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Abstract— A primary goal of statistical shape analysis is to
describe the variability of a population of geometric objects. A
standard technique for computing such descriptions is principal
component analysis. However, principal component analysis is
limited in that it only works for data lying in a Euclidean vector
space. While this is certainly sufficient for geometric models that
are parameterized by a set of landmarks or a dense collection of
boundary points, it does not handle more complex representations
of shape. We have been developing representations of geometry
based on the medial axis description or m-rep. While the medial
representation provides a rich language for variability in terms
of bending, twisting, and widening, the medial parameters are
not elements of a Euclidean vector space. They are in fact
elements of a nonlinear Riemannian symmetric space. In this
paper we develop the method of principal geodesic analysis, a
generalization of principal component analysis to the manifold
setting. We demonstrate its use in describing the variability
of medially-defined anatomical objects. Results of applying this
framework on a population of hippocampi in a schizophrenia
study are presented.

I. I NTRODUCTION

Statistical shape analysis [8], [21], [27] is emerging as
an important tool for understanding anatomical structures
from medical images. Given a set of training images, the
goal is to model the geometric variability of the anatomical
structures within a class of images. Statistical models give
an efficient parameterization of the geometric variability of
anatomy. These models can provide shape constraints during
image segmentation [6]. Statistical descriptions of shape are
also useful in understanding the processes behind growth and
disease [7].

Deformable model approaches represent the underlying
geometry of the anatomy and then use a statistical analysis
to describe the variability of that geometry. Several different
geometric representations have been used to model anatomy.
Bookstein [2] uses landmarks to capture the important ge-
ometric features. The active shape model (ASM) of Cootes
and Taylor [6] represents an object’s geometry as a dense
collection of boundary points. Cootes et. al. [5] have aug-
mented their statistical models to include the variability of the
image information as well as shape. Kelemen et. al. [19] use
a spherical harmonic (SPHARM) decomposition of the object
geometry.

In all of these approaches the underlying geometry is param-
eterized as a Euclidean vector space. The training data is given
as a set of vectorsx1, . . . , xN in a vector spaceV . For active
shape models each vector is constructed by concatenation of
the boundary points in an object. For spherical harmonics each
vector is constructed as the concatenation of the coefficients

of a spherical harmonic surface representation of the object.
An average object vector is computed as the linear average of
the training set:

µ =
1
N

N∑

i=1

xi.

Principal component analysis (PCA) [16] is then used to find
an efficient parameterization of the model variability. This is
accomplished by computing an eigenanalysis of the sample
covariance matrix

S =
1
N

N∑

i=1

(xi − µ)(xi − µ)T .

If vk, k = 1, . . . , d are the ordered eigenvectors of the
quadratic formS with corresponding eigenvaluesλk, then a
new object within the realm of statistically feasible shapes is
parameterized by

x = µ +
d∑

i=1

αkvk,

where theαk ∈ R are coefficients that control the modes of
variation.

Shape is often defined as the geometry of objects that is
invariant under global translation, rotation, and scaling. To en-
sure that the variability being computed is from shape changes
only, an important preprocessing step of any shape analysis
technique is to align the training objects to a common position,
orientation, and scale. The common alignment technique used
is Procrustes alignment [12], which seeks to minimize, with
respect to global translation, rotation and scaling, the sum-of-
squared distances between corresponding data points.

While most work on the statistical analysis of shape has
focused on linear methods, there has been some work on
statistical methods for nonlinear geometric data. Pennec [25]
defines Gaussian distributions on a manifold as probability
densities that minimize information. Related work includes
the statistical analysis of directional data [23] and the study
of shape spaces as complex projective spaces [20].

Linear shape models treat shape changes as combinations
of local translations. Shape changes can also be usefully
considered as combinations of local translations, rotations, and
magnifications. Following that point of view, in our previous
work [17], [26] we have developed methodology based on
medial descriptions called m-reps. The medial representation
provides a powerful framework for describing shape variabil-
ity in intuitive terms such as local thickness, bending, and
widening. However, the medial parameters are not elements of
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Fig. 1. Medial atom with a cross-section of the boundary surface it implies
(left). An m-rep model of a hippocampus and its boundary surface (right).

a Euclidean space. Therefore, the standard linear techniques
of shape analysis, namely linear averaging and PCA, do not
apply. In this paper we show that the medial parameters
are in fact elements of a certain type of manifold known
as a Riemannian symmetric space. We then show how the
standard shape analysis techniques can be generalized to
handle manifold data. First, we describe how averages can
be computed on a manifold. Next, we develop a new method
namedprincipal geodesic analysis(PGA), a generalization of
PCA, for describing the variability of data on a manifold.

In Section II we review the necessary theory of symmetric
spaces and m-reps, showing that m-rep models are param-
eterized by a symmetric space. Section III describes how
means are computed on manifolds. Principal geodesic analysis
is developed in Section IV as a method for describing the
variability of data on a manifold. The statistical methods
are then applied to the study of medially-defined anatomical
shapes in Section V.

II. BACKGROUND THEORY

A. M-Rep Overview

The medial representation used in this paper is based on
the medial axis of Blum [1]. In this framework, a geometric
object is represented as a set of connected continuous medial
manifolds. For 3D objects these medial manifolds are formed
by the centers of all spheres that are interior to the object and
tangent to the object’s boundary at two or more points. The
medial description is defined by the centers of the inscribed
spheres and by the associated vectors, calledspokes, from
the sphere centers to the two respective tangent points on
the object boundary. Each continuous segment of the medial
manifold represents a medial figure. In this paper we focus on
3D objects that can be represented by a single medial figure.

