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Abstract extended the algorithm using Support Vector Machines [5].
Cula and Dana also construct a similar algorithm where
| present a novel parametric approach for estimating principal component analysis (PCA) is applied to the tex-
the likelihood of homogeneously textured images. | pro- ton histograms before using 1-NN with an unnormalizéd
pose that the dependence between pixel features is usedistance [3].
fully captured by estimating the joint intra-class variation Varma and Zisserman developed an alternative method
of their marginal distributions. To support this claim | build based on MRFs [13]. MRFs model the conditional prob-
a single multivariate Gaussian distribution for each class ability of a pixel's intensity given pixel intensities in a lo-
that estimates the joint variation of several marginal, non- cal neighborhood. This is estimated by first using textons
parametric, filter response histograms. | then generalize to represent configurations of the neighboring intensities.
this framework to include marginal conditional distribu- Next, the distribution of intensities for each configuration is
tions of pixel intensities for use with Strong-MRF models. measured using each texton’s assigned pixels. This variant
I demonstrate these methods on the Columbia-Utrechtuses the original? distance and 1-NN classifier.
database by classifying over 2800 images in all 61 tex- | evina developed a classification algorithm based on his-
ture classes. In a direct comparison with Varma & Zisser- tograms of marginal distributions [7, 8]. Her algorithm uses
man (ECCV '02, CVPR '03) and Hayman (ECCV '04) this 3 filter bank, a 1-NN classifier, and a distance between two
framework is found to be more accurate and efficient. images set as the product of Mallows distances between cor-
responding marginal histograms.
In this paper, | extend Levina’s filter bank based frame-
1 Introduction work by using a Gaussian Bayes classifier instead of a 1-
NN classifier. | use a multivariate Gaussian distribution to
This paper examines the general texture classificationmodel the intra-class variability of each marginal histogram.
problem of material classification given images taken under This is accomplished by sensibly mapping histograms to
varying and unknown viewing and illumination conditions. points in Euclidean space so that PCA can then be applied.
Algorithms for such tasks are characterized by four major The mapping is chosen so that the Euclidean distance be-
components: features, the probability distribution represen-tween two mapped histograms corresponds to their Mallows
tation, the probability distribution comparison, and the clas- distance. In section 2, | describe several desirable properties
sifier. This work focuses on defining parametric Bayes clas- of the Mallows distance and this space. Such a description
sifiers with descriptive parameters that can be accurately esis lacking for the Euclidean space assumed in [3, 5]. The
timated. The resulting method is used with both filters and authors use PCA and SVMs, respectively, in a space based
Markov Random Fields (MRF) and is an extension of [7].  on an unnormalizeg? distance. The methods in [7, 12, 13]
There are several classification algorithms related to thisuse 1-NN classifiers, which must compute a distance from
work. The MR8 classification algorithm of Varma and Zis- every test image to every training image. Gaussian Bayes
serman uses a rotationally invariant filter bank and cluster- classifiers are computationally efficient and, as shown in
ing to estimate the full joint probability distribution of fil-  section 4, are more accurate than 1-NN classifiers.
ter responses [12]. Representative cluster centers define a In [3, 5, 12] the distribution of filter responses is esti-
texton dictionary, yielding a texton histogram representa- mated using a joint texton approach. | estimate the marginal
tion for each image. The algorithm then uses {fedis- distribution of each filter response using non-parametric
tance and a 1-Nearest Neighbor (NN) classifier. Haymanhistograms, which has several advantages. First, there is no
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need to form a texton library, which limits generalizability [10, 11]. | use a marginal histogram representation similar
and requires clustering in a high dimensional space. Sec-o that used in [7] for 1-NN texture classification and in [1]
ond, marginal distributions can be very accurately estimatedfor pixel intensity based image segmentation.
while joint distributions suffer from the curse of dimension- Intuitively, the Mallows distance measures the work re-
ality. Although marginal distributions are less descriptive quired to change one distribution into another by moving
than their corresponding joint distribution, | partially cap- probability mass. Therefore, this measure accounts for both
ture the dependence among filter responses by estimatinghe frequency and position of probability mass, unlike the
the joint intra-class variation of the marginals. This ap- x? distance measure. This yields the desirable property that
proach is shown in section 4.2 to increase the descriptiveover-binning a histogram, or even using its empirical distri-
power of the marginals while maintaining their computa- bution, has no additional consequences other than measur-
tional efficiency. ing any noise present in the distribution estimate.

