € R? the arithmetic Minimization problem in (5). We will assume that our data
meanz = %Zi\; z; is the point that minimizes the sum-Z1....,2, € M lies in a sufficiently small neighborhood so

of-squared Euclidean distances to the given points, i.e., that a unigue solution is guaranteed. We must minimize the
sum-of-squared distance function

N
T =arg min Y ||z — ;% 1 X
z€R? ; f(z) = N Zd(x,xi)z.
Since a general manifold/ may not form a vector space, =t
the notion of an additive mean is not necessarily valid¥e now describe a gradient descent algorithm, first proposed
However, like the Euclidean case, the mean of a set of poift¢ Pennec [25], for minimizingf. Using the assumption
on M can be formulated as the point which minimizes thihat thez; lie in a strongly convex neighborhood, i.e., a
sum-of-squared distances to the given points. This formulatifgighborhood such that any two points ity are connected
depends on the definition of distance. One way to defif®¥ & unique geodesic contained completely withipKarcher
distance onM is to embed it in a Euclidean space andil8] shows that the gradient of is
use the Euclidean distance between points. This notion of 1N
distance is extrinsic td/, that is, it depends on the ambient Vi(x) = N ZLogm(xi).
space and the choice of embedding. Given an embedding i=1
® : M — R?, define theextrinsic mear{13] of a collection The gradient descent algorithm takes successive steps in the
of pointszy,...,zy € M as negative gradient direction. Given a current estimgtéor the
N intrinsic mean, the equation for updating the mean by taking
[o = arg minz ||®(x) — @(zi)H?, a step in the negative gradient direction is
reM N
Given the above embedding 8f, we can also compute the Hit1 = EXp“j (]7\} Z Logw (m)) )
arithmetic (Euclidean) mean of the embedded points and then i=1
project this mean onto the manifold/. This projected mean wherer is the step size.
is equivalent to the above definition of the extrinsic mean (seeBecause the gradient descent algorithm only converges
[28]). Define a projection mapping : R — G as locally, care must be taken in the choices of the initial estimate
of the meanuy and the step size. Since the data is assumed
to be well-localized, a reasonable choice for the initial estimate
1o is one of the data points, say;. The choice ofr is
somewhat harder and depends on the manifdldBuss and
1 X Fillmore [4] prove for data on spheres, a value7of= 1 is
Mo = W(NZ‘I’(%)) sufficient. Notice that ifM is a vector space, the gradient
i=1 descent algorithm withr = 1 is equivalent to linear averaging
A more natural choice of distance is the Riemannian diand thus converges in a single stepMf= R, the Lie group
tance onM. This definition of distance depends only on thef positive reals under multiplication, the algorithm with= 1
intrinsic geometry ofd. We now define thentrinsic mean is equivalent to the geometric average and again converges in
of a collection of pointsey,...,zy € M as the minimizer in a single step.

m(z) = arg min ||®(y) — x||2
yeM

Then the extrinsic mean is given by



In summary we have the following algorithm for computingd. Variance

the intrinsic mean of manifold data: . . .
The variances? of a real-valued random variable with

Algorithm 1: Intrinsic Mean meany is given by the formula
Input: z1,...,oxy € M
Output: x € M, the intrinsic mean o = &[(x — p)?],
=x
’500 ' where& denotes expectation. It measures the expected local-
Ap=TL Ef\il Log,,, ; ization of the variabler abouf[ the mean. When dealing with
f1j41 = Exp,, (Ap) a v_ector—\_/alued random vanabls_e in R? WIFh mean u, the
While [|Apl| > e variance is replaced by a covariance matrix

S = El(x — w)(x — 7).
V. PRINCIPAL GEODESICANALYSIS However, this definition is not valid for general manifolds

Although averaging methods on manifolds have previous?;l:nessmce vector space operations do not exist for such

been studied, principal component analysis has not been de o ) )

oped for manifolds. We present a new method cafiédcipal | "€ definition of variance we use comes froneéfet [11],
geodesic analysi¢PGA), a generalization of principal com-Who defines the variance of a random vanaple in a metric
ponent analysis to manifolds. We start with a review of PCAPace as the expected value of the squared distance from the
in Euclidean space. Consider a set of poinis...,zx € .megn.. That is, for a random v.ana'bi:em a metric space with

R with zero mean. Principal component analysis seeks!™finSic meany, the variance is given by

sequence of linear subspaces that best represent the variability
of the data. To be more precise, the intent is to find a
orthonormal basis{vs,...,vs} of R?, which satisfies the
recursive relationship

o? = Eld(u, ).

