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1MEM Research Center, Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
2Departments of Computer Science and Psychiatry, University of North Carolina, Chapel Hill, USA

ABSTRACT

This paper proposes methods to circumvent the need to attach physi-
cal markers to bones for anatomical referencing in computer-assisted
orthopedic surgery. Using ultrasound, a bone could be non-invasively
referenced, and so the problem is formulated as the need for dy-
namic registration. A method for correspondence establishment is
presented, and the matching step is based on three least-squares al-
gorithms: two that are typically used in registration methods such as
ICP, and the third is a form of the Unscented Kalman Filter that was
adapted to work in this context. A simulation was developed in order
to reliably evaluate and compare the dynamic registration methods.

Index Terms— Point-to-point registration, Kalman filtering, ul-
trasound, computer-assisted surgery, anatomical referencing

1. INTRODUCTION

Surgeons who regularly perform computer-assisted orthopedic surgery
(CAOS) justify its use by reporting more accurate and faster inter-
ventions, as well as enhanced visualization and reduced invasiveness
[1]. One of the enabling technologies of CAOS is surgical naviga-
tion, whereby surgical tools and the bones to be operated are local-
ized in real-time by a tracking system. Localization, or referencing,
is made possible by using dynamic reference bases (DRBs), which
are markers that are rigidly attached to the objects in question.

DRBs are fixed onto bones using either clamps, screws, or pins.
Their placement is often limited to surgically exposed areas, but in
some cases additional incisions may be required for attaching DRBs,
as in the case of navigated kyphoplasty [2]. The attachment of DRBs
to bones is an invasive process, and even when no additional inci-
sions are needed, it must be ensured that DRBs remain rigidly at-
tached to the objects being referenced. Movement of DRBs attached
to bones occurs frequently, causing frustration to surgeons and pro-
longation of surgeries [3]. Some solutions have been explored for
the fixation of DRBs, but they focussed on using different materials,
or placing DRBs at different locations [4].

The need arises at this point to explore alternative solutions to
the direct attachment of DRBs to bones. We therefore propose the
use of ultrasound (US) imaging as a means to non-invasively refer-
ence bony anatomy. Two-dimensional US imaging systems are com-
mon, and yield numerous advantages: they do not have detrimental
effects on patients’ health; they can provide real-time images dur-
ing surgery; they are non-invasive; and they can provide information
from surgically inaccessible areas.

Consequently, in the scope of CAOS, a DRB can be attached
to the US probe, which is then referenced in the same manner as
other tools used for the surgery. If we consider the use of US for
anatomical referencing, the only positional information that would
be available is located in the US images. We will also consider that
the CT scan of the anatomy of interest is available.

We therefore formulate the problem as the need for dynamic reg-
istration. From the partial, underdetermined information provided
by navigated 2D US, the aim is to provide the 3D position of the
anatomy of interest by registering, for instance, a 3D surface model
obtained by having segmented the CT scan prior to surgery.

For non-invasive referencing in CAOS, accurate calibration of
the US is required, whereby the coordinates of the US image plane
are known with respect to the DRB attached to the probe. Further-
more, a rigid registration of the CT to the anatomy would be needed
for initialization. More information regarding calibration and regis-
tration can be obtained in [5].

This paper presents the first attempt at dynamic registration us-
ing US, and to this end three methods for least-squares problems
were chosen and adapted to the application. The main selection cri-
teria for the methods were that they should be computationally effi-
cient and that they should be accurate. As such, we chose the meth-
ods of Horn [6], Arun et al. [7] and the Unscented Kalman Filter
(UKF) for least-squares rigid matching of two point sets [8].

Computer-assisted kyphoplasty could be an initial application
for the methods that we present here, since the attachment of a DRB
causes the procedure to be more invasive. We therefore begin by
exploring non-invasive referencing of the lumbar vertebrae.