| apply this method not only to filter bank features as  The Mallows distance between continuous one-
discussed above but also for features defined by Strong-dimensional distributionsq and r, with cumulative
MRF models [9]. Strong-MRF models approximate the distribution functionsy andR, respectively, is defined as
joint probability of a neighborhood by assuming the con-
ditional independence of the neighboring pixels given the M . ! 1 R-1(1)Pd e
center pixel. MRF models simplify texture classification p(a:m) = </O Q7(8) - ®)] t) '
by eliminating the need for filter bank design and response
collection. Furthermore, MRF models require smaller sup- ; .
port, allowing for more pixels with valid nqeighborhoods inp N(pm1,07) andN(pz, 03). Forp = 2, tf;elr Ma”OWSQd'S'
an image. A possible disadvantage is that more featured@C€ can be shown to equgli(ji — i2)* + (01 — 02).
may be required complicating clustering in the joint con- . F(_)r d!screte one-dimensional d|str|bu_t|_ons, (_:on_5|d¢rtwo
ditional probability space. Strong-MRF models, however, d|§tr|but|on5x apdy represepted by emplrlcal d'Str'bL.Jt'onS
avoid this complication by measuring the conditional prob- with n observations, or equ|-cognt histograms ywﬂpms

and the average value of each bin stored. Considering these

ability of each neighboring pixel independently. | : ted ord d b ted ¢
The remainder of the paper is organized as follows. Sec-/alU€s In sorted ordet, andy can be relzpresen ed as vectors

tion 2 reviews the Mallows distance and describes proper-* = " VP, e I"),: (@4, ..o, y,) andg = n~ /7
ties of the corresponding Euclidean space. Section 3 de-¥1:--~¥n) = (U1, ) With 2y < ... < @, andy; <
scribes my test methodology and database and gives 1-NN " .S Yn- The Mallows @stance betweerjandg is then
classification results. Section 4 extends this framework to defined as thé.,, vector difference betweehandy

For example, consider two Gaussian distributions

Gaussian Bayes classification. Section 5 gives a generaliza- " 1/p
tion for images described by Strong-MRF models. M,y(z,y) = (Z || — y;p> )
=1
2 Constructing a Euclidean Space Therefore, this representation maps histograms to points in

n-dimensional Euclidean space in which distances corre-
In this section | construct a mapping that takes marginal spond to), histogram distances.

histograms to points in Euclidean space. Such amapping al- This space contains several linear properties of interest.
lows for the use of standard statistical tools to estimate intra-First, for histogramz with meany, = + n—3 A modi-
class histogram variation. Image classification requires thefies x by only changing:. Secondaz — n-3 (a — Dpl
combination of the marginal results into an image descrip- scales the standard deviatioroby o while leavingy con-
tion. This final step is classifier specific and is explored in stant. Third, histograms of Gaussian distributions exist in
section 3 for 1-NN classifiers and section 4 for Gaussian g linear two-dimensional subspace. As for general distribu-

Bayes classifiers. tions, one axis of this space represents a Gaussian's mean.
_ _ o The remaining orthogonal direction is linear in a Gaussian’s
2.1 Mapping Marginal Distributions standard deviation. Lastly, points in a convex portion of this

space represent valid histograms. That s, a poisia valid

In characterizing a mapping of a distribution to a pointin histogram if and only ifz; < ... < z,. Therefore, the
Euclidean space, one should consider the distribution simi-mean of a set of histograms and any interpolated histogram
larity measure corresponding to Euclidean distance. In thiswill always be valid.
work the measure is the Mallows distance, a metric first ~ These properties help justify this representation of mar-
used for texture classification by Levina [7]. Levina showed ginal distributions. In the next section | describe a specific
its equivalence (in many situations) to the Earth Mover’s classification problem before using this mapping in section
distance [8], used earlier by Rubner et al. for image retrieval 4 as a basis for Gaussian Bayes classification.



Table 1. Classification accuracy using the
MR8 filter bank, marginal histograms, the
Mallows distance, and a 1-NN classifier.

