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Abstract

I present a novel parametric approach for estimating
the likelihood of homogeneously textured images. I pro-
pose that the dependence between pixel features is use-
fully captured by estimating the joint intra-class variation
of their marginal distributions. To support this claim I build
a single multivariate Gaussian distribution for each class
that estimates the joint variation of several marginal, non-
parametric, filter response histograms. I then generalize
this framework to include marginal conditional distribu-
tions of pixel intensities for use with Strong-MRF models.

I demonstrate these methods on the Columbia-Utrecht
database by classifying over 2800 images in all 61 tex-
ture classes. In a direct comparison with Varma & Zisser-
man (ECCV ’02, CVPR ’03) and Hayman (ECCV ’04) this
framework is found to be more accurate and efficient.

1 Introduction

This paper examines the general texture classification
problem of material classification given images taken under
varying and unknown viewing and illumination conditions.
Algorithms for such tasks are characterized by four major
components: features, the probability distribution represen-
tation, the probability distribution comparison, and the clas-
sifier. This work focuses on defining parametric Bayes clas-
sifiers with descriptive parameters that can be accurately es-
timated. The resulting method is used with both filters and
Markov Random Fields (MRF) and is an extension of [7].

There are several classification algorithms related to this
work. The MR8 classification algorithm of Varma and Zis-
serman uses a rotationally invariant filter bank and cluster-
ing to estimate the full joint probability distribution of fil-
ter responses [12]. Representative cluster centers define a
texton dictionary, yielding a texton histogram representa-
tion for each image. The algorithm then uses theχ2 dis-
tance and a 1-Nearest Neighbor (NN) classifier. Hayman

extended the algorithm using Support Vector Machines [5].
Cula and Dana also construct a similar algorithm where
principal component analysis (PCA) is applied to the tex-
ton histograms before using 1-NN with an unnormalizedχ2

distance [3].
Varma and Zisserman developed an alternative method

based on MRFs [13]. MRFs model the conditional prob-
ability of a pixel’s intensity given pixel intensities in a lo-
cal neighborhood. This is estimated by first using textons
to represent configurations of the neighboring intensities.
Next, the distribution of intensities for each configuration is
measured using each texton’s assigned pixels. This variant
uses the originalχ2 distance and 1-NN classifier.

Levina developed a classification algorithm based on his-
tograms of marginal distributions [7, 8]. Her algorithm uses
a filter bank, a 1-NN classifier, and a distance between two
images set as the product of Mallows distances between cor-
responding marginal histograms.

In this paper, I extend Levina’s filter bank based frame-
work by using a Gaussian Bayes classifier instead of a 1-
NN classifier. I use a multivariate Gaussian distribution to
model the intra-class variability of each marginal histogram.
This is accomplished by sensibly mapping histograms to
points in Euclidean space so that PCA can then be applied.
The mapping is chosen so that the Euclidean distance be-
tween two mapped histograms corresponds to their Mallows
distance. In section 2, I describe several desirable properties
of the Mallows distance and this space. Such a description
is lacking for the Euclidean space assumed in [3, 5]. The
authors use PCA and SVMs, respectively, in a space based
on an unnormalizedχ2 distance. The methods in [7, 12, 13]
use 1-NN classifiers, which must compute a distance from
every test image to every training image. Gaussian Bayes
classifiers are computationally efficient and, as shown in
section 4, are more accurate than 1-NN classifiers.

In [3, 5, 12] the distribution of filter responses is esti-
mated using a joint texton approach. I estimate the marginal
distribution of each filter response using non-parametric
histograms, which has several advantages. First, there is no
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need to form a texton library, which limits generalizability
and requires clustering in a high dimensional space. Sec-
ond, marginal distributions can be very accurately estimated
while joint distributions suffer from the curse of dimension-
ality. Although marginal distributions are less descriptive
than their corresponding joint distribution, I partially cap-
ture the dependence among filter responses by estimating
the joint intra-class variation of the marginals. This ap-
proach is shown in section 4.2 to increase the descriptive
power of the marginals while maintaining their computa-
tional efficiency.