We sample the medial manifold over a spatially regular
lattice. The elements of this lattice are calledmedial atoms.
A medial atom (Fig. 1) is defined as a 4-tuplem =
{x, r,n0,n1}, consisting of: x ∈ R3, the center of the
inscribed sphere;r ∈ R+, the local width defined as the
common spoke length;n0,n1 ∈ S2, the two unit spoke
directions (hereS2 is the sphere inR3 with radius one). The

medial atom implies two opposing boundary points,y0,y1,
called implied boundary points, which are given by

y0 = x + rn0, y1 = x + rn1. (1)

The surface normals at the implied boundary pointsy0,y1 are
given byn0,n1, respectively.

We point out that in our previous work [9], [10] we
parameterized medial atoms with a positionx ∈ R3, a radius
r ∈ R+, an orthonormal frame(b,b⊥,n) ∈ SO(3), and an
object angleθ ∈ [0, π) (see Fig. 1). Here the vectorb points in
the direction of the spoke bisector,n is normal to the medial
sheet, andb⊥ is chosen to complete the orthonormal frame.
The object angleθ is the half-angle between the two spokes.
This representation has the drawback that medial atoms may
not have a unique representation. For example, consider a
medial atom with object angleθ = π

2 , i.e., the spokes are
aligned in opposing directions. In this case the frame may
be rotated arbitrarily about the vectorn without changing
the medial atom. The representation presented in this paper,
replacing the frame and object angle with two spoke directions,
does not suffer from such multiplicities. For generic atoms
with θ ∈ (0, π

2 ) there is a well-defined conversion between
the two representations.

For three dimensional slab-like figures (Fig. 1) the lattice
of medial atoms is a quadrilateral meshmij , (i, j) ∈ [1,m]×
[1, n]. The sampling density of medial atoms in a lattice is
inversely proportional to the radius of the medial description.
Given an m-rep figure, we fit a smooth boundary surface to
the model. We use a subdivision surface method [30] that
interpolates the boundary positions and normals implied by
each atom.

A medial atom as defined above is a point on the manifold
M(1) = R3 × R+ × S2 × S2. Moreover, an m-rep model
consisting ofn medial atoms may be considered as a point
on the manifoldM(n) =

∏n
i=1M(1), i.e., the direct product

of n copies ofM(1). The spaceM(n) is a particular type
of manifold known as a Riemannian symmetric space, which
simplifies certain geometric computations, such as computing
geodesics and distances. These concepts will be instrumental
in our development of principal geodesic analysis, and we
review them now.

B. Riemannian Manifolds

A Riemannian metricon a manifold M is a smoothly
varying inner product〈·, ·〉 on the tangent spaceTxM at each
point x ∈ M . The norm of a vectorv ∈ TxM is given by
||v|| = 〈v, v〉 1

2 . Given a smooth curve segment inM , its
length is computed by integrating the norm of the tangent
vectors along the curve. The Riemannian distance between two
pointsx, y ∈ M , denotedd(x, y), is defined as the minimum
length over all possible smooth curves betweenx and y. A
geodesic curveis a curve that locally minimizes the length
between points. Anisometryof M is a diffeomorphic map
Φ : M → M that preserves the Riemannian distance, i.e.,
d(x, y) = d(Φ(x),Φ(y)), for all x, y ∈ M . A manifold is said
to becompleteif all geodesics extend indefinitely. This is an
important property because it implies that between any two
points there exists a length-minimizing geodesic.
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Given a tangent vectorv ∈ TxM , there exists a unique
geodesic,γv(t), with v as its initial velocity. The Riemannian
exponential map, denotedExpx, maps v to the point at
time one along the geodesicγv. The geodesic has constant
speed equal to||dγv/dt||(t) = ||v||, and thus the expo-
nential map preserves distances from the initial point, i.e.,
d(x, Expx(v)) = ||v||. The exponential map is a diffeomor-
phism in a neighborhood of zero, and its inverse in this
neighborhood is the Riemannian log map, denotedLogx. Thus
for a point y in the domain ofLogx the geodesic distance
betweenx andy is given by

d(x, y) = ||Logx(y)||. (2)

C. Lie Groups and Symmetric Spaces

Briefly, a Riemannian symmetric space is a connected
manifoldM such that at each point the mapping that reverses
geodesics through that point is an isometry. For a detailed
treatment of symmetric spaces see the standard texts [3], [15].
Common examples of symmetric spaces are Euclidean spaces,
Rn, spheres,Sn, and hyperbolic spaces,Hn. Symmetric
spaces, and the methods for computing geodesics and distances
on them, arise naturally from Lie group actions on manifolds.

A Lie group G is a differentiable manifold that also forms
an algebraic group, where the two group operations,

µ : (x, y) 7→ xy : G×G → G Multiplication

ι : x 7→ x−1 : G → G Inverse

are differentiable mappings (the symbolµ used in this way
should not be confused with the mean). Many common ge-
ometric transformations of Euclidean space form Lie groups.
For example, rotations, translations, magnifications, and affine
transformations ofRn all form Lie groups. More generally,
Lie groups can be used to describe transformations of smooth
manifolds.

Given a manifoldM and a Lie groupG, a smooth group
actionof G on M is a smooth mappingG×M → M , written
(g, x) 7→ g · x, such that for allg, h ∈ G, and allx ∈ M we
havee · x = x, and (gh) · x = (g · (h · x)), wheree is the
identity element ofG. The group action should be thought of
as a transformation of the manifoldM , just as matrices are
transformations of Euclidean space.

The orbit of a point x ∈ M is defined asG(x) = {g · x :
g ∈ G}. In the case thatM consists of a single orbit, we
call M a homogeneous spaceand say that the group action
is transitive. The isotropy subgroupof x is defined asGx =
{g ∈ G : g · x = x}, i.e., Gx is the subgroup ofG that leaves
the pointx fixed.

