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Abstract

The most important problem in the analysis of time-sequences is the compensation for arte-

factual motion. Due to motion, medical images of the abdominal region do not represent organs

with �xed con�guration. Analysis of organ function with dynamic contrast media studies using

regions of interest (ROI) is thus not readily accomplished. Images of the organ of interest need to

be registered and corrected prior to a detailed local analysis.

We have developed an image analysis scheme which allows the automatic detection of the

organ contours, the extraction of the motion parameters per frame and the registration of images.

The complete procedure requires only minimal user interaction and results in a readjusted image

sequence, where organs of interest remain �xed.

Both, a visual analysis of the dynamic behavior of functional properties, such as a quantitative

statistical analysis of signal intensity versus time within local regions-of-interest, is considerably

facilitated using the corrected series.

Keywords: Medical image analysis, motion compensation, object recognition, MRI dynamic

sequence, ROI analysis
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Introduction

Interpretation of radiological images requires much a priori knowledge which partly has to be made

accessible for computer vision processes. At present we are far away from building a computer vision

system that is able to recognize and understand visual information in entire radiological images,

but it is possible to demonstrate the usefulness and e�ectiveness of computer-assisted interpretation

in some limited applications.

There is growing interest in the development of powerful methods for the automated analysis

of medical images, as the image data acquired by new imaging techniques are of improved quality

and the acquisition times have been decreased signi�cantly, which leads to the acquisition of larger

number of slices. The discrete representation of medical image data allows the qualitative and

quantitative exploration of the image data using computer vision methods. In fact, by applying

a variety of image processing methods, much more information can be explicitely extracted than

obtained by the usual visual analysis of sections represented on a console or as hardcopies.

The present paper addresses the important topic of analyzing time series of medical image

data. Such time series are acquired to study either the movement of an anatomical part (e.g.

beating heart) or the dynamic behavior of signal intensity of speci�c areas within anatomical

parts, especially after injection of contrast media with the aim to extract functional information.

It has been shown that regional renal glomerular �ltration can be studied using gradient echo

imaging techiques (MRI) coupled with a bolus injection of Gadolinium-DTPA [1], [2]. If region-

of-interest based function curves are generated over a time-sequence of several tens of images, the

renal contours have to be exactly superimposable from scan to scan, which is not the case even using

breath holding techniques, because the end-inspiratory position varies.

Problem of artefactual motion

To observe human organ function it is common place in Nuclear Medicine to inject tracers and

to measure the temporal change of radioactivity by acquiring a time series of images. For the

automated analysis of local regions it must be assumed that organs or regions thereof remain �xed

during the overall acquisition time, a prerequisit which due to poor spatial resolution is often met

in Nuclear Medicine, but hard to ful�ll when high resolution methods such as MR-studies are

analyzed. Even when imaging techniques can overcome the problem of movements during one

acquisition cycle (fast imaging under breath hold, triggering, gating) and generate sharp images

without motion artefacts, the motion of organs between scans (above all in the abdominal region

due to variable inspiration depths) will remain. An example is given in �gure 1, where the motion

of the kidney positions in 4 subsequent scans taken under breath hold conditions is clearly visible

(see [4] for a detailed description of kidney displacements during breathing). The renal outlines

which have been interactively de�ned in one typical frame are shown as black curves.

The displacements of organs represent a big problem for an automated computerized analysis

of an image sequence, because it must be assumed that corresponding anatomical structures in

subsequent frames remain �xed for the analysis of ROI's to generate time-signal intensity curves.

Due to the considerable movement and rotation of the kidneys between image frames the ROI's

would have to be redrawn tediously from frame to frame.

To e�ciently detect changes in large time series of images we have to develop highly automated

methods which require only minimal user interaction. We therefore propose a processing scheme to

automatically recognize movable parts, to quantify their relative new position and to superimpose

them using image registration methods. The procedure stages of the proposed system are illustrated
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by the example of motion compensation in dynamic gradient echo imaging of the kidneys after bolus

injection of MR contrast media [3].

Image processing methods

To facilitate the understanding of processing steps in image analysis our description is guided by

the example of renal boundary detection.

It is convenient to divide the image analysis up into two principle stages: In a �rst stage, the

digital image is simpli�ed by explicitely extracting image intensity discontinuities as candidates

for object contours. This processing step is known as feature detection. A next processing stage

recognizes desired object contours by combining partly de�ned boundaries (feature elements) to

complete global contours. This linking procedure needs a priori information about the objects of

interest, which is introduced by an appropriate model description (in the present work by drawing

the kidney contours). This second stage will be called model-guided grouping. The complete pro-

cessing scheme is illustrated below, the processing steps will be described in detail in the following

sections.