In §2, we present a simulation that was made in order to reli-
ably evaluate the three methods, which are described in §3. §3 is
divided into two subsections: §3.1, where we present a method for
determining correspondence and §3.2, where we outline the three
least-squares approaches. A comparison of the three dynamic reg-
istration methods is presented and discussed in §4 and §5. A list of
some of the variables used throughout this paper is provided below:

Rigid transformation parameters consist of the Euler angles
and translations for the x-, y- and z-axes, [α, β, γ, tx, ty, tz]

T

S The surface at the true position

SE The surface at the prior estimated position

S′
E Surface at estimated position after 2D estimation

S′′
E Surface at estimated position after 3D estimation

yk Measurement obtained from S at time step k

y-
k Points obtained from SE at time step k

θ Phase of the centroid in 2D, given by θ = arctan
“

μy

μx

”

2. CONSTRUCTING A SIMULATION

In the non-invasive referencing scenario, the principal aim is to dy-
namically extrapolate the position of bony anatomy with respect to
the tracked US probe. During surgery, the anatomy will be displaced
due to some patient motion as well as perturbations from the various
tools used in the procedure.

To simulate the motion of a bone with respect to an US imaging
probe, we begin with a surface model of one L4 lumbar vertebra,
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Fig. 1. The mean surface error between SE and S throughout the
simulation, illustrating the effects of phase and centroid alignment
for Horn’s method. Vertical lines indicate changes in motion.

which was obtained from the CT scan of a plaster vertebra model.
The US image plane is defined to have a roughly realistic shape and
size (fan-shaped, 6 [cm] base width, and a depth of 4 [cm]), and is
initially placed orthogonal to the vertebra as it would be on a patient.
As a consequence, the spinous process and the facet joints will be the
most visible structures of the vertebra.

The set of points yk, representing the measurement at time k,
is defined as the intersection of the US image plane with S, with
a small thickness along out-of-plane directions. We used an out-
of-plane thickness of 2 [mm], and all the intersecting points from
the surface are projected onto the simulated US plane. White Gaus-
sian noise was then added to the measurements (N(0, 1[mm2])).
The resulting points can be regarded as analogous to the result of a
threshold-based segmentation applied to 2D US images of the verte-
bra immersed in water, but it should be noted that more information
from the anatomy will be available than in real ultrasound images.
To speed up computation of the methods in §3, yk is evenly sampled
to consist of no more than 50 points.

Over time, the vertebra surface model S undergoes varying rigid
motion, and yk is computed at each time step, providing dynamic
input information. To simplify the presentation of our methods, we
will consider out-of-plane motion to occur as changes along the z-
axis. Alignment of the US imaging plane to the xy-plane of world
coordinates can be ensured by using the change of coordinate matrix.

3. DYNAMIC REGISTRATION USING ULTRASOUND

As the vertebra moves, a new yk is provided through the US images.
y-

k is determined from SE , the surface at the prior estimated position,
by computing the intersection between the US plane and SE . The
process is similar to determining yk, but no Gaussian noise is added.

The aim at this point is to determine the rigid transformation
that would match the position of y-

k to that of yk. The same transfor-
mation could then be applied to SE so that it matches the unknown
position of S. Since S has undergone unknown rigid motion, and
yk contains error, the first step is to establish correspondences be-
tween yk and y-

k. The rigid transformation is then determined by
minimizing the sum-of-squares error between yk and y-

k.

We will exploit in-plane information at every time step by mak-
ing an initial estimate considering only in-plane motion. Applying
the 2D rigid transformation, we obtain S′

E and assume that it has
been successfully aligned to S in the xy-plane. A new y-

k is gen-
erated from S′

E . We then hypothesize that differences in y-
k and yk

will be mostly due to out-of-plane motion, and then compute the cor-

respondence and 3D rigid transformation to obtain S′′
E , the surface

that should adequately match S.