Let H be a closed Lie subgroup of the Lie groupG. Then
the left cosetof an elementg ∈ G is defined asgH = {gh :
h ∈ H}. The space of all such cosets is denotedG/H and
is a smooth manifold. There is a natural bijectionG(x) ∼=
G/Gx given by the mappingg · x 7→ gGx. Now let M be a
symmetric space and choose an arbitrary base pointp ∈ M .
We can always writeM as a homogeneous spaceM = G/Gp,
whereG is a connected group of isometries ofM , and the
isotropy subgroupGp is compact. The fact thatG is a group of

isometries means thatd(x, y) = d(g ·x, g ·y), for all x, y ∈ M ,
g ∈ G.

As an example consider the symmetric spaceS2, the sphere
in R3. Rotations of the sphere are a smooth group action by
the Lie groupSO(3), the3× 3 rotation matrices. We choose
the base point to be the north pole,p = (0, 0, 1) ∈ S2. It is
easy to see that the orbit ofp is the entire sphere. ThusS2 is
a homogeneous space. Also, the isotropy subgroup ofp is the
group of all rotations about thez-axis, which can be identified
with the group of 2D rotations, SO(2). Therefore,S2 is
naturally identified with the quotient spaceSO(3)/SO(2).

Finally, we turn to the symmetric space of medial atoms,
M(1) = R3 × R+ × S2 × S2. The groupG = R3 ×
R+ × SO(3) × SO(3) acts smoothly onM(1). Let g =
(v, s,R0,R1) be an element ofG and m = (x, r,n0,n1)
be a medial atom. Then the group action is given by

g ·m = (x + v, s · r,R0 · n0,R1 · n1).

This action is transitive, and we can choose a base atomp
with centerx = 0, radiusr = 1, and both spoke directions,
n0,n1, equal to(0, 0, 1). The isotropy subgroup,Gp, is given
by {0} × {1} × SO(2) × SO(2). The medial atom space
can thus be thought of as the quotientM(1) = R3 × R+ ×
(SO(3)/SO(2))× (SO(3)/SO(2)).

Other examples of symmetric spaces are the compact Lie
groups, such as the rotation groups,SO(n), and the Euclidean
groups,Rn. These groups act on themselves transitively by
their group multiplication. Thus the geodesics for such a Lie
group at the identity are its one-parameter subgroups.

D. Geodesics

Geodesics on a symmetric spaceM = G/Gp are computed
through the group action. SinceG is a group of isometries
acting transitively onM , it suffices to consider only geodesics
starting at the base pointp. For an arbitrary pointx ∈ M ,
geodesics starting atx are of the formg · γ, wherex = g · p
andγ is a geodesic withγ(0) = p. Geodesics are the image
of the action of a one-parameter subgroup ofG acting on the
base pointp.

Returning to the sphere,S2, the geodesics at the base point
p = (0, 0, 1) are the great circles throughp, i.e., the meridians.
These geodesics are realized by the group action of a one-
parameter subgroup ofSO(3). Such a subgroup consists of
all rotations about a fixed axis inR3 perpendicular top. We
consider a tangent vector inTpS

2 as a vectorv = (v1, v2, 0)
in the x-y plane. Then the exponential map is given by

Expp(v) =
(

v1 · sin ||v||
||v|| , v2 · sin ||v||

||v|| , cos ||v||
)

, (3)

where ||v|| =
√

v2
1 + v2

2 . This equation can be derived as
a sequence of two rotations that rotate the base pointp =
(0, 0, 1) to the pointExpp(v). The first is a rotation about
the y-axis by an angle ofφy = ||v||. The second, aligning
the geodesic with the tangent vectorv, is a rotation about
the z-axis by an angle ofφz, wherecos(φz) = v1/||v|| and
sin(φz) = v2/||v||.
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The corresponding log map for a pointx = (x1, x2, x3) ∈
S2 is given by

Logp(x) =
(

x1 · θ

sin θ
, x2 · θ

sin θ

)
, (4)

whereθ = arccos(x3) is the spherical distance from the base
point p to the pointx. Notice that the antipodal point−p is
not in the domain of the log map.

III. M EANS ON MANIFOLDS

The first step in extending statistical methods to manifolds
is to define the notion of a mean value. In this section
we formulate two different notions of means on manifolds.
We then describe a method for computing the mean of a
collection of data on a manifold. Throughout this section
we consider only manifolds that are connected and have a
complete Riemannian metric.

A. Intrinsic vs. Extrinsic Means

Given a set of pointsx1, . . . , xN ∈ Rd, the arithmetic
mean x̄ = 1

N

∑N
i=1 xi is the point that minimizes the sum-

of-squared Euclidean distances to the given points, i.e.,

x̄ = arg min
x∈Rd

N∑

i=1

||x− xi||2.

Since a general manifoldM may not form a vector space,
the notion of an additive mean is not necessarily valid.
However, like the Euclidean case, the mean of a set of points
on M can be formulated as the point which minimizes the
sum-of-squared distances to the given points. This formulation
depends on the definition of distance. One way to define
distance onM is to embed it in a Euclidean space and
use the Euclidean distance between points. This notion of
distance is extrinsic toM , that is, it depends on the ambient
space and the choice of embedding. Given an embedding
Φ : M → Rd, define theextrinsic mean[13] of a collection
of pointsx1, . . . , xN ∈ M as

µΦ = arg min
x∈M

N∑

i=1

||Φ(x)− Φ(xi)||2.