I apply this method not only to filter bank features as
discussed above but also for features defined by Strong-
MRF models [9]. Strong-MRF models approximate the
joint probability of a neighborhood by assuming the con-
ditional independence of the neighboring pixels given the
center pixel. MRF models simplify texture classification
by eliminating the need for filter bank design and response
collection. Furthermore, MRF models require smaller sup-
port, allowing for more pixels with valid neighborhoods in
an image. A possible disadvantage is that more features
may be required complicating clustering in the joint con-
ditional probability space. Strong-MRF models, however,
avoid this complication by measuring the conditional prob-
ability of each neighboring pixel independently.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the Mallows distance and describes proper-
ties of the corresponding Euclidean space. Section 3 de-
scribes my test methodology and database and gives 1-NN
classification results. Section 4 extends this framework to
Gaussian Bayes classification. Section 5 gives a generaliza-
tion for images described by Strong-MRF models.

2 Constructing a Euclidean Space

In this section I construct a mapping that takes marginal
histograms to points in Euclidean space. Such a mapping al-
lows for the use of standard statistical tools to estimate intra-
class histogram variation. Image classification requires the
combination of the marginal results into an image descrip-
tion. This final step is classifier specific and is explored in
section 3 for 1-NN classifiers and section 4 for Gaussian
Bayes classifiers.

2.1 Mapping Marginal Distributions

In characterizing a mapping of a distribution to a point in
Euclidean space, one should consider the distribution simi-
larity measure corresponding to Euclidean distance. In this
work the measure is the Mallows distance, a metric first
used for texture classification by Levina [7]. Levina showed
its equivalence (in many situations) to the Earth Mover’s
distance [8], used earlier by Rubner et al. for image retrieval

[10, 11]. I use a marginal histogram representation similar
to that used in [7] for 1-NN texture classification and in [1]
for pixel intensity based image segmentation.

Intuitively, the Mallows distance measures the work re-
quired to change one distribution into another by moving
probability mass. Therefore, this measure accounts for both
the frequency and position of probability mass, unlike the
χ2 distance measure. This yields the desirable property that
over-binning a histogram, or even using its empirical distri-
bution, has no additional consequences other than measur-
ing any noise present in the distribution estimate.

The Mallows distance between continuous one-
dimensional distributionsq and r, with cumulative
distribution functionsQ andR, respectively, is defined as

Mp(q, r) =
(∫ 1

0

|Q−1(t)−R−1(t)|pdt

)1/p

.

For example, consider two Gaussian distributions
N(µ1, σ

2
1) andN(µ2, σ

2
2). For p = 2, their Mallows dis-

tance can be shown to equal
√

(µ1 − µ2)2 + (σ1 − σ2)2.
For discrete one-dimensional distributions, consider two

distributionsx andy represented by empirical distributions
with n observations, or equi-count histograms withn bins
and the average value of each bin stored. Considering these
values in sorted order,x andy can be represented as vectors
x = n−1/p ∗ (x1, . . . , xn) = (x′1, . . . , x

′
n) andy = n−1/p ∗

(y1, . . . , yn) = (y′1, . . . , y
′
n) with x1 ≤ . . . ≤ xn andy1 ≤

. . . ≤ yn. The Mallows distance betweenx andy is then
defined as theLp vector difference betweenx andy

Mp(x, y) =

(
n∑

i=1

‖x′i − y′i‖p

)1/p

.

Therefore, this representation maps histograms to points in
n-dimensional Euclidean space in which distances corre-
spond toM2 histogram distances.

This space contains several linear properties of interest.
First, for histogramx with meanµ, x + n−

1
2 ∆µ1 modi-

fies x by only changingµ. Second,αx − n−
1
2 (α − 1)µ1

scales the standard deviation ofx by α while leavingµ con-
stant. Third, histograms of Gaussian distributions exist in
a linear two-dimensional subspace. As for general distribu-
tions, one axis of this space represents a Gaussian’s mean.
The remaining orthogonal direction is linear in a Gaussian’s
standard deviation. Lastly, points in a convex portion of this
space represent valid histograms. That is, a pointx is a valid
histogram if and only ifx1 ≤ . . . ≤ xn. Therefore, the
mean of a set of histograms and any interpolated histogram
will always be valid.