At each time step, the aim is to determine S’s position using yk:

(a) The new measurement yk is obtained from S, and y-
k in 2D

is extracted from SE (§2). The in-plane correspondence is
determined between yk and y-

k (§3.1).

(b) An estimate is made for the 2D rigid transformation, which is
applied to SE , yielding S′

E = R2D ∗ SE + t2D (§3.2).

(c) A new y-
k, in 3D, is extracted from S′

E (§3.1). The correspon-
dence is determined in 3D (§3.1).

(d) The correspondence from (c) is used for estimating the 3D
rigid transformation, which is applied to S′

E , yielding S′′
E =

R3D ∗ S′
E + t3D . At the next time step, SE = S′′

E (§3.2).

3.1. Establishing Correspondence

Correspondence in iterative registration algorithms is usually deter-
mined by minimizing the Euclidean distance between two point sets
[8, 9]. Although iterative methods may perform quickly, it is un-
likely that they would be suitable for real-time applications, and so
the need arises for a simple and yet more useful approach to dynam-
ically finding correspondence.

In-plane correspondence: Motion occurring within the US plane
can be described by three parameters: one rotation, γ and two trans-
lations, tx and ty . Using yk and y-

k, initial guesses can be made
about the parameters.

Assuming that motion between time steps will be small, yk and
y-

k should be very similar. The rotation parameter between the two
can be obtained through the phase of each centroid with respect to
the origin in world coordinates. Once the phase is obtained, γ =
θ − θE . To obtain initial guesses for tx and ty , we use the centroids
of each point set, and the difference of centroids provides the two
translation parameters.

Applying the 2D rigid transformation matrix using the guesses
for [γ, tx, ty]T should roughly align the two data sets, and the cor-
respondence can then be obtained by minimizing the Euclidean dis-
tance. This transformation is only applied in order to determine the
correspondence, so y-

k remains in its position until an estimate is
made using one of the methods in §3.2. Nevertheless, it is possible to
provide examples when using this approach for aligning y-

k to yk can
be erroneous. To account for such cases, we compute the Euclidean
distance with and without alignment, and select the correspondences
that are determined by the method that has smaller distances. This
solution does not necessarily guarantee that the suitable method will
be selected, but it reduces the likelihood of an erroneous result.

Fig. 1 illustrates one example of the improvement due to this
approach for establishing correspondence, compared to simply min-
imizing the Euclidean distance.

3D correspondence: Once the in-plane correspondence has been
established, an estimate is made for the 2D rigid transformation us-
ing one of the three methods described in §3.2. The transformation
is then applied to SE , yielding S′

E , and a new y-
k is generated.

To account for out-of-plane motion, y-
k is extended orthogonally

to the US image plane. Now the intersection between the plane and
S′

E is computed as before, except the out-of-plane thickness is taken
to be 5 [mm] instead of 2 [mm]. Here, however, we do not apply any
form of alignment, and instead only minimize the Euclidean distance
between the sampled yk and y-

k.

The key difference at this step is that although the correspon-
dence is established using only the xy-coordinates, the z-coordinates
of y-

k will be retained for use in the 3D rigid transformation estimate.
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3.2. Least-squares Matching

The three methods we chose for rigid least-squares matching were
all originally formulated with the intent of minimizing computation,
and they are usually applied iteratively in registration problems. The
methods of Horn [6] and Arun [7] were derived to work with large
sets of points, so they can be applied straightforwardly. The UKF
used for registration [8] was formulated to function with an incre-
mentally increasing number of points, so for our purposes it was
adapted to use full point sets for each estimate.

In our dynamic registration scenario, least-squares matching is
required twice at each time step (once for in-plane estimation, and
a second time for the full 3D estimation). In the case of in-plane
estimation, both yk and y-

k lie on the xy-plane. In the case of 3D
estimation, although yk has zero-valued z-coordinates, y-

k will likely
have non-zero values for z.