Input: Original MRI time sequence

#

Contour map: Feature extraction

#

Completion: Model-guided grouping

#

Object recognition: Search for evident boundary curves

#

Motion compensation: Geometrical warp of images

#

Output: Registered sequence of images

Extraction of boundary features

Important cues in images are the contours of objects. They are represented as discontinuities

in image brightness, either as sharp intensity changes or curve-like light or dark line-structures

surrounding the objects. The images used were gradient echo "opposed phase" images which

exhibit a dark rim between renal parenchyma and retroperitoneal fat (TE is chosen such that the

signal from voxels containing a mixture of fatty tissue and kidney cortex was cancelled). This

dark rim can be de�ned as the key feature of the renal contour and will be enhanced in a feature

extraction process, transforming the original image frame (�gure 2a) into a so-called contour map

(�gure 2b). We have developed a valley/ridge-detection algorithm which is based on regularization

and di�erentiation of the original image data. The process results in a limited set of characteristic

image points representing objects by their contours, which is a much simpler curve-like description

of important image structures in terms of their boundaries. The contour-map obtained in this �rst

processing stage (�gure 2b) does not only contain the desired left and right renal contours, but
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represents a set of boundary fragments of the entire image contents. For a human observer it is

easy to detect the desired contours, as the biological visual system is highly specialized to recognize

objects in line- drawings by combining curve elements to meaningful object contours. A computer

has no higher knowledge about the objects to be detected. We have to tell the computer what

we are looking for in an appropriate way. This incorporation of anatomical knowledge enables the

linking of boundary fragments to complete object contours.

Model-guided global grouping: Hough transform

A simple idea of knowledge representation is to feed an image processing routine with the informa-

tion about the contour of interest. The user displays a typical frame of the study on a screen and

draws the object outlines by interactive means (cursor, lightpen), thus generating model-curves.

If we assume to deal with rigid, nondeformable objects, these model-curves (representing the out-

lines of the sought anatomical objects) remain valid for each frame of the sequence. The models

of the left and right renal contours are shown in �gure 2c. Intuitively it should be possible to

move a model-curve over the image and to mark locations where sets of boundary points in the

contour-map match best with the model. A degree of match can be expressed by the accumulated

number of contour points which completely overlap with the model curve at each speci�c position.

This method is known as template matching or, with respect to curve-like contours, as a Hough

Transform, a concept proposed by P.V.C. Hough in 1962 [5] and applied to object recognition tasks

by Duda and Hart [6]. Extensions are found in [7], [8] and [9].

The matching process is a correlation of a template curve with the image resulting in a cor-

relation image. The degree of correlation at a speci�c position of the model curve is obtained

by accumulating the pixel intensities of the contour-map image 2b which are superposed by the

model curve 2c. The model curve is shifted from pixel to pixel in a scan-wise order, and the

accumulation is repeatedly done (see appendix for the algorithmic description of the procedure).

This processing scheme results in accumulation votes at each position of the model curve relative

to the contour-map image. The complete set of votes forms an accumulator image (or correlation

image) 2d, where the horizontal and vertical coordinates code the shift coordinates of the model

curve relative to the contour-map image, and the pixel intensities express the correlation degree

(proportional to the number of contour points covered by the model curve). A high correlation

degree (dark spots in �gure 2d) expresses a high evidence for a curve of prede�ned shape in the

contour-map at the speci�c location, which means that at this position a most likely curve could

be detected. The left and right model curves are matched individually with the left respectively

right half of the contour-map image, which is splitted along the vertical centerline.

The Hough transform converts the global pattern detection problem of �nding a curve of pre-

de�ned shape into a local problem, i.e. �nding local maxima in a correlation image, which is

equivalent to assigning best matching (curve-) templates to sets of contour points in image space.

Until now only positionally displaced curves were mentioned. To extend the search to objects

with arbitrary rotation and scaling, correlations with rotated and scaled versions of the original

model-curve can be carried out. For each correlation with a thereby modi�ed model-curve a new

correlation image is generated. Generalizing this idea it directly follows that each new parameter

represents an additional dimension of the correlation "image", more appropriately called correla-

tion space. The problem of maintaining a high dimensional correlation space has been solved by

proposing a new optimization technique. This algorithmic problem is not a matter of the present

paper and has been analyzed elsewhere [10],[11], [12], but the result is important: For an arbitrary

number of parameters (position, rotation, scaling) the problem can be reduced to the analysis of a

two-dimensional correlation image. In our kidney-detection scheme the scaling has been kept �xed,
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whereas the orientation varies between -4 to 4 degrees in 1 degree steps. The correlation process

is done individually for each rotation, resulting in 9 correlation images. Using the assumption that

only one correlation is optimal at each shift position of the model curve (which is obviously suit-

able since we are looking for one object only), the information of the 9 correlation images can be

condensed to one plane by applying a projection strategy. Two planes, one containing accumulated

evidence and the other the corresponding parameter (here: rotation) replace a higher dimensional

accumulator space and allow more e�cient storage and retrieval of evidence information.