Given the above embedding ofM , we can also compute the
arithmetic (Euclidean) mean of the embedded points and then
project this mean onto the manifoldM . This projected mean
is equivalent to the above definition of the extrinsic mean (see
[28]). Define a projection mappingπ : Rd → G as

π(x) = arg min
y∈M

||Φ(y)− x||2.

Then the extrinsic mean is given by

µΦ = π
( 1

N

N∑

i=1

Φ(xi)
)
.

A more natural choice of distance is the Riemannian dis-
tance onM . This definition of distance depends only on the
intrinsic geometry ofM . We now define theintrinsic mean
of a collection of pointsx1, . . . , xN ∈ M as the minimizer in

M of the sum-of-squared Riemannian distances to each point.
Thus the intrinsic mean is

µ = arg min
x∈M

N∑

i=1

d(x, xi)2, (5)

whered(·, ·) denotes Riemannian distance onM . This is the
definition of a mean value that we use in this paper.

The idea of an intrinsic mean goes back to Fréchet [11],
who defines it for a general metric space. The properties
of the intrinsic mean on a Riemannian manifold have been
studied by Karcher [18]. Moakher [24] compares the properties
of the intrinsic and extrinsic mean for the group of 3D
rotations. Since the intrinsic mean is defined in (5) as a
minimization problem, its existence and uniqueness are not
ensured. However, Kendall [22] shows that the intrinsic mean
exists and is unique if the data is well-localized.

B. Computing the Intrinsic Mean

Computation of the intrinsic mean involves solving the
minimization problem in (5). We will assume that our data
x1, . . . , xn ∈ M lies in a sufficiently small neighborhood so
that a unique solution is guaranteed. We must minimize the
sum-of-squared distance function

f(x) =
1

2N

N∑

i=1

d(x, xi)2.

We now describe a gradient descent algorithm, first proposed
by Pennec [25], for minimizingf . Using the assumption
that the xi lie in a strongly convex neighborhood, i.e., a
neighborhoodU such that any two points inU are connected
by a unique geodesic contained completely withinU , Karcher
[18] shows that the gradient off is

∇f(x) = − 1
N

N∑

i=1

Logx(xi).

The gradient descent algorithm takes successive steps in the
negative gradient direction. Given a current estimateµj for the
intrinsic mean, the equation for updating the mean by taking
a step in the negative gradient direction is

µj+1 = Expµj

(
τ

N

N∑

i=1

Logµj
(xi)

)
,

whereτ is the step size.
Because the gradient descent algorithm only converges

locally, care must be taken in the choices of the initial estimate
of the meanµ0 and the step sizeτ . Since the data is assumed
to be well-localized, a reasonable choice for the initial estimate
µ0 is one of the data points, sayx1. The choice ofτ is
somewhat harder and depends on the manifoldM . Buss and
Fillmore [4] prove for data on spheres, a value ofτ = 1 is
sufficient. Notice that ifM is a vector space, the gradient
descent algorithm withτ = 1 is equivalent to linear averaging
and thus converges in a single step. IfM = R+, the Lie group
of positive reals under multiplication, the algorithm withτ = 1
is equivalent to the geometric average and again converges in
a single step.
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In summary we have the following algorithm for computing
the intrinsic mean of manifold data:

Algorithm 1: Intrinsic Mean
Input: x1, . . . , xN ∈ M
Output:µ ∈ M , the intrinsic mean

µ0 = x1

Do
∆µ = τ

N

∑N
i=1 Logµj

xi

µj+1 = Expµj
(∆µ)

While ||∆µ|| > ε.

IV. PRINCIPAL GEODESICANALYSIS

Although averaging methods on manifolds have previously
been studied, principal component analysis has not been devel-
oped for manifolds. We present a new method calledprincipal
geodesic analysis(PGA), a generalization of principal com-
ponent analysis to manifolds. We start with a review of PCA
in Euclidean space. Consider a set of pointsx1, . . . , xN ∈
Rd with zero mean. Principal component analysis seeks a
sequence of linear subspaces that best represent the variability
of the data. To be more precise, the intent is to find a
orthonormal basis{v1, . . . , vd} of Rd, which satisfies the
recursive relationship

v1 = arg max
||v||=1

N∑

i=1

(v · xi)2, (6)

vk = arg max
||v||=1

N∑

i=1

k−1∑

j=1

(vj · xi)2 + (v · xi)2. (7)

In other words, the subspaceVk = span({v1, . . . , vk}) is the
k-dimensional subspace that maximizes the variance of the
data projected to that subspace. The basis{vk} is computed
as the set of ordered eigenvectors of the sample covariance
matrix of the data.

Now turning to manifolds, consider a set of points
x1, . . . , xN on a manifoldM . Our goal is to describe the
variability of thexi in a way that is analogous to PCA. Thus
we will project the data onto lower-dimensional subspaces that
best represent the variability of the data. This requires first
extending three important concepts of PCA into the manifold
setting:

• Variance. Following the work of Fŕechet, we define the
sample variance of the data as the expected value of the
squared Riemannian distance from the mean.

• Geodesic subspaces.The lower-dimensional subspaces
in PCA are linear subspaces. For general manifolds we
extend the concept of a linear subspace to that of a
geodesic submanifold.

• Projection. In PCA the data is projected onto linear
subspaces. We define a projection operator for geodesic
submanifolds, and show how it may be efficiently ap-
proximated.

We now develop each of these concepts in detail.

A. Variance

The varianceσ2 of a real-valued random variablex with
meanµ is given by the formula

σ2 = E [(x− µ)2],

whereE denotes expectation. It measures the expected local-
ization of the variablex about the mean. When dealing with
a vector-valued random variablex in Rd with meanµ, the
variance is replaced by a covariance matrix

Σ = E [(x− µ)(x− µ)T ].