Thus given data points;,...,xx on a complete, connected
manifold M, we define the sample variance of the data as

N

v = arg maxZ(v - x)? (6) 21 . 2 1 - 2
lloll=1 ’ o = N ;d(,u,xl) = ﬁ ; || LOgM($1)|| ) (8)
N k-1
vp = arg max » Y (v -x;)’ + (v-2;)°. (7) wherey is the intrinsic mean of the;.
llell=1 =1 j=1 Notice that if M is a vector space, then the variance
] definition in (8) is given by the trace of the sample covariance
In other words, the subspadg = span({v1,...,v:}) is the  mayix ie., the sum of its eigenvalues. It is in this sense that

k-dimensional subspace that maximizes the variance of s gefinition captures the total variation of the data.
data projected to that subspace. The bdsis} is computed
as the set of ordered eigenvectors of the sample covariance

matrix of the data. B. Geodesic Submanifolds

Now turning to manifolds, consider a set of points ) o ) )
21,...,2x ON a manifold M. Our goal is to describe the The next step in generalizing PCA to manifolds is to
variability of thex, in a way that is analogous to PCA. Thugéneralize the notion of a linear subspace. A geodesic is a
we will project the data onto lower-dimensional subspaces tHatrve that is locally the shortest path between points. In this
best represent the variability of the data. This requires fird@y @ geodesic is the generalization of a straight line. Thus

extending three important concepts of PCA into the manifoiti 1S natural to use a geodesic curve as the one-dimensional
setting: subspace, i.e., the analog of the first principal direction in

« Variance. Fpllowmg the work of Fechet, we define the In general ifN is a submanifold of a manifold/, geodesics
sample varlance O.f the. data as the expected value of %}eN are not necessarily geodesics bf. For instance the
quuaéjred. R|ent1)ann|aanh|stel1nce frC?m the. me?n. b sphereS? is a submanifold oR?, but its geodesics are great

+ eodesic subspacesin€ lower-dimensional SUbSpaces; qjag \while geodesics @ are straight lines. A submanifold
in PCA are linear subspacgs. For general manifolds of M is said to be geodesic ate H if all geodesics of
exte(;]d _the gonceftl dOf a linear subspace to that Ofﬁ passing through: are also geodesics dff. For example
geodesic submanitol a linear subspace oR“¢ is a submanifold geodesic 4t

« Projection. In PCA the data is projected onto linearg b icoids geodesic at preserve distances te. This is

subspages. We define a pr01e9t|on operator'f(')r geodegH: essential property for PGA because variance is defined as

submamfolds, and show how it may be efficiently e average squared distance to the mean. Thus submanifolds

proximated. geodesic at the mean will be the generalization of the linear
We now develop each of these concepts in detail. subspaces of PCA.



Fig. 2. We know the hypotenuse length= d(p,z) and the
angled, and we want to derive the true projection, which is
given by the side length. We use the following two relations
from the laws of spherical trigonometry:

cos ¢ = (cosa)(cosb),
sinb

=ginc.

sin 0

Solving for a in terms of the hypotenuse and the angle,

we have
COs c
a = arccos - = .
1 — (sinfsinb)?
Fig. 2. The spherical triangle used in the calculation of the projection operator
for 2. The tangent-space approximation in (9) is equivalent to solving
for the corresponding right triangle iR2. Using standard
Euclidean trigonometry, the tangent-space approximation (9)
gives

C. Projection

The projection of a point € M onto a geodesic subman-
ifold H of M is defined as the point o that is nearest
to z in Riemannian distance. Thus we define the projectiq¥or nearby data, i.e., small values for this gives a good
operatorry : M — H as approximation. For example, fer< 7 the maximum absolute

B . 9 error is 0.07rad. However, the error can be significant for far
my(z) = arg mind(z,y)~. X ;
yeH away points, i.e., ag approaches;.

a = ccosf.