Horn and Arun’s Methods: Horn’s method is usually used in
ICP algorithms, and was favored by Besl [9] over Arun’s method to
avoid the risk of reflections due to coplanarities in the data. Both
methods are based on similar principles, with the main difference
being that Horn uses a unit quaternion-based derivation for the rigid
transformation matrix, and Arun provides the rotation matrix itself.

For the dynamic registration application, Horn’s method was di-
rectly applied without modification. To account for reflections, Arun
proposed computing the determinant of the resulting transformation
matrix, with a value of -1 indicating an erroneous result.

In the case of in-plane estimation, yk and y-
k are clearly coplanar,

so Arun’s formulation for 3D rigid transformation cannot be directly
applied. Instead, the method can be simplified to the 2D case, and the
condition that two point sets should not be coplanar instead becomes
that they should not be colinear along either the x- or y-axes.

The Unscented Kalman Filter: Moghari et al. [8] applied
the UKF to estimate rigid transformation parameters in US-to-CT-
surface registration. By their implementation, the UKF iterates N
times, where N is the number of points in their y-

k, and for each iter-
ation, the number of points is gradually increasing. For the dynamic
registration application, it would be necessary to consider the full set
of points for each iteration of the UKF. The 3D formulation of the
UKF can be reduced to 2D, so we only consider the 3D case here.

When using the UKF with more than one point at a time, one
modification is necessary. y-

k is normally a 3 × N matrix, but now
we vertically concatenate all the points such that it becomes a 3N×1
column vector, [y-

x1, y
-
y1, y

-
z1, . . . , y

-
xN , y-

yN , y-
zN ]Tk . Consequently,

the variables that depend on y-
k similarly increase in size [10].

Taking all the points in y-
k, Pyy , the predicted measurement co-

variance, becomes a 3N × 3N covariance matrix. The increased di-
mension of Pyy in this way makes it susceptible to being ill-conditioned,
which would create instability in the UKF. One way to ensure that
Pyy remains well-conditioned is by strengthening the diagonal com-
ponents. This can be done by adding its trace along the diagonal, or
some multiple of the trace (we use a value of 1/3 ∗ tr(Pyy)). This
issue falls in the general category of ill-posed problems, and several
approaches can be taken to dampen, or regularize Pyy .

4. EXPERIMENTS AND RESULTS

The simulation and the three dynamic registration methods were im-
plemented using MATLAB. The methods performed equivalently,
but were not optimized for speed. Each method required around 800
[ms] of computation per time step on a 1.67 [GHz] processor.

At the beginning of each simulation, SE was initialized with a
“perfect” registration, that is SE = S. Then, over a period of at least

Fig. 2. The mean surface error between SE and S throughout the
simulation, comparing the three methods for dynamic registration.
The graphs correspond to three different sequences of motion. Ver-
tical lines indicate changes in motion.

120 time steps, S undergoes varying rotations and translations. All
motion was applied with respect to world coordinates.

Fig. 2 illustrates the results of three simulations that were used
to compare the dynamic registration methods. The mean surface
error, plotted with respect to time, was computed as the mean point-
to-point distance between SE and S. Since SE and S represent the
same object, albeit in different positions, their exact correspondence
at each time step is known, enabling reliable error computation.

For the top graph of fig. 2, only in-plane motion was simulated,
though the three methods were estimating 3D transformations. Tran-
sitions between different motions are indicated by the vertical dotted
lines, and only γ, tx and ty were modified. The sequence consisted
of (each motion was applied per time step): ty = 0.25[mm]; then S
stopped moving; tx = 0.3[mm] and ty = −0.25[mm]; a rotation
of γ = 0.03[rad]; γ = −0.03[rad]; S stopped; tx = −0.3[mm];
S stopped; γ = 0.05[rad]; then γ = −0.05; and finally S stopped.