However, this definition is not valid for general manifolds
again since vector space operations do not exist for such
spaces.

The definition of variance we use comes from Fréchet [11],
who defines the variance of a random variable in a metric
space as the expected value of the squared distance from the
mean. That is, for a random variablex in a metric space with
intrinsic meanµ, the variance is given by

σ2 = E [d(µ, x)2].

Thus given data pointsx1, . . . , xN on a complete, connected
manifold M , we define the sample variance of the data as

σ2 =
1
N

N∑

i=1

d(µ, xi)2 =
1
N

N∑

i=1

||Logµ(xi)||2, (8)

whereµ is the intrinsic mean of thexi.
Notice that if M is a vector space, then the variance

definition in (8) is given by the trace of the sample covariance
matrix, i.e., the sum of its eigenvalues. It is in this sense that
this definition captures the total variation of the data.

B. Geodesic Submanifolds

The next step in generalizing PCA to manifolds is to
generalize the notion of a linear subspace. A geodesic is a
curve that is locally the shortest path between points. In this
way a geodesic is the generalization of a straight line. Thus
it is natural to use a geodesic curve as the one-dimensional
subspace, i.e., the analog of the first principal direction in
PCA.

In general ifN is a submanifold of a manifoldM , geodesics
of N are not necessarily geodesics ofM . For instance the
sphereS2 is a submanifold ofR3, but its geodesics are great
circles, while geodesics ofR3 are straight lines. A submanifold
H of M is said to be geodesic atx ∈ H if all geodesics of
H passing throughx are also geodesics ofM . For example
a linear subspace ofRd is a submanifold geodesic at0.
Submanifolds geodesic atx preserve distances tox. This is
an essential property for PGA because variance is defined as
the average squared distance to the mean. Thus submanifolds
geodesic at the mean will be the generalization of the linear
subspaces of PCA.
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Fig. 2. The spherical triangle used in the calculation of the projection operator
for S2.

C. Projection

The projection of a pointx ∈ M onto a geodesic subman-
ifold H of M is defined as the point onH that is nearest
to x in Riemannian distance. Thus we define the projection
operatorπH : M → H as

πH(x) = arg min
y∈H

d(x, y)2.

Since projection is defined by a minimization, there is no guar-
antee that the projection of a point exists or that it is unique.
However, by restricting to a small enough neighborhood about
the mean, we can be assured that projection is unique for any
submanifold geodesic at the mean.

Projection onto a geodesic submanifold can be approxi-
mated linearly in the tangent space ofM . Let H ⊂ M be
a geodesic submanifold at a pointp ∈ M and x ∈ M a
point to be projected ontoH. Then the projection operator is
approximated by

πH(x) = arg min
y∈H

||Logx(y)||2

≈ arg min
y∈H

||Logp(x)− Logp(y)||2.

Notice thatLogp(y) is simply a vector inTpH. Thus we may
rewrite the approximation in terms of tangent vectors as

Logp (πH(x)) ≈ arg min
v∈TpH

||Logp(x)− v||2.

But this is simply the minimization formula for linear pro-
jection of Logp(x) onto the linear subspaceTpH. So, if
v1, . . . , vk is an orthonormal basis forTpH, then the projection
operator can be approximated by the formula

Logp (πH(x)) ≈
k∑

i=1

〈vi,Logp(x)〉. (9)

Analyzing the quality of the approximation in (9) may be
difficult for general manifolds. Here we demonstrate the error
computations for the special case of the sphereS2. Let H be
a geodesic (i.e., a great circle) through a pointp ∈ S2. Given
a pointx ∈ S2, we wish to compute its true projection ontoH
and compare that with the approximation in the tangent space
TpS

2. Thus we have the spherical right triangle as shown in

Fig. 2. We know the hypotenuse lengthc = d(p, x) and the
angleθ, and we want to derive the true projection, which is
given by the side lengtha. We use the following two relations
from the laws of spherical trigonometry:

cos c = (cos a)(cos b),
sin b

sin θ
= sin c.

Solving for a in terms of the hypotenusec and the angleθ,
we have

a = arccos

(
cos c√

1− (sin θ sin b)2

)
.

The tangent-space approximation in (9) is equivalent to solving
for the corresponding right triangle inR2. Using standard
Euclidean trigonometry, the tangent-space approximation (9)
gives

a ≈ c cos θ.

For nearby data, i.e., small values forc, this gives a good
approximation. For example, forc < π

4 the maximum absolute
error is 0.07rad. However, the error can be significant for far
away points, i.e., asc approachesπ2 .

D. Computing Principal Geodesic Analysis

We are now ready to define principal geodesic analysis
for datax1, . . . , xN on a connected, complete manifoldM .
Our goal, analogous to PCA, is to find a sequence of nested
geodesic submanifolds that maximize the projected variance of
the data. These submanifolds are called theprincipal geodesic
submanifolds.

Let TµM denote the tangent space ofM at the intrinsic
meanµ of thexi. Let U ⊂ TµM be a neighborhood of0 such
that projection is well-defined for all geodesic submanifolds
of Expµ(U). We assume that the data is localized enough
to lie within such a neighborhood. The principal geodesic
submanifolds are defined by first constructing an orthonormal
basis of tangent vectorsv1, . . . , vd ∈ TµM that span the
tangent spaceTµM . These vectors are then used to form a
sequence of nested subspacesVk = span({v1, . . . , vk}) ∩
U . The principal geodesic submanifolds are the images of
the Vk under the exponential map:Hk = Expµ(Vk). The
first principal direction is chosen to maximize the projected
variance along the corresponding geodesic:

v1 = arg max
||v||=1

N∑

i=1

||Logµ(πH(xi))||2, (10)

where H = Expµ(span({v}) ∩ U).