# Bins Independent Marginals Joint Marginals

Figure 1. Three images from the "Plaster B" 10 93.63+ 1.05% 95.35t 0.95%
sample in the CUReT database illustrating the 100 95.14+ 0.90% 96.35t 0.82%
large intra-class variability. 1000 95.40t 0.89% 96.53k 0.80%

. filter at the same 6 orientations and 3 scales,o,) =
3 Preliminaries {(1,3),(2,6),(4,12)}. Rotational invariance is achieved
by storing only the maximum response over all orientations
As in [5, 12, 13], this paper examines the classification of a given filter type and scale. | normalize each filter re-
of materials given images taken under varying and unknownsponse by the maximum attained over the training set.
viewing and illumination conditions. Section 3.1 further de-
fines the test methodology, section 3.2 introduces the fil-3 3 1-NN Classification
ter bank, and section 3.3 gives classification results using
a 1-NN classifier. In section 4, | compare these results to

. e Levina developed a classification framework using filter
Gaussian Bayes classification.

banks, marginal histograms, the Mallows distance, and 1-
NN classification, which she demonstrated on the MeasTex
and Brodatz databases [7]. In this section | implement a
similar framework using the MR8 filter bank and compare
The CUReT database contains 61 texture classes consisit to Gaussian Bayes classification in section 4.
ing of materials imaged under 205 viewing and illumination  1.NN classifiers require a distance measure between two
conditions [4]. Each class contains images from one mate-sets of marginal distributions. As in [7], | define this to be
rial that experience 3D effects such as specularities, inter-the product of the\/, marginal distances described in sec-
reflections, and shadowing, as shown in Figure 1. This tjon 2. The variation of marginal distributions can be mea-
Iarge intra-class Varlab|l|ty makes correct classification of sured Jo|nt|y or independenﬂy_ AJo|nt 1-NN classifier mea-
the database a Cha”enging task. The limitations of the data'sures the distance between a target image and all the train-
base include a lack of Significant scale Change and ||m|ted|ng images as the distance between each set of marginajsl
in-plane rotation. The target image is then classified using the closest training
| follow the experimental setup of [5, 12, 13]. Of the jmage. For an independent 1-NN classifier, the minimum
205 VieWing and illumination Configurations, 92 contain the Moy distance between each target margina| and each class
largest minimum number of valid pixels across the samples.js computed. The total distance to a class is defined as the
| use the cropped images of these 92 configurations suppliechroduct of each minimum marginal distance.
by Varma [12]. All results are averaged over 20 random | represent each filter response distribution using equi-
splits of these images into equally sized test and training count histograms containing 10, 100, or 1000 values. As
cases, yielding a total dfl x 46 = 2806 training images  shown in Table 1, the independent and joint 1-NN classifiers
and 2806 test images for each split. As a final preprocessinggchieve a maximum accuracy of 95.400.89% and 96.53
step, each image is converted to grey scale and processed t@ 9 80%, respectively. The algorithm of Varma and Zis-

3.1 The CUReT Database

have zero mean and unit variance. serman using the MRS filter bank, a joint distribution esti-
_ mate, and a 1-NN classifier achieves an accuracy of 96.93%
3.2 The MR8 Filter Bank and 97.43% with 610 textons and 2440 textons, respectively

[12]. The SVM extension of this algorithm gives the best-
The MRS filter bank consists of 38 filters and 8 filter known accuracy (98.46%) on this database [5]. While these
responses [12]. There are two isotropic filters, a Gaussianalgorithms are more accurate, they are also computationally
and a Laplacian of a Gaussian (LOG), both at seate 10. more complex. In the next section, | improve upon these re-
The 36 other filters include an edge (first derivative) filter sults and further reduce computational complexity by using
at 6 orientations and 3 scales, and a bar (second derivativea Gaussian Bayes classifier.



4 Gaussian Bayes Classification
Table 2. Accuracy of the Gaussian Bayes clas-

| now improve upon the previous results by comput- Sifier with independent or joint estimation of
ing a parametric estimate of the variation of marginal non-  the MR8 marginal histograms.
parametric histograms using multivariate Gaussian distrib-
utions. Gaussian models stretch the Euclidean space of the

mapped marginal histograms, enhancing itig metric to #Bins  Independent Marginals  Joint Marginals
account for the variability in the training set. | construct 1o 94.34+ 0.94% 99.20+ 0.37%
two Gaussian classifiers that model the variation of the mar- 25 95.164 0.83% 99.22+ 0.34%
ginal histograms independently and jointly in sections 4.1 1pg 95.65+ 0.83% 99.03F 0.38%
and 4.2, respeciively. 1000 95.57+ 0.82% 98.83+ 0.50%