These properties help justify this representation of mar-
ginal distributions. In the next section I describe a specific
classification problem before using this mapping in section
4 as a basis for Gaussian Bayes classification.



Figure 1. Three images from the "Plaster B"
sample in the CUReT database illustrating the
large intra-class variability.

3 Preliminaries

As in [5, 12, 13], this paper examines the classification
of materials given images taken under varying and unknown
viewing and illumination conditions. Section 3.1 further de-
fines the test methodology, section 3.2 introduces the fil-
ter bank, and section 3.3 gives classification results using
a 1-NN classifier. In section 4, I compare these results to
Gaussian Bayes classification.

3.1 The CUReT Database

The CUReT database contains 61 texture classes consist-
ing of materials imaged under 205 viewing and illumination
conditions [4]. Each class contains images from one mate-
rial that experience 3D effects such as specularities, inter-
reflections, and shadowing, as shown in Figure 1. This
large intra-class variability makes correct classification of
the database a challenging task. The limitations of the data-
base include a lack of significant scale change and limited
in-plane rotation.

I follow the experimental setup of [5, 12, 13]. Of the
205 viewing and illumination configurations, 92 contain the
largest minimum number of valid pixels across the samples.
I use the cropped images of these 92 configurations supplied
by Varma [12]. All results are averaged over 20 random
splits of these images into equally sized test and training
cases, yielding a total of61 × 46 = 2806 training images
and 2806 test images for each split. As a final preprocessing
step, each image is converted to grey scale and processed to
have zero mean and unit variance.

3.2 The MR8 Filter Bank

The MR8 filter bank consists of 38 filters and 8 filter
responses [12]. There are two isotropic filters, a Gaussian
and a Laplacian of a Gaussian (LOG), both at scaleσ = 10.
The 36 other filters include an edge (first derivative) filter
at 6 orientations and 3 scales, and a bar (second derivative)

Table 1. Classification accuracy using the
MR8 filter bank, marginal histograms, the
Mallows distance, and a 1-NN classifier.

# Bins Independent Marginals Joint Marginals

10 93.63± 1.05% 95.35± 0.95%
100 95.14± 0.90% 96.35± 0.82%
1000 95.40± 0.89% 96.53± 0.80%

filter at the same 6 orientations and 3 scales(σx, σy) =
{(1, 3), (2, 6), (4, 12)}. Rotational invariance is achieved
by storing only the maximum response over all orientations
of a given filter type and scale. I normalize each filter re-
sponse by the maximum attained over the training set.

3.3 1-NN Classification

Levina developed a classification framework using filter
banks, marginal histograms, the Mallows distance, and 1-
NN classification, which she demonstrated on the MeasTex
and Brodatz databases [7]. In this section I implement a
similar framework using the MR8 filter bank and compare
it to Gaussian Bayes classification in section 4.

1-NN classifiers require a distance measure between two
sets of marginal distributions. As in [7], I define this to be
the product of theM2 marginal distances described in sec-
tion 2. The variation of marginal distributions can be mea-
sured jointly or independently. A joint 1-NN classifier mea-
sures the distance between a target image and all the train-
ing images as the distance between each set of marginals.
The target image is then classified using the closest training
image. For an independent 1-NN classifier, the minimum
M2 distance between each target marginal and each class
is computed. The total distance to a class is defined as the
product of each minimum marginal distance.

I represent each filter response distribution using equi-
count histograms containing 10, 100, or 1000 values. As
shown in Table 1, the independent and joint 1-NN classifiers
achieve a maximum accuracy of 95.40± 0.89% and 96.53
± 0.80%, respectively. The algorithm of Varma and Zis-
serman using the MR8 filter bank, a joint distribution esti-
mate, and a 1-NN classifier achieves an accuracy of 96.93%
and 97.43% with 610 textons and 2440 textons, respectively
[12]. The SVM extension of this algorithm gives the best-
known accuracy (98.46%) on this database [5]. While these
algorithms are more accurate, they are also computationally
more complex. In the next section, I improve upon these re-
sults and further reduce computational complexity by using
a Gaussian Bayes classifier.