Since projection is defined by a minimization, there is no guar-

antee that the projection of a point exists or that it is uniqug, computing Principal Geodesic Analysis
However, by restricting to a small enough neighborhood about

the mean, we can be assured that projection is unique for anyVe aré now ready to define principal geodesic analysis
submanifold geodesic at the mean. for datazi,...,zy on a connected, complete manifold.

Projection onto a geodesic submanifold can be appro@-“r goal, analogous to PCA, is to find a sequence of nested
mated linearly in the tangent space bf. Let H ¢ M be geodesic submanifolds that maximize the projected variance of

a geodesic submanifold at a poipte M andz € M a the data. These submanifolds are calledghiacipal geodesic

point to be projected ontdl. Then the projection operator isSUPmanifolds o
approximated by Let T,,M denote the tangent space &f at the intrinsic

meany of thex;. LetU C T,M be a neighborhood df such

that projection is well-defined for all geodesic submanifolds
of Exp,(U). We assume that the data is localized enough
to lie within such a neighborhood. The principal geodesic

mp(w) = arg min || Log, (y)|”
yeH

~ arg min || Log, (z) — Logp(y)Hz.

yeH . ' . .

) o ) submanifolds are defined by first constructing an orthonormal
Notice thatLog, (y) is simply a vector irll;, H. Thus we may hasis of tangent vectors,,...,v; € T, M that span the
rewrite the approximation in terms of tangent vectors as  tangent spacd, M. These vectors are then used to form a

Log, (mi(x)) ~ arg min || Log, (x) — v||> sequence .of .nested sub§padQs = _span({vl, e ,v(c}) N
vET,H U. The principal geodesic submanifolds are the images of

But this is simply the minimization formula for linear pro—the Vi, under the exponential mapfy = Exp, (V). The

jection of Log,(z) onto the linear subspac&,H. So, if ﬂrsF principal direction is chos_en to maximize the projected
P variance along the corresponding geodesic:

v1,. ..,V iS an orthonormal basis fdr, H, then the projection
operator can be approximated by the formula N
K v = angHm?XZ || Log,, (7w ()|, (10)
Log, (ru(z)) = ) (vi,Log,(z)). 9) o=
? ; i where H = Exp,, (span({v}) N U).

_A_\nalyzing the quality_of the approximation in (9) may bery,q remaining principal directions are then defined recursively
difficult for general manifolds. Here we demonstrate the err

computations for the special case of the sphgtelLet H be

a geodesic (i.e., a great circle) through a peirt S2. Given
J°! (2 y ) ugh a paint 5 v = arg maXZHLog (mr (2:))])? (11)

a pointz € S*, we wish to compute its true projection onkb AP I i )

and compare that with the approximation in the tangent space ol

7,52, Thus we have the spherical right triangle as shown in  Where H = Exp,, (span({vi, ..., ve—1,0}) N U).

N



4/ \f ‘\\ f ) / A subset of 16 of these models are displayed as surfaces in
: - — Fig. 3. The m-rep models were automatically generated by the

method described in [29], which chooses the medial topology

\J ‘ \J and sampling that is sufficient to represent the population of
objects. The models were fit to expert segmentations of the

hippocampi from MRI data. The average distance error from
N /Ar ‘\\ / p the m-rep boundary to the original segmentation boundary
— ranged from 0.14mm and 0.27mm with a mean error of

0.17mm. This is well within the original MRI voxel size

. . \/ \ (0.9375mm x 0.9375mm 1.5mm). The sampling on each m-
— = N rep was3 x 8, making each model a point on the symmetric
spaceM(24). Since the dimensionality of1(1) is 8, the total

Fig. 3. The surfaces of 16 of the 86 original hippocampus m-rep modelgjun;bler _OESQImenSIOHS reql‘"red to represent the hlppocampus
moaeils Is .