The remaining principal directions are then defined recursively
as

vk = arg max
||v||=1

N∑

i=1

||Logµ(πH(xi))||2, (11)

where H = Expµ(span({v1, . . . , vk−1, v}) ∩ U).
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Fig. 3. The surfaces of 16 of the 86 original hippocampus m-rep models.

If we use (9) to approximate the projection operatorπH in
(10) and (11), we get

v1 ≈ arg max
||v||=1

N∑

i=1

〈v, Logµ(xi)〉2,

vk ≈ arg max
||v||=1

N∑

i=1

k−1∑

j=1

〈vj , Logµ(xi)〉2 + 〈v, Logµ(xi)〉2.

The above minimization problem is simply the standard prin-
cipal component analysis inTµM of the vectorsLogµ(xi),
which can be seen by comparing the approximations above
to the PCA equations, (6) and (7). Thus an algorithm for
approximating the PGA of data on a manifold is given by

Algorithm 2: Principal Geodesic Analysis
Input: x1, . . . , xN ∈ M
Output: Principal directions,vk ∈ TµM

Variances,λk ∈ R
µ = intrinsic mean of{xi} (Algorithm 1)
ui = Logµ(xi)
S = 1

N

∑N
i=1 uiu

T
i

{vk, λk} = eigenvectors/eigenvalues ofS.

V. A PPLICATION TO M-REPS

We now apply the statistical framework presented above for
general manifolds to the statistical analysis of m-rep models
of anatomical objects. That is, we will apply the mean and
PGA algorithms to the symmetric spaceM(n), representing
m-rep models withn atoms. The initial data is a set of m-
rep modelsM1, . . . ,MN ∈ M(n) that have been fit to a
particular class of objects in a training set of images. As is the
case with other shape analysis methods, since we are interested
in studying the variability of shape alone, we must first align
the models to a common position, orientation, and scale. We
present an m-rep alignment algorithm that minimizes the sum-
of-squared geodesic distances between models, i.e., has the
desirable property that it minimizes the same metric as is used
in the definition of the mean and principal geodesics, but over
the global similarity transformations of alignment. Next the
mean and PGA algorithms are adapted to the specific case of
m-rep models.

The results of these techniques are demonstrated on a set of
86 m-rep models of hippocampi from a schizophrenia study.

A subset of 16 of these models are displayed as surfaces in
Fig. 3. The m-rep models were automatically generated by the
method described in [29], which chooses the medial topology
and sampling that is sufficient to represent the population of
objects. The models were fit to expert segmentations of the
hippocampi from MRI data. The average distance error from
the m-rep boundary to the original segmentation boundary
ranged from 0.14mm and 0.27mm with a mean error of
0.17mm. This is well within the original MRI voxel size
(0.9375mm x 0.9375mm 1.5mm). The sampling on each m-
rep was3× 8, making each model a point on the symmetric
spaceM(24). Since the dimensionality ofM(1) is 8, the total
number of dimensions required to represent the hippocampus
models is192.

A. The Exponential and Log Maps for M-reps

Before we can apply the statistical techniques for manifolds
developed in the previous sections, we must define the expo-
nential and log maps for the symmetric spaceM(n), the space
of m-rep models withn atoms. We begin with a discussion
of the medial atom spaceM(1) = R3 × R+ × S2 × S2.
Let p = (0, 1, p0, p1) ∈ M(1) be the base point, where
p0 = p1 = (0, 0, 1) are the base points for the spherical
components. The tangent space forM(1) at the base point
p can be identified withR8. We write a tangent vectoru ∈
TpM(1) asu = (x, ρ, v0, v1), wherex ∈ R3 is the positional
tangent component,ρ ∈ R is the radius tangent component,
and v0, v1 ∈ R2 are the spherical tangent components. The
exponential map forM(1) is now the direct product of the
exponential map for each component. The exponential map
for R3 is simply the identity map, forR it is the standard real
exponential function, and forS2 it is the spherical exponential
map given in (3). Thus forM(1) we have

Expp(u) = (x, eρ, Expp0
(v0),Expp1

(v1)),

where the twoExp maps on the right-hand side are the
spherical exponential maps. Likewise, the log map of a point
m = (x, r,n0,n1) is the direct product map

Logp(m) = (x, log r,Logp0
(n0), Logp1

(n1)),

where the twoLog maps on the right-hand side are the
spherical log maps given by (4). Finally, the exponential and
log maps for the m-rep model spaceM(n) are just the direct
products ofn copies of the corresponding maps for the medial
atom spaceM(1).

Notice that the units for the position, radius, and orientations
are not in the same units. For the PGA calculations in
Section IV we scale the radius and sphere components in the
Riemannian metric to be commensurate with the positional
components. The scaling factor for both components is the
average radius over all corresponding medial atoms in the
population. Thus the norm of the vectoru = TpM(1) becomes

||u|| = (||x||2 + r̄2(ρ2 + ||v1||2 + ||v2||2)
) 1

2 ,

where r̄ is the average radius over all corresponding medial
atoms. Using this norm and the formula for Riemannian
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distance (2), the distance between two atomsm1,m2 ∈M(1)
is given by

d(m1,m2) = ||Logm1
(m2)||. (12)

B. M-rep Alignment

To globally align objects described by boundary points to a
common position, orientation, and scale, the standard method
is the Procrustes method [12]. Procrustes alignment minimizes
the sum-of-squared distances between corresponding boundary
points, the same metric used in defining the mean and principal
components. We now develop an analogous alignment proce-
dure based on minimizing sum-of-squared geodesic distances
onM(n), the symmetric space of m-rep objects withn atoms.