4 Gaussian Bayes Classification

I now improve upon the previous results by comput-
ing a parametric estimate of the variation of marginal non-
parametric histograms using multivariate Gaussian distrib-
utions. Gaussian models stretch the Euclidean space of the
mapped marginal histograms, enhancing theM2 metric to
account for the variability in the training set. I construct
two Gaussian classifiers that model the variation of the mar-
ginal histograms independently and jointly in sections 4.1
and 4.2, respectively.

4.1 Independent Marginal Variation

First, I consider the variation of the 8 marginal distrib-
utions defined by the MR8 filter bank to be mutually inde-
pendent. For each texture class and filter response marginal
I construct an independent multivariate Gaussian model.
Each Gaussian model is trained using 46 histograms com-
puted from the training set. Each histogram is represented
using 10, 25, 100, or 1000 bins and is mapped to the Euclid-
ean space of corresponding dimension. Note that 46 or
more bins yields a high dimension low sample size (HDLS)
situation. To accurately model this limited training set I use
PCA to estimate a Gaussian distribution in a low dimen-
sional subspace for each class and marginal. Since target
images from other classes can have large projection errors, I
measure the expected distance to the subspace by summing
the remaining eigenvalues. For each class and marginal the
final Gaussian model is of dimension equal to the number of
eigenmodes plus one. For 10, 25, 100, and 1000 bins I use
a small number of eigenmodes, 6, 7, 8, and 9, respectively,
to define each subspace. For the 10 bin example, each class
contains 8 independent 7-dimensional Gaussian models.

The likelihood of an image belonging to a class is de-
fined as the product of the Gaussian likelihood of each mar-
ginal. During testing, an image is assigned to the class with
the maximum likelihood of containing the image. This pro-
duces a Bayes classification of the image because the prior
probability of each class is identical.

Table 2 shows the results of using this classifier with
the marginal MR8 algorithm from the previous section.
Compared to the independent 1-NN classifier, this classifier
achieves a significant gain in speed along with a slight in-
crease in accuracy. I discuss these results in the next section
after defining the joint Gaussian classifier.

4.2 Joint Marginal Variation

Finally, I estimate a single Gaussian model per class that
captures the joint variation of the feature marginals. For
each image I combine into a single vector the reduced mar-
ginal representations computed in section 4.1. This repre-

Table 2. Accuracy of the Gaussian Bayes clas-
sifier with independent or joint estimation of
the MR8 marginal histograms.

# Bins Independent Marginals Joint Marginals

10 94.34± 0.94% 99.20± 0.37%
25 95.16± 0.83% 99.22± 0.34%
100 95.65± 0.83% 99.03± 0.38%
1000 95.57± 0.82% 98.83± 0.50%

sentation maps images to points in Euclidean space where
Euclidean distance corresponds to theL2 norm of approxi-
mateM2 marginal distances.

To construct a single class specific subspace, I concate-
nate each feature’s subspace, disregarding the expected pro-
jection error, and apply PCA. Next, I record the expected
projection error of the original histograms onto this final
subspace by summing the 8 feature specific projection er-
rors and the final projection error. For the following results
I build a single 26-dimensional multivariate Gaussian distri-
bution for each class, which measures the joint variation of
a 25-dimensional subspace and the corresponding expected
projection error. I use feature specific subspaces of dimen-
sion 15, except for the 10 bin case which uses all 10 avail-
able dimensions.

Gaussian classification using this model achieves an ac-
curacy of 99.22% with 25 bins, as shown in Table 2. In
addition, the classifier achieves a stable accuracy of over
99% for a large range of bin numbers and eigenmodes. The
drop in classification accuracy for the 100 and 1000 bin rep-
resentations is due to the HDLS problem of accurately es-
timating the corresponding multivariate Gaussian distribu-
tions. Hence, there is a tradeoff between accurate estima-
tion of the marginal histograms and accurate estimation of
the Gaussian models.