If we use (9) to approximate the projection operatgr in

(10) and (11), we get A. The Exponential and Log Maps for M-reps

Before we can apply the statistical techniques for manifolds

N . . . .
v ~ arg maXZ@, Logu(xi)>2, devgloped in the previous sections, we must define the expo-
lloll=1 =5 nential and log maps for the symmetric spaetn), the space
N k—1 of m-rep models withn atoms. We begin with a discussion
vy ~ arg maXZZ@j,LOgM(gji»? + (v, Log, (). of the medial atom spac#1(1) = R? x Rt x S? x S2.
lloll=1 =7 =1 Let p = (0,1,po,p1) € M(1) be the base point, where

Ko = 1= (0,0,1) are the base points for the spherical
components. The tangent space fot(1) at the base point
gsan be identified withR®. We write a tangent vector €

Z%M(l)

The above minimization problem is simply the standard pri
cipal component analysis i), M of the vectorsLog, (z;),

which can be seen by comparing the approximations ab
to the PCA equations, (6) and (7). Thus an algorithm f
approximating the PGA of data on a manifold is given by

asu = (x, p, v, v1), Wherex € R3 is the positional
tangent componenf € R is the radius tangent component,
and vp,v; € R? are the spherical tangent components. The

Algorithm 2: Principal Geodesic Analysis exponential map forM (1) is now the direct product of the
Input: z1,...,zy € M exponential map for each component. The exponential map
Output: Principal directionsy, € T, M for R? is simply the identity map, foR it is the standard real
Variances \; € R exponential function, and fo$? it is the spherical exponential

w = intrinsic mean of{x;} (Algorithm 1) map given in (3). Thus foM(1) we have

Ui = LOg;L(‘Ti) P

S=1 Zi\il il Exp,(u) = (x,e”,Exp,, (vo), Exp,, (v1)),

{vk, A} = eigenvectors/eigenvalues 8f where the twoExp maps on the right-hand side are the

spherical exponential maps. Likewise, the log map of a point
V. APPLICATION TOM-REPS m = (x,7,n9,n;) is the direct product map
We now apply the statistical framework presented above for
general manifolds to the statistical analysis of m-rep models ~ Log,(m) = (x,logr, Log,, (no), Log,, (n1)),

of anatomi.cal objects. That is, we will apply the mean ar\ghere the twoLog maps on the right-hand side are the
PGA algozthlms .ttc;n;hi symn}rer;[rlc. S’.?afi(?’ .repres::‘nt:cng spherical log maps given by (4). Finally, the exponential and
m-rep models withn atoms. Ihe initial data IS a Set o m'Iog maps for the m-rep model spadd(n) are just the direct

rep _modeIle, y "MN < M(n.) _that have_ been fit 10 a hroducts ofn copies of the corresponding maps for the medial
particular class of objects in a training set of images. As is t %o spaceM(1)

case with other shape analysis methods, since we are interest
in studying the variability of shape alone, we must first alig e not in the same units. For the PGA calculations in

the models to a common posmor_1, orlentatlo_nj a_nd scale. &ction IV we scale the radius and sphere components in the
present an m-rep alignment algorithm that minimizes the surg-

2 _ Riemannian metric to be commensurate with the positional
of-squared geodesic distances between models, i.e., hassiéyj

otice that the units for the position, radius, and orientations

. R . .~ components. The scaling factor for both components is the
desirable property that it minimizes the same metric as is us

in the definiti £ th d princioal desics. but rage radius over all corresponding medial atoms in the
n the getinition of e mean and principal geodesics, bu oVg{)pulation. Thus the norm of the vector= T, M(1) becomes
the global similarity transformations of alignment. Next th
mean and PGA algorithms are adapted to the specific case of |ul| = (|\X||2 F 7202 + ||vi |2 + ||v2||2)>% 7
m-rep models.