Similar sequences of motion were used for the other graphs of
fig. 2. For the middle graph, the motion of S was exclusively out-of-
plane. For the bottom graph, the sequence began with out-of-plane
motion, but after the 20th time step, the motion was strictly in-plane.
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Fig. 3. In the simulation, SE is displayed translucent, and S is
opaque. (left) When the measurement data is insufficient the algo-
rithms can get caught. (right) Another case of insufficient measure-
ment data, as the vertebra moves out of the US image plane.

The simulation represented by the bottom graph consisted of ro-
tating the vertebra out of the US image plane such that the anatomy
became less visible. This simulation was performed to test the ro-
bustness of the methods when only a few, tightly-clustered points are
available from the bone that’s being referenced.

In the top graph of fig. 2, the three methods perform equiva-
lently, with Arun’s method having a slightly lower mean surface er-
ror (averaged over time) of 2.79 [mm], compared to the UKF (3.16
[mm]) and Horn’s method (3.22 [mm]).

In the middle graph, a clear distinction can be made between
the UKF and the two other methods. Horn and Arun’s methods per-
formed equivalently, with average mean surface errors slightly above
1.1 [mm]. The UKF, however, had an average mean surface of error
of 2.43 [mm] and had a peak near the 40th time step, which occurred
when a change in out-of-plane rotation was applied to S.

For the bottom graph, the three methods once again performed
equivalently, and Arun’s method had a slightly lower average mean
surface error with a value of 2.47 [mm]. All three methods had high
mean surface errors towards the end of the simulation.

Fig. 3(left) illustrates the situation occurring at the end of the
simulation from the bottom graph of fig. 2. Fig. 3(right) shows
another instance when estimation is inadequate, but referring to the
top graph of fig. 2, at the peaks occurring near the 70th time step, the
methods are able to recover and hence provide improved estimation.

5. DISCUSSION

Throughout the experiments, the algorithms performed well in es-
timating the position of S using yk so long as there was a suitable
view of the vertebra. The UKF did not perform as well as Horn and
Arun’s methods for the case of out-of-plane motion, though it was
able to recover, as can be inferred from the middle graph of fig. 2.
The case where the methods could not suitably estimate S’s position
was due to a minimal view of the vertebra (see fig. 3(a)).

The measurement should span the object sufficiently that changes
in motion can be ascertained from changes in yk. This is an impor-
tant aspect of the problem, and will be more serious as we begin
examining dynamic registration using real US data in the future.

Although this paper only presented simulations using a vertebra,
the methods were formulated to work for other areas as well. We
could not make any assumptions about the shape or nature of the
measurement data, nor could any assumptions be made about the
anatomy’s motion. Accordingly, yk could only be treated as a point
cloud, and we’ve seen that in the current formulation, points in yk

do not need to be close to one another, or form a visually coherent
object, but rather the points should sufficiently span the anatomy. In
addition to yk, the CT surface model of the vertebra was used as a

priori information in order to dynamically simulate y-
k.

The initial registration of the CT surface model to the bone should
be adequate, but as can be inferred from the results, the algorithms
are able to recover. The assumption was made that yk was akin to the
result of a segmentation algorithm. Despite the added noise, how-
ever, the measurement data was usually reliable, though this will not
be the case in a real scenario. With real US data, the onus is placed
on the need for a more sophisticated, and yet computationally effi-
cient method for dynamic correspondence establishment. It would
also be interesting to explore how the methods presented here could
be applied directly to the greyscale information, rather than using
points obtained by a segmentation step [11].

Overall, the UKF did not perform as well as Horn and Arun’s
methods. Although the UKF was less accurate, its estimations yielded
smoother motion. Looking closely at the graphs of fig. 2, we can ob-
serve that Horn and Arun’s estimations contain high-frequency vari-
ance, so the vertebra has “shaky” motion in some instances. At this
stage, a combination of the UKF with either Horn or Arun’s method
may provide a solution that joins the smooth estimates of the former
to the accurate estimates of the latter.
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