4.1 Independent Marginal Variation

First, | consider the variation of the 8 marginal distrib- sentation maps images to points in Euclidean space where
utions defined by the MRS filter bank to be mutually inde- Euclidean distance corresponds to ftfenorm of approxi-
pendent. For each texture class and filter response marginahate/, marginal distances.
| construct an independent multivariate Gaussian model. To construct a single class specific subspace, | concate-
Each Gaussian model is trained using 46 histograms com-nate each feature’s subspace, disregarding the expected pro-
puted from the training set. Each histogram is representedjection error, and apply PCA. Next, | record the expected
using 10, 25, 100, or 1000 bins and is mapped to the Euclid-projection error of the original histograms onto this final
ean space of corresponding dimension. Note that 46 orsubspace by summing the 8 feature specific projection er-
more bins yields a high dimension low sample size (HDLS) rors and the final projection error. For the following results
situation. To accurately model this limited training set | use | build a single 26-dimensional multivariate Gaussian distri-
PCA to estimate a Gaussian distribution in a low dimen- bution for each class, which measures the joint variation of
sional subspace for each class and marginal. Since targea 25-dimensional subspace and the corresponding expected
images from other classes can have large projection errors, projection error. | use feature specific subspaces of dimen-
measure the expected distance to the subspace by summirgjon 15, except for the 10 bin case which uses all 10 avail-
the remaining eigenvalues. For each class and marginal theble dimensions.
final Gaussian model is of dimension equal to the number of  Gaussian classification using this model achieves an ac-
eigenmodes plus one. For 10, 25, 100, and 1000 bins | useuracy of 99.22% with 25 bins, as shown in Table 2. In
a small number of eigenmodes, 6, 7, 8, and 9, respectively,addition, the classifier achieves a stable accuracy of over
to define each subspace. For the 10 bin example, each clasg9% for a large range of bin numbers and eigenmodes. The
contains 8 independent 7-dimensional Gaussian models. drop in classification accuracy for the 100 and 1000 bin rep-

The likelihood of an image belonging to a class is de- resentations is due to the HDLS problem of accurately es-
fined as the product of the Gaussian likelihood of each mar-timating the corresponding multivariate Gaussian distribu-
ginal. During testing, an image is assigned to the class withtions. Hence, there is a tradeoff between accurate estima-
the maximum likelihood of containing the image. This pro- tion of the marginal histograms and accurate estimation of
duces a Bayes classification of the image because the priothe Gaussian models.
probability of each class is identical. This algorithm is computationally efficient and it gener-

Table 2 shows the results of using this classifier with ates a compact representation of each image. For the clas-
the marginal MR8 algorithm from the previous section. sification problem being examined on the CUReT database,
Compared to the independent 1-NN classifier, this classifierit is sufficient to capture only 80 values per image (10 per

achieves a significant gain in speed along with a slight in- marginal), which can be further reduced to 25 values.
crease in accuracy. | discuss these results in the next section Thus far | have described four classifiers. With 10

after defining the joint Gaussian classifier. bins per marginal, the independent 1-NN classifier, joint
) _ o 1-NN classifier, independent Gaussian classifier, and joint
4.2 Joint Marginal Variation Gaussian classifier achieve accuracies of 93.63%, 95.35%,

94.34%, and 99.20%, respectively. These results demon-
Finally, | estimate a single Gaussian model per class thatstrate the increase in accuracy of both Gaussian Bayes clas-
captures the joint variation of the feature marginals. For sification over 1-NN classification and of jointly modeling
each image | combine into a single vector the reduced mar-the variation of the marginal distributions over assuming
ginal representations computed in section 4.1. This repre-their independence.



5 The Strong-MRF Framework

MRF models estimate probabilities of complete local
neighborhoods of pixel values. To develop a classification
algorithm using features defined by MRF models instead of
filter banks, | need a simplification similar to that of mar-
ginal distributions of filter responses. Strong-MRF models

provide such a simplification because they make additional
Markovian assumptions equivalent to assuming the condi-
tional independence of neighboring pixels given the center

pixel's intensity. Paget describes Strong-MRF models in

Table 3. Classification accuracy using N x N
neighborhoods with a joint 1-NN classifier
and a joint Gaussian Bayes classifier.

N 1 3 5 7
Joint 1-NN 61.45% 83.55% 88.23% 90.08%
Joint Gaussian 65.37% 92.79% 95.59% 96.04%

detail and demonstrates that they capture sufficient informa-

tion for the synthesis of some natural textures [9]. Strong-

of intensity ranges o¥ determined using equi-count bins.