The results of these techniques are demonstrated on a setloére 7 is the average radius over all corresponding medial
86 m-rep models of hippocampi from a schizophrenia studgtoms. Using this norm and the formula for Riemannian



distance (2), the distance between two atemsms € M(1)
is given by

d(my, my) = [| Logy,, (ma)]]. 12)

B. M-rep Alignment

To globally align objects described by boundary points to a
common position, orientation, and scale, the standard method
is the Procrustes method [12]. Procrustes alignment minimizes
the sum-of-squared distances between corresponding boundary
points, the same metric used in defining the mean and prinCipgl 4. The 86 aligned hippocampus m-reps, shown as overlayed medial
components. We now develop an analogous alignment proe®m centers.
dure based on minimizing sum-of-squared geodesic distances
on M(n), the symmetric space of m-rep objects witlatoms.

Let S = (s, R, w) denote a similarity transformation i3
consisting of a scaling by € R, a rotation byR € SO(3),
and a translation by € R3. We define the action o6 on a
medial atomm = (x,7,ng,n1) by

Algorithm 3: M-rep Alignment

1. Translations. First, the translational part of eac§;
in (16) is minimized once and for all by centering
each m-rep model. That is, each model is translated so
that the average of it's medial atoms’ positions is the origin.
S'm = S-(x,r,m9,01) = (sR-x+w, s, Rng, Rny). (13) |5 gotations and ScalingsThe ith model, M, is aligned
to the mean of the remaining models, denotgd

Now the action ofS on an m-rep objecM = {m; : i = | alignment is accomplished by a gradient desgent

1,... ,.n} is simply the application o8 to each ofM’s medial algorithm on SO(3) x R* to minimize d(j;, S; - M, )2,
atoms: The gradient is approximated numerically by a central
S M={S m;:i=1,...,n}. (14) |differences scheme. This is done for each of Ahenodels.

It is easy to check from (1) that this action 8fon M also |3. lterate. Step 2 is repeated until the metric (16) cannot
transforms the implied boundary points®f by the similarity | be further minimized.
transformatiors.

Consider a collectionM;,..., My € M(n) of m-rep

The result of applying the m-rep alignment algorithm to
: ’ N | the 86 hippocampus m-rep models is shown in Fig. 4. The
objects to be aligned, each consisting rofmedial atoms. regylting aligned figures are displayed as overlayed medial
We write m,; to denote theith medial atom in theath 510 centers. Since the rotation and scaling step of the
m-rep object. Notice that the m-rep parameters, which asggnment algorithm is a gradient descent algorithm, it is
positions, orientations, and scalings, are in different unitgqnortant to find a good starting position. Thus the alignment
Before we apply PGA to the m-reps, it is necessary to malieys initialized by first aligning the m-rep models with the

the various parameters commensurate. This is done by scajigcrustes method applied to the implied boundary points of
the log rotations and log radii by the average radius value @fe m-rep models.

the corresponding medial atoms. The squared-distance metric

between two m-rep modelsI; andM; becomes C. M-rep Averages

n Algorithm 1 can be adapted for computing means of m-

d(M;, M;)? = Z d(mg;, mg;)?, (15)  rep models by taking the manifold to be the symmetric space
a=1 M(n). Since this is a direct product space, the algorithm will

. converge if each of the components converge. Notice that each

\éviczrr]ebt;?fg)’ +) for medial atoms on the right-hand side ig¢ 0 B3 angr+ components inM(n) converge in a single