This algorithm is computationally efficient and it gener-
ates a compact representation of each image. For the clas-
sification problem being examined on the CUReT database,
it is sufficient to capture only 80 values per image (10 per
marginal), which can be further reduced to 25 values.

Thus far I have described four classifiers. With 10
bins per marginal, the independent 1-NN classifier, joint
1-NN classifier, independent Gaussian classifier, and joint
Gaussian classifier achieve accuracies of 93.63%, 95.35%,
94.34%, and 99.20%, respectively. These results demon-
strate the increase in accuracy of both Gaussian Bayes clas-
sification over 1-NN classification and of jointly modeling
the variation of the marginal distributions over assuming
their independence.



5 The Strong-MRF Framework

MRF models estimate probabilities of complete local
neighborhoods of pixel values. To develop a classification
algorithm using features defined by MRF models instead of
filter banks, I need a simplification similar to that of mar-
ginal distributions of filter responses. Strong-MRF models
provide such a simplification because they make additional
Markovian assumptions equivalent to assuming the condi-
tional independence of neighboring pixels given the center
pixel’s intensity. Paget describes Strong-MRF models in
detail and demonstrates that they capture sufficient informa-
tion for the synthesis of some natural textures [9]. Strong-
MRF models are also related to gray level co-occurrence
matrices since they both measure the co-occurrence of pairs
of pixel intensities for several spatial relationships.

In section 5.1 I construct a mapping of the resulting mar-
ginal conditional distributions to Euclidean space. In sec-
tion 5.2 I perform 1-NN and Gaussian classification and re-
port results for neighborhoods of size1×1, 3×3, 5×5, and
7× 7. In section 5.3 I examine multi-scale neighborhoods.

5.1 Conditional Probability Representation

In this section I construct an estimate of the joint proba-
bility of local pixel neighborhoods consistent with Strong-
MRF models and define a mapping of the resulting marginal
conditional distributions to Euclidean space.

Let xc be a pixel with intensityI(xc) and neighbors
y1, y2, . . . , yn. I seek to estimate the joint probability

p(I(xc), I(y1), I(y2), . . . , I(yn)).

Rewriting this as a conditional probability gives

p(I(xc)) · p(I(y1), I(y2), . . . , I(yn)|I(xc)).

Next, assumingy1, y2, . . . , yn are conditionally indepen-
dent givenxc yields

p(I(xc)) ·
n∏

i=1

p(I(yi)|I(xc)).

Finally, assumingxc and y1, y2, . . . , yn to be identically
distributed and by the spatial symmetry of the neighbor-
hood, the final joint probability estimate is rewritten as

p(I(xc)) ·
n∏

i=1

p(I(xc)|I(yi)). (1)

To construct a representation of eachp(I(xc)|I(yi)) akin
to the marginal representation, consider the conditional
probability p(X|Y ). I representp(X|Y ) as several equi-
count histograms that estimatep(X|Y ) at a fixed number

Table 3. Classification accuracy using N ×N
neighborhoods with a joint 1-NN classifier
and a joint Gaussian Bayes classifier.

N 1 3 5 7

Joint 1-NN 61.45% 83.55% 88.23% 90.08%
Joint Gaussian 65.37% 92.79% 95.59% 96.04%

of intensity ranges ofY determined using equi-count bins.
Each estimate is then measured with the same accuracy.
To compute this representation, the values ofY are sorted
and binned. Then, for each bin an equi-count histogram is
formed using the correspondingX values. Thus, the final
representation is an ordered set of equi-count histograms.