Let S = (s,R,w) denote a similarity transformation inR3

consisting of a scaling bys ∈ R+, a rotation byR ∈ SO(3),
and a translation byw ∈ R3. We define the action ofS on a
medial atomm = (x, r,n0,n1) by

S·m = S·(x, r,n0,n1) = (sR·x+w, sr,R·n0,R·n1). (13)

Now the action ofS on an m-rep objectM = {mi : i =
1, . . . , n} is simply the application ofS to each ofM’s medial
atoms:

S ·M = {S ·mi : i = 1, . . . , n}. (14)

It is easy to check from (1) that this action ofS on M also
transforms the implied boundary points ofM by the similarity
transformationS.

Consider a collectionM1, . . . ,MN ∈ M(n) of m-rep
objects to be aligned, each consisting ofn medial atoms.
We write mαi to denote theith medial atom in theαth
m-rep object. Notice that the m-rep parameters, which are
positions, orientations, and scalings, are in different units.
Before we apply PGA to the m-reps, it is necessary to make
the various parameters commensurate. This is done by scaling
the log rotations and log radii by the average radius value of
the corresponding medial atoms. The squared-distance metric
between two m-rep modelsMi andMj becomes

d(Mi,Mj)2 =
n∑

α=1

d(mαi,mαj)2, (15)

where thed(·, ·) for medial atoms on the right-hand side is
given by (12).

The m-rep alignment algorithm finds the set of similarity
transformsS1, . . . ,SN that minimize the total sum-of-squared
distances between the m-rep figures:

d(S1, . . . ,SN ;M1, . . . ,MN ) =
N∑

i=1

i∑

j=1

d(Si ·Mi,Sj ·Mj)2.

(16)
Following the algorithm for generalized Procrustes analysis
for objects inR3, minimization of (16) proceeds in stages:

Fig. 4. The 86 aligned hippocampus m-reps, shown as overlayed medial
atom centers.

Algorithm 3: M-rep Alignment
1. Translations. First, the translational part of eachSi

in (16) is minimized once and for all by centering
each m-rep model. That is, each model is translated so
that the average of it’s medial atoms’ positions is the origin.

2. Rotations and Scalings.The ith model,Mi, is aligned
to the mean of the remaining models, denotedµi.
The alignment is accomplished by a gradient descent
algorithm onSO(3) × R+ to minimize d(µi,Si · Mi)2.
The gradient is approximated numerically by a central
differences scheme. This is done for each of theN models.

3. Iterate. Step 2 is repeated until the metric (16) cannot
be further minimized.

The result of applying the m-rep alignment algorithm to
the 86 hippocampus m-rep models is shown in Fig. 4. The
resulting aligned figures are displayed as overlayed medial
atom centers. Since the rotation and scaling step of the
alignment algorithm is a gradient descent algorithm, it is
important to find a good starting position. Thus the alignment
was initialized by first aligning the m-rep models with the
Procrustes method applied to the implied boundary points of
the m-rep models.

C. M-rep Averages

Algorithm 1 can be adapted for computing means of m-
rep models by taking the manifold to be the symmetric space
M(n). Since this is a direct product space, the algorithm will
converge if each of the components converge. Notice that each
of theR3 andR+ components inM(n) converge in a single
iteration since they are commutative Lie groups. A step size of
τ = 1 is sufficient to ensure that theS2 components converge
as well. Also, care must be taken to ensure that the data is
contained in a small enough neighborhood that the minimum
in (5) is unique. For theR3 and R+ components there is
no restriction on the spread of the data. However, for the
S2 components the data must lie within a neighborhood of
radius π

2 (see [4]), i.e., within an open hemisphere. This is a
reasonable assumption for the aligned m-rep models, whose
spoke directions for corresponding atoms are fairly localized,
and we have not experienced in practice any models that do
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Fig. 5. The surface of the mean hippocampus m-rep.

Fig. 6. The resulting symmetric space mean (left) and linear mean (right)
of a medial atom in the hippocampus models. Notice that the linear average
is not a valid medial atom as the two spokes do not have equal length.

not fall within such constraints. We now have the following
algorithm for computing the intrinsic mean of a collection of
m-rep models:

Algorithm 4: M-rep Mean
Input: M1, . . . ,MN ∈M(n), m-rep models
Output:µ ∈M(n), the intrinsic mean

µ0 = M1

Do
∆µ = 1

N

∑N
i=1 Logµj

Mi

µj+1 = Expµj
(∆µ)

While ||∆µ|| > ε.

Fig. 5 shows the surface of the resulting intrinsic mean
of the 86 aligned hippocampus m-rep models computed by
Algorithm 4. The maximum difference in the rotation angle
from the mean in either of theS2 components was0.1276
for the entire data set. Thus the data falls well within a
neighborhood of radiusπ2 as required.

One might be tempted to simplify the statistical computa-
tions by treating a medial atom as three points inR3: the
center pointx, and the two implied boundary pointsy0,y1.
With this linear representation, the symmetric space mean
algorithm involving geodesic computations is replaced by a

simpler linear average. However, linear averaging produces
invalid medial atoms. To demonstrate this we computed a
linear average of the atoms at a corresponding location in the
hippocampus mesh across the population. This average was
compared to the symmetric space average described in this
paper. The resulting two medial atoms are shown in Fig. 6.
The symmetric space mean is a valid medial atom, while the
linear average is not because the two spoke vectors do not
have equal length. The ratio of the two spoke lengths in the
linear average is1.2 to 1.