. _ ) .. iteration since they are commutative Lie groups. A step size of
The m-rep alignment algpr}th.m finds the set of S|m|Iar|t\4 = 1 is sufficient to ensure that th&’ components converge
trgnsform§1, -+, Sy that minimize th_e total sum—of-squaredas well. Also, care must be taken to ensure that the data is
distances between the m-rep figures: contained in a small enough neighborhood that the minimum
N i in (5) is unique. For theR3 and Rt components there is
d(Sy,...,SN;My,...,My) = ZZd(Si-Mi,Sj-Mj)Q. n(; restriction on the spread of.the.dgta. However, for the
=11 S? components the data must lie within a neighborhood of
(16) radius3 (see [4]), i.e., within an open hemisphere. This is a
Following the algorithm for generalized Procrustes analysisasonable assumption for the aligned m-rep models, whose
for objects inR3, minimization of (16) proceeds in stages: spoke directions for corresponding atoms are fairly localized,

and we have not experienced in practice any models that do



simpler linear average. However, linear averaging produces
invalid medial atoms. To demonstrate this we computed a
linear average of the atoms at a corresponding location in the
hippocampus mesh across the population. This average was
compared to the symmetric space average described in this
paper. The resulting two medial atoms are shown in Fig. 6.
The symmetric space mean is a valid medial atom, while the
linear average is not because the two spoke vectors do not
have equal length. The ratio of the two spoke lengths in the
linear average ig.2 to 1.

D. M-rep PGA

The PGA algorithm for m-rep models is a direct adaptation
of Algorithm 2. The only concern is to check that the data
is localized enough for the projection operator to be unique.
That is, we must determine the neighborhobdused in
(10) and (11). Again there is no restriction on tRé and
R* components. Fois? components it is also sufficient to
consider a neighborhood with radigs Therefore, there are
no further constraints on the data than those discussed for the
mean. Also, we can expect the projection operator to be well-
approximated in the tangent space, given the discussion of
the error in Section IV-C and the fact that the data lie within
0.1276 rad. from the mean. Finally, the computation of the
PGA of a collection of m-rep models is given by

Algorithm 5: M-rep PGA

Input: M-rep modelsMy, ..., My € M(n)

Output: Principal directionsy;, € T, M(n)
Variances\, € R

Fig. 6. The resulting symmetric space mean (left) and linear mean (right) ~ x = intrinsic mean of{ M} (Algorithm 4)

of a medial atom in the hippocampus models. Notice that the linear avergge w; = Log (M)

is not a valid medial atom as the two spokes do not have equal length. v /jv v
S= % D wiu]

{vk, A} = eigenvectors/eigenvalues 8f
algorithm for computing the intrinsic mean of a collection 0t the principal directionsy, that is sufficient to describe the

Fig. 5. The surface of the mean hippocampus m-rep.

m-rep models: variability of the m-rep shape space. New m-rep models may
Algorithm 4: M-rep Mean betg?neraltted v%/fl_thln tthls_subspace of typical obje(t:ts. Given a
Input: M, ..., My € M(n), m-rep models set 0 readc;)(ta) icientst = (a1, ...,qq), We generate a new
Output: 4 € M(n), the intrinsic mean M-reép modet by
po = My d
Do M(a) = Exp, (D ). (17)
Ap =« Zil Log,, M; k=1
fjt1 = Exp, (Ap) whereay, is chosen to be withifi—3v/Ax, 3v/Ax].
While [|Ap|| > e. The m-rep PGA algorithm was applied to the aligned hip-

Fig. 5 shows the surface of the resulting intrinsic mediPcampus data set. Fig. 7 displays the first three modes of vari-
on as the implied boundaries of the m-reps generated from

of the 86 aligned hippocampus m-rep models computed E)% g
Algorithm 4. The maximum difference in the rotation angl& CA Coefficientsay, = —3vAx, —1.5v/Ax, 0, 1.5v/ Ak, 3V Ay

from the mean in either of th&2 components wa$.1276 A plot of the eigenvalues and their cumulative sums is given

for the entire data set. Thus the data falls well within & Fi9- 8. The first 30 modes capture 95 percent of the total

neighborhood of radiug as required. variability, which is a significant reduction from the original
One might be tempted to simplify the statistical computal-92 dimensions of the hippocampus m-rep model.