Grouping techniques are known to be computationally expensive, especially if curves of varying

size and rotation have to be detected. Although Hough techniques for image processing applications

have been known for more than �fteen years, the problems of great computational expense and of

multidimensional maxima detection have hindered their general use in the past. To overcome limi-

tations on computation we have implemented the transformation in parallel (see [13] and appendix).

The usage of speci�c a priori knowledge about anatomical facts (maximum rotation of kidneys)

helps to signi�cantly reduce the overall computational expense by limiting the range of the rotation

parameter. The new projection and update technique reduces a high dimensional correlation space

to only two dimensions [10],[11], resulting in a further signi�cant decrease of the computational

expense. The computation time and the hardware needed to run such a complex segmentation

scheme are very important criteria if we think of applications in clinical routine practice.

Finally, the object detection is reduced to a search for maximum votes in the sharpened corre-

lation space, a simple search process which can be performed very e�cient. The sharp maxima in

correlation space corresponds to centers of most evident curves. Once a maximum has been found,

it contains the full information about the global curve in image space. The coordinates represent

the horizontal and vertical positions, and the maxima themselves the number of contour points

combined to form a curve in image space, the information about rotation and eventual scaling is

kept as an additional attribute to each correlation maxima.

Registering and statistical analysis

The displacement and rotation parameters of the objects are determined by the location and ori-

entation information obtained from the evaluation of the correlation maxima. We use a linear

geometric transformation to register the objects in each frame to the position of the model curve,

to speed up the procedure a special hardware for geometric transformations has been used. After

registration, the object boundaries of the geometrically corrected frames coincide exactly with the

model curve and therefore among each other. Figure 3 illustrates a scan before (left) and after

(right) geometric correction, the model-curve is overlaid in black. A bicubic interpolation assures

an optimal registration of original image pixels to subpixel positions calculated by the a�ne trans-

formation (see smoothed transformation result Fig. 3 right). Again, separate warps of the left and

the right image parts are performed, because the correlation between the movements of the left

and right kidneys is only weak.

The sequence of corrected frames opens up the possibility to a simple ROI analysis of the time

varying information, because local regions of the objects of interest stay �xed in each frame of the

sequence. We can analyze the functional behavior qualitatively by generating a movie-sequence,

the �xed object position gives the visual impression of varying local information. To explore

quantitative information within local regions, the user has to de�ne regions of interest only once

in one typical frame. The registered sequence gives access to exactly the same object subarea (and

its brightness statistics) in each frame of the sequence. The ROI analysis then results in intensity

vs. time information, which can be represented as functional curves.
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Results

The only interactive step in the image processing scheme is the de�nition of the renal contours,

the rest of the procedure is fully automatic. After extraction of the boundary features the Hough

transform runs twice on each frame of a study, once for the detection of the left and a second time

for the right renal contour. Each resulting correlation image contains information about the spatial

motion of the kidneys, which is used to register the study frame by frame.

The procedure runs on a VAX11/780 with a Gould-Deanza Image Processing System (IP8500).

The Hough transform is implemented on the digital video processor (DVP) of the Deanza System,

which supports quasi parallel image processing operations by its pipeline architecture. The memory

size of 512 by 512 allows a simultaneous processing of 4 image frames. A special hardware warping

device performs geometric transformations with bycubic interpolation in real time. Typical pro-

cessing times including feature extraction (dark lines), contour recognition by the Hough transform

(rotations from -4 to 4 degrees in 1 degree steps) and geometric correction range between 2 and 3

CPU minutes for a set of 4 image frames, depending on the size of the model curve. The overall time

for the analysis of a typical series of 64 frames divides into time needed for the interactive de�nition

of the model curves and the ROI's (about 10 minutes by a trained expert) and the CPU time (30-50

minutes) for the automatic registering of the whole series (a batch job running in the background).

In comparison to the automated technique, an interactive de�nition of 5-10 anatomically identical

ROI's in each of the 64 image frames would require several hours of tedious work.