D. M-rep PGA

The PGA algorithm for m-rep models is a direct adaptation
of Algorithm 2. The only concern is to check that the data
is localized enough for the projection operator to be unique.
That is, we must determine the neighborhoodU used in
(10) and (11). Again there is no restriction on theR3 and
R+ components. ForS2 components it is also sufficient to
consider a neighborhood with radiusπ2 . Therefore, there are
no further constraints on the data than those discussed for the
mean. Also, we can expect the projection operator to be well-
approximated in the tangent space, given the discussion of
the error in Section IV-C and the fact that the data lie within
0.1276 rad. from the mean. Finally, the computation of the
PGA of a collection of m-rep models is given by

Algorithm 5: M-rep PGA
Input: M-rep models,M1, . . . ,MN ∈M(n)
Output: Principal directions,vk ∈ TµM(n)

Variances,λk ∈ R
µ = intrinsic mean of{Mi} (Algorithm 4)
ui = Logµ(Mi)
S = 1

N

∑N
i=1 uiuT

i

{vk, λk} = eigenvectors/eigenvalues ofS.

Analogous to linear PCA models, we may choose a subset
of the principal directionsvk that is sufficient to describe the
variability of the m-rep shape space. New m-rep models may
be generated within this subspace of typical objects. Given a
set of real coefficientsα = (α1, . . . , αd), we generate a new
m-rep model by

M(α) = Expµ

( d∑

k=1

αkvk

)
, (17)

whereαk is chosen to be within[−3
√

λk, 3
√

λk].
The m-rep PGA algorithm was applied to the aligned hip-

pocampus data set. Fig. 7 displays the first three modes of vari-
ation as the implied boundaries of the m-reps generated from
PGA coefficientsαk = −3

√
λk,−1.5

√
λk, 0, 1.5

√
λk, 3

√
λk.

A plot of the eigenvalues and their cumulative sums is given
in Fig. 8. The first 30 modes capture 95 percent of the total
variability, which is a significant reduction from the original
192 dimensions of the hippocampus m-rep model.

VI. D ISCUSSION

We presented a new approach to describing shape variability
through principal geodesic analysis of medial representations.
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Fig. 7. The first three PGA modes of variation for the hippocampus m-reps. From left to right are the PGA deformations for−3, −1.5, 1.5, and3 times√
λi.
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Fig. 8. A plot of the eigenvalues from the modes of variation and their
cumulative sums.

While m-rep parameters are not linear vector spaces, we
showed that they are elements of a Riemannian symmetric
space. We developed principal geodesic analysis as a method
for efficiently describing the variability of data on a manifold.
The statistical methods for computing averages and principal
geodesic analyses were applied to the study of shape from
m-rep models.

We believe the methods presented in this paper will have
application well beyond m-reps. Principal geodesic analysis
is a promising technique for describing the variability of data
that is inherently nonlinear. As Lie groups such as translations,
rotations, and scalings are common entities in image analysis
and computer vision, statistical analysis on Lie groups is

a promising area for future applications. Also, statistics on
linear models may benefit from the addition of nonlinear
information. For instance the point distribution model [6]
might be augmented with surface normals, represented as
points on a sphere, and handled under the PGA framework.

There is a method called principal curves [14], which has a
similar name to principal geodesic analysis. However, the two
methods are only loosely related. Principal curves are smooth
curves that are fit to data in Euclidean space by minimizing
the sum-of-squared Euclidean distances to the data. Principal
geodesic analysis on the other hand concerns data that lie on
a manifold, rather than Euclidean space. Principal geodesic
submanifolds are intrinsic to the underlying space, and they
minimize sum-of-squared geodesic distances in that space.

A. Application to Image Segmentation

We now briefly describe how principal geodesic analysis can
be used to guide a deformable model image segmentation. We
are given an imageI and we want to fit an m-rep modelM to
a particular object within the image. The m-rep modelM has
been trained, i.e., a PGA has been computed, on a training
population of m-rep models fit to known objects. Principal
geodesic analysis will be used to restrict the shape of the model
to statistically feasible instances of the object. Following a
Bayesian framework, we maximize the log-posterior objective
function:

log p(M|I) ∝ log p(I|M) + log p(M).

We do not discuss here the image log-likelihood term,
log p(I|M). This term, along with other details of m-rep
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segmentation, can be found in [26]. The segmentation is ini-
tialized by placing the mean model in the image. The model’s
geometry is deformed within the image by simultaneously
optimizing over the parametersαk in (17) and over global
position, orientation, and scale. The geometric log-prior is
defined as the squared Mahalanobis distance

log p(M) =
d∑

k=1

α2
k

λk
.

This segmentation strategy has been implemented, and prelim-
inary tests on CT images of the kidney have been promising.
Production of further results and a quantitative analysis of the
quality of the segmentations are in progress.

B. Future Work

Another application of principal geodesic analysis is to
the statistical analysis of diffusion tensor images. A diffusion
tensor is a3×3 real, symmetric, positive-definite matrix. The
space of all such matrices forms a symmetric spacePD(3) =
GL+(3)/SO(3), whereGL+(3) denotes the Lie group of all
3 × 3 matrices with positive-determinant. We envision using
PGA as a method for studying the statistical variability of
diffusion tensor images across patients in a statistical atlas
framework.

We plan to extend our analysis to more complex m-rep
models. This includes objects consisting of several figures,
i.e., objects that have a branched medial axis. Also, we intend
to handle scenes containing multiple objects. Preliminary work
in this area has produced a statistical liver model consisting
of several connected figures and a heart model built from
multiple objects. In addition to the segmentation application
mentioned in the previous section, we foresee an application
to shape discrimination, for example, for the separation of
the hippocampi into schizophrenics and controls. This requires
the development of statistical techniques for discrimination on
symmetric spaces.
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