MRF models are also related to gray level co-occurrenceEach estimate is then measured with the same accuracy.
matrices since they both measure the co-occurrence of pairgo compute this representation, the valuey’oére sorted

of pixel intensities for several spatial relationships.

In section 5.1 | construct a mapping of the resulting mar-
ginal conditional distributions to Euclidean space. In sec-
tion 5.2 | perform 1-NN and Gaussian classification and re-
port results for neighborhoods of size 1, 3x 3, 5% 5, and
7 x 7. In section 5.3 | examine multi-scale neighborhoods.

5.1 Conditional Probability Representation

In this section | construct an estimate of the joint proba-
bility of local pixel neighborhoods consistent with Strong-
MRF models and define a mapping of the resulting marginal
conditional distributions to Euclidean space.

Let z. be a pixel with intensityl(z.) and neighbors
Y1,Y2,- - -, Yn- | S€EK tO estimate the joint probability

p(I(zC)7I(y1)7I(y2)v s 7I(yn))'

Rewriting this as a conditional probability gives

pI(ze)) - p(L(y1), I(y2), -, L (yn)| I (zc))-

Next, assumingy,,yo,...,y, are conditionally indepen-

dent givenz,. yields

n

p(I(S{}C)) : Hp(l(yz)‘l(xc))

i=1

Finally, assumingr,. andy1, %, ...,¥y, to be identically
distributed and by the spatial symmetry of the neighbor-
hood, the final joint probability estimate is rewritten as

n

p(I(zc)) - [T P (o) 1(y))-

i=1

1)

To construct a representation of eagti(z.)|I(y;)) akin
to the marginal representation, consider the conditional
probability p(X|Y"). | represenp(X|Y) as several equi-
count histograms that estimgp¢X|Y") at a fixed number

and binned. Then, for each bin an equi-count histogram is
formed using the corresponding values. Thus, the final
representation is an ordered set of equi-count histograms.
To define a distance between two conditional probabili-
ties, considep(X|Y) andp(Z|W). Lety,y2,. .., yn and
wy,wa, . . ., wy, be two sets of intensity ranges. | argue that
such a distance measure only needs to comp@key;) to
p(Z|w;) for i = 1,...,n becauseX andY, and Z and
W, are identically distributed. Note that any differences
betweenY and W will have corresponding differences be-
tweenX andZ. Thus, | ignore the actual intensity ranges
of Y andW and define the distance betwegiX|y;) and
p(Z|w;) as theirM distance. Finally, | define the distance
betweenp(X|Y) andp(Z|W) as theL? norm of the M,
distances, which is a metric. This distance is fifenorm
of the conditional probability representation taken as a vec-
tor so conditional probabilities can be considered as points
in Euclidean space.

5.2 Local Neighborhoods

Applying Equation 1 to this conditional probability rep-
resentation yields the following classification results. For 1-
NN classification, | define the distance between two images
to be the product of the distances between their marginal
and conditional distributions. For Gaussian Bayes classifi-
cation, | jointly model the variation of the distributions as
in section 4.2.

The results in Table 3 show that the Gaussian classifier
is significantly more accurate than the 1-NN classifier. The
Gaussian classifier achieves an accuracy of 96 @455%
with 7 x 7 neighborhoods. The results in Tables 3 and 4
usel0 x 10 histograms, wherg x & bins forp(X|Y") uses
j bins to estimate)(XY;) at k& configurations oft”. | use
18 eigenmodes with x 1 neighborhoods and 40 feature
specific and 30 joint eigenmodes otherwise. The MRF al-
gorithm of Varma and Zisserman estimates the full condi-
tional probability of a pixel’s intensity given its local neigh-



| plan to explore additional applications of this method-

Table 4. Classification accuracy using multi- ology to other texture analysis problems, including the syn-
scale 3 x 3 neighborhoods and a joint thesis of textures from the CUReT database at arbitrary
Gaussian Bayes classifier. viewing and illumination conditions, and the estimation of

the viewing and illumination conditions of a given image.
In conclusion, this paper shows that algorithms based
# Levels 1 2 3 on joint marginal histograms, the Mallows distance, and
Joint Gaussian 92.79% 97.57% 98.29% Gaussian pro_t_)abi_lity models are _effective and efficient for
texture classification. The algorithms presented here us-
ing the MR8 filter bank and MRF models achieve the best-
known accuracy to date on the CUReT database.
borhood and achieves an accuracy of 95.87%, 97.22%, and
97.47% with 610 textons arik 3, 5x 5, and7 x 7 neighbor- Acknowledgements
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