The algorithm for motion compensation has been applied to more than 20 patient studies. The

assessement of the regional kidney function is signi�cantly simpli�ed as the ROI analysis could be

performed on motion-corrected series of image frames, reducing the e�ort needed by the physician

to about 10-15 minutes. The success of the feature extraction and Hough transform decisively

depends on the image quality of the MR scans. The example guiding our explanations clearly

demonstrates the quality that has to be achieved. A poor image contrast or missing dark rims

along the renal boundaries impede a successful recognition of the renal outlines.

If a suboptimal image occurs during a series (i.e. when the patient inadvertently moves or

breathes), the detection of the kidney contour may be severely impeded. In such cases, a sharp

maximum in the correlation image is missing, and a false correlation maximum (with low evidence)

could be found to represent a possible kidney contour position. To overcome this problem we de�ne

a minimum correlation vote required by the procedure to assign a vote to a possible contour position.

In our applications, the lower limit is set to 50% of the maximally achievable vote, thereby de�ning

that at least 50% of the kidney contour has to be detected. If necessary, a further control of the

result of the automatic procedure is possible at the end of the image processing. The geometrically

corrected series of images is analyzed visually by displaying it as a movie. Falsely corrected frames

are marked and the ROI statistics of such frames are removed from the function curves.

A detailed description of the patient studies and the quantitative evaluation of the local renal

function can be found in the companion Part II paper.

The proposed processing scheme represents a step towards robust image analysis not only

working on single carefully selected frames but on large series of images taken under di�erent

imaging conditions.

Conclusions

We faced the problem of spatially registering time series of MR images of the kidneys. An im-

age processing system is presented which uses model-based segmentation to �nd the contours of

anatomical parts (the kidneys) in each frame of a time series of images. It is assumed that the

7



parts can be modelled as rigid bodies, but are displaced between scans. We allow translational

and rotational movements. After contour detection, each frame of the study is geometrically cor-

rected using the resulting transformation parameters. The anatomical parts in the resulting series

of images are positionally readjusted and do exactly match. A simple region of interest analysis on

multiple images thus becomes possible, because the de�nition of a region in one frame gives access

to the signal intensities of exactly the same anatomic region in each frame of the sequence.

The improved feature extraction methods and the augmented Hough technique proposed here

proved to be a powerful image processing tool to detect dislocated objects and to perform an

automatic registration of objects in a series of image scans. The application to MRI sequences

clearly shows the need of robust techniques for the automation of recognition and analysis tasks,

as it is nearly impossible to analyze large series of images in clinical practice by interactive means,

due to constraints in time and manpower. In the companion paper (Part II) our experience with

the use of these procedures on a total of over 20 MRI time-sequence studies (each up to 100 scenes)

is presented. The accuracy and the error-rate of the geometric corrections are discussed in detail.

A further extension to detect even nonrigid objects has been developed [14], �rst tests on the

recognition of deformed renal contours (up to += � 10% in size) have been run successfully. The

promising results clearly show that our extended Hough technique overcomes the basic limitations

not only to computational complexity, but also to the application to real problems, where objects

very often undergo a certain kind of deformation.

The computer processing applied to two-dimensional image data corrects in-plane translation

and rotation. Renal motions in the third dimension (in/out-plane) are minimized by choosing

an optimal slice orientation for the acquisition of the images. With the availability of multiple

slice data the procedure can be extended to the compensation of three-dimensional translation and

rotation, using a three-dimensional contour model (contour surface). The increase of computation

time will be proportional to the increase of the size of the contour model and the number of motion

parameters.

A transportable implementation of the complex correction scheme runs even on small work-

stations. Workstations are more and more used as additional consoles for the image analysis and

manipulation together with MR-scanners, thus providing a transfer of our method to clinical routine

practice in the near future.
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kid1.ps

149 � 93 mm

Figure 1: Original sequence of MRI scans (4 out of 64, gradient echo, TE 16.5ms, TR 30ms, ip

angle 40 deg, FOV 400mm, slice thickness 10mm)
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kid2.ps

149 � 148 mm

Figure 2: a: Original image / b: Contour-map image after feature extraction / c: Model curves

/ d: Correlation image, representing the degree of correlation between the model curves and the

contour-map for each shift position. Dark spots (arrows) express the highest evidence for a contour,

its coordinates de�ne the position of the detected contours. The left and right model curves are

matched individually.
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149 � 93 mm

Figure 3: Readjustement of image to cover the model-curve (warp and bicubic �t)
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