To define a distance between two conditional probabili-
ties, considerp(X|Y ) andp(Z|W ). Let y1, y2, . . . , yn and
w1, w2, . . . , wn be two sets of intensity ranges. I argue that
such a distance measure only needs to comparep(X|yi) to
p(Z|wi) for i = 1, . . . , n becauseX and Y , andZ and
W , are identically distributed. Note that any differences
betweenY andW will have corresponding differences be-
tweenX andZ. Thus, I ignore the actual intensity ranges
of Y andW and define the distance betweenp(X|yi) and
p(Z|wi) as theirM2 distance. Finally, I define the distance
betweenp(X|Y ) andp(Z|W ) as theL2 norm of theM2

distances, which is a metric. This distance is theL2 norm
of the conditional probability representation taken as a vec-
tor so conditional probabilities can be considered as points
in Euclidean space.

5.2 Local Neighborhoods

Applying Equation 1 to this conditional probability rep-
resentation yields the following classification results. For 1-
NN classification, I define the distance between two images
to be the product of the distances between their marginal
and conditional distributions. For Gaussian Bayes classifi-
cation, I jointly model the variation of the distributions as
in section 4.2.

The results in Table 3 show that the Gaussian classifier
is significantly more accurate than the 1-NN classifier. The
Gaussian classifier achieves an accuracy of 96.04± 0.55%
with 7 × 7 neighborhoods. The results in Tables 3 and 4
use10× 10 histograms, wherej × k bins forp(X|Y ) uses
j bins to estimatep(X|Yi) at k configurations ofY . I use
18 eigenmodes with1 × 1 neighborhoods and 40 feature
specific and 30 joint eigenmodes otherwise. The MRF al-
gorithm of Varma and Zisserman estimates the full condi-
tional probability of a pixel’s intensity given its local neigh-



Table 4. Classification accuracy using multi-
scale 3 × 3 neighborhoods and a joint
Gaussian Bayes classifier.

# Levels 1 2 3

Joint Gaussian 92.79% 97.57% 98.29%

borhood and achieves an accuracy of 95.87%, 97.22%, and
97.47% with 610 textons and3×3, 5×5, and7×7 neighbor-
hoods, respectively [13]. Their best result of 98.03% with
2440 textons and a7×7 neighborhood surpasses the results
of the Gaussian classifier. These results, however, are im-
proved in the next section using multi-scale neighborhoods.

5.3 Multi-scale Neighborhoods

The local neighborhood approach from section 5.2 uses
information from a much smaller spatial extent around each
pixel than filter based methods. While using larger neigh-
borhoods should improve accuracy, there is a quadratic in-
crease in the number of features with neighborhood size.
Therefore, I use multi-scale neighborhoods to more com-
pactly increase neighborhood extent and increase classifi-
cation accuracy.

I define a pixel’s multi-scale neighborhood to include the
original 3 × 3 local neighborhood. Then, I use a Gaussian
filter to generate3×3 neighborhoods summarizing progres-
sively larger spatial areas. Each level further blurs the image
using a Gaussian filter withσ = 1.4.

As shown in Table 4, using a three level multi-scale
neighborhood improves classification accuracy to 98.29±
0.86%. The accuracy of this method demonstrates that my
Strong-MRF model representation provides adequate infor-
mation for classification and that filter banks are not neces-
sary for this classification task. The filter bank method from
section 4.2, however, is overall the most accurate and effi-
cient, illustrating the effectiveness of a well designed filter
bank.

6 Discussion and Conclusions

This paper presents several texture classification algo-
rithms based on the statistical estimation of marginal his-
togram variation. The ability of these methods to describe
the variation in the CUReT database is demonstrated by
achieving a classification accuracy of over 99%. These re-
sults highlight the need to test this framework on more chal-
lenging problems using the CUReT database and others, in-
cluding the KTH-TIPS database [5].

I plan to explore additional applications of this method-
ology to other texture analysis problems, including the syn-
thesis of textures from the CUReT database at arbitrary
viewing and illumination conditions, and the estimation of
the viewing and illumination conditions of a given image.

In conclusion, this paper shows that algorithms based
on joint marginal histograms, the Mallows distance, and
Gaussian probability models are effective and efficient for
texture classification. The algorithms presented here us-
ing the MR8 filter bank and MRF models achieve the best-
known accuracy to date on the CUReT database.
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