tions by treating a medial atom as three pointsRift the

center pointx, and the two implied boundary poinss), y1. VI. DiscussioN

With this linear representation, the symmetric space meanWe presented a new approach to describing shape variability

algorithm involving geodesic computations is replaced by tArough principal geodesic analysis of medial representations.
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Fig. 7. The first three PGA modes of variation for the hippocampus m-reps. From left to right are the PGA deformatieds$dr.5, 1.5, and3 times

a promising area for future applications. Also, statistics on
linear models may benefit from the addition of nonlinear
information. For instance the point distribution model [6]
might be augmented with surface normals, represented as
points on a sphere, and handled under the PGA framework.
There is a method called principal curves [14], which has a
similar name to principal geodesic analysis. However, the two
methods are only loosely related. Principal curves are smooth

—CGumul ative curves that are fit to data in Euclidean space by minimizing
--95% Li ne . . L
m E genval ues the sum-of-squared Euclidean distances to the data. Principal

geodesic analysis on the other hand concerns data that lie on
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 a manifold, rather than Euclidean space. Principal QEOdESiC
submanifolds are intrinsic to the underlying space, and they

inimize sum-of-squared geodesic distances in that space.
Fig. 8. A plot of the eigenvalues from the modes of variation and thell?1 q 9 P

cumulative sums.

A. Application to Image Segmentation

We now briefly describe how principal geodesic analysis can

While m-rep parameters are not linear vector spaces, We used to guide a deformable model image segmentation. We
showed that they are elements of a Riemannian symmeti@ given an imagé and we want to fit an m-rep moda¥ to
space. We developed principal geodesic analysis as a methgshrticular object within the image. The m-rep modélhas
for efficiently describing the variability of data on a manifoldbeen trained, i.e., a PGA has been computed, on a training
The statistical methods for computing averages and princiga@pulation of m-rep models fit to known objects. Principal
geodesic analyses were applied to the study of shape frgavdesic analysis will be used to restrict the shape of the model
m-rep models. to statistically feasible instances of the object. Following a

We believe the methods presented in this paper will haBayesian framework, we maximize the log-posterior objective
application well beyond m-reps. Principal geodesic analydisnction:
is a promising technique for describing the variability of data
that fs, inheregtly nonl?near. As Lie grm?ps such as traynslations, log p(M][) o< log p(1[M) + log p(M).
rotations, and scalings are common entities in image analyg#®& do not discuss here the image log-likelihood term,
and computer vision, statistical analysis on Lie groups lsgp(/|M). This term, along with other details of m-rep



segmentation, can be found in [26]. The segmentation is inj5]
tialized by placing the mean model in the image. The model's
geometry is deformed within the image by simultaneouslyg
optimizing over the parameters; in (17) and over global
position, orientation, and scale. The geometric log-prior i??]
defined as the squared Mahalanobis distance

d 9
«
log p(M) = kz )TI: (8]
=1 Y
This segmentation strategy has been implemented, and prelir[ﬁ]-
inary tests on CT images of the kidney have been promising.
Production of further results and a quantitative analysis of ]
quality of the segmentations are in progress.
[11]
B. Future Work [12]

Another application of principal geodesic analysis is to
the statistical analysis of diffusion tensor images. A diffusingl
tensor is & x 3 real, symmetric, positive-definite matrix. The
space of all such matrices forms a symmetric spaé¥3) =
GL™(3)/SO(3), whereGL™(3) denotes the Lie group of all 14]
3 x 3 matrices with positive-determinant. We envision usinb
PGA as a method for studying the statistical variability dfi5]
diffusion tensor images across patients in a statistical atﬁla
framework. [17]

We plan to extend our analysis to more complex m-rep
models. This includes objects consisting of several figures,
i.e., objects that have a branched medial axis. Also, we intefig)
to handle scenes containing multiple objects. Preliminary work
in this area has produced a statistical liver model consisti?#%]
of several connected figures and a heart model built fro
multiple objects. In addition to the segmentation application
mentioned in the previous section, we foresee an applicatiGl
to shape discrimination, for example, for the separation of
the hippocampi into schizophrenics and controls. This requiris]
the development of statistical techniques for discrimination ?512]
symmetric spaces.
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