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Abstract—We present a novel approach for improving the 

shape statistics of medical image objects by generating 

correspondence of skeletal points. Each object’s interior is 

modeled by an s-rep, i.e., by a sampled, folded, 2-sided skeletal 

sheet with spoke vectors proceeding from the skeletal sheet to the 

boundary. The skeleton is divided into three parts: the up side, the 

down side and the fold curve. The spokes on each part are treated 

separately and, using spoke interpolation, are shifted along that 

skeleton in each training sample so as to tighten the probability 

distribution on those spokes’ geometric properties while sampling 

the object interior regularly. As with the surface/boundary-based 

correspondence method of Cates et al., entropy is used to measure 

both the probability distribution tightness and sampling 

regularity, here of the spokes’ geometric properties. Evaluation 

on synthetic and real world lateral ventricle and hippocampus 

datasets demonstrate improvement in the performance of 

statistics using the resulting probability distributions. This 

improvement is greater than that achieved by an entropy-based 

correspondence method on the boundary points. 

 
Index Terms—Shape modeling and analysis, skeletal model, 

correspondence, lateral ventricle, hippocampus 

 

I. INTRODUCTION 

STABLISHING correspondence among similar shapes is 

essential for accurate statistical shape analysis [1, 2] in 

many biomedical applications such as understanding the 

anatomic structural differences in various stages of growth or 

disease [3-6]. This is often achieved by identifying a set of 

sparsely sampled and well-corresponding landmarks on organs 

or regions of interest across the shape instances. 

Several representations of geometric models [6-11] have 

been proposed to describe anatomical structures. The most 

popular one is the surface/boundary-based point distribution 
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model (PDM) (e.g., [1, 12, 13]). Another well studied 

representation describes a shape using a set of parameterized 

basis functions such as spherical harmonics (SPHARM) [6, 8, 

14], which defines an ambiguous correspondence and shown to 

be inadequate for some biomedical shapes that have 

non-uniform spherical parameterizations [15]. Deriving from 

the m-reps [16, 17], skeletal representation has proven 

powerful for shape analysis [11, 18-20] and biomedical 

applications [21-24] that need the rich features (e.g., local 

thickness and orientation) provided by the skeleton for 

quantifying the symmetric properties of organ shapes. 

A key direction in the correspondence optimization research 

has been the computation of an objective function based on the 

determinant of the covariance matrix [25] and latter on the 

minimum description length (MDL) [26] to tighten the 

probability distribution of anatomically homologous points 

across a dataset (see Section II-B). In general, the MDL is 

equivalent to minimum entropy [21, 27]. According to this, an 

energy function that encodes the entropy of the geometric 

properties of the points in the ensemble of shapes (the geometry 

entropy) summed with the entropies of the point distribution on 

each shape’s boundary (the regularity entropy) was proposed in 

[1] to solve the point correspondence problem. This combined 

entropy allows them to optimize the geometric accuracy and the 

statistical simplicity of the shape model. However, in their 

method the shapes were described as surface/boundary-based 

PDMs, which ignore many of the higher order geometric 

features (e.g., local orientation) [18, 28]. 

In this paper, we adopt the skeletal model – termed as the 

s-rep [29] – which samples not just the object boundary but also 

its interior. The s-rep (Fig. 1) is formed by an approximately 

medial folded 2-sided skeletal sheet with a vector called a spoke 

proceeding from every skeletal point on the sheet to and 

approximately normal to the object’s boundary. 

 

 

Fig. 1.  Left: an example of s-rep for lateral ventricle that is sampled as a folded 

3 × 13 skeletal sheet; right: object boundary (yellow) implied by that s-rep. 

 

Our purpose is to build a novel correspondence method 

based on the aforementioned combined entropy to optimize the 

spoke geometry while keeping the spoke distribution in each 

object interior regular. Once correspondence is established, the 

s-rep provides an intrinsic coordinate system for the points in 

the object interior and near exterior that supports statistics on 

object geometry and object appearance. 
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The first contribution of this paper is a novel spoke sliding 

mechanism that shifts the discrete spokes to an interpolated 

spoke along the part of the skeletal sheet from which it proceeds. 

Spoke interpolation [24, 30, 31] is used to produce the new 

spoke at the shifted position. 

The second contribution is a novel form of s-rep in which the 

skeletal positions of the up spokes, down spokes, and fold 

spokes are not necessarily shared (see Figure 4b). This new 

s-rep form is produced iteratively with the spoke shifting. 

The third contribution is the spoke regularity properties that 

can effectively measure the regularity of the subregions 

bounded by the spokes representing an object. 

The final contribution is to improve spoke correspondence 

by minimizing a weighted sum of the entropy of the spokes’ 

geometric properties over the shape training population (the 

geometry entropy) and the within-object spokes’ distributional 

entropy for each shape’s interior (the regularity entropy). 

Evaluated on synthetic and real word datasets consisting of 

lateral ventricles and hippocampi, the proposed method 

effectively improved the tightness and regularity of the spoke 

distribution and reduced shape variances. Also, when compared 

to entropy-based optimization of a boundary PDM, our method 

yields PDMs that are superior in specificity and compactness 

while maintaining generalization in the first few eigenmodes. 

The remainder of this paper is organized as follows. Section 

II presents the shape representation schemes and overviews the 

previous related work along with common correspondence 

validation metrics which are adopted in this paper. Section III 

describes our correspondence method. Section IV details the 

experiments and presents measurements of the statistical 

performance of spoke optimization and boundary PDM 

optimization. Section V discusses this new correspondence 

method, including its possible improvements and applications. 

II. BACKGROUND 

A. Shape Representation Schemes 

We describe three shape representations in use: SPHARM, 

PDM, and s-rep. 

1) SPHARM: spherical harmonics coefficients as presented 

by Brechbühler et al. [8] form a global, fine scale boundary 

description that represents shapes of spherical topology. It 

describes a surface x(𝜃, 𝜑) using 

x(𝜃, 𝜑) = ∑ ∑ 𝑐𝑙
𝑚𝑌𝑙

𝑚(𝜃, 𝜑),

𝑙

𝑚=−𝑙

∞

𝑙=0

 (1) 

where the basis functions 𝑌𝑙
𝑚(𝜃, 𝜑), −𝑙 ≤ 𝑚 ≤ 𝑙, of degree l 

and order m are defined on 𝜃 ∈ [0, π] × 𝜑 ∈ [0,2π) and where 

the three-dimensional coefficients 𝑐𝑙
𝑚 are obtained by solving 

the least-squares problems in each spatial coordinate directions. 

2) PDM: A PDM is a discrete set of points sampled manually 

or automatically from the object. Points with corresponding 

index in each object selected so as to be in correspondence 

across objects in the given ensemble. For statistical analysis, 

the points in each object are aligned via their moments to let all 

the examples lie in the same coordinate system. 

Consider a set of 𝑁 aligned object surface/boundary PDMs 

𝒮𝑘 = {𝑝𝑘𝑖}, each with 𝑛 points, where 𝑝𝑘𝑖  is a point on the 𝑘𝑡ℎ 

surface, 𝑖 ∈ (1,2, … , 𝑛)  and 𝑘 ∈ (1,2, … , 𝑁) . As shown by 

Kendall [32], scaling each center-of-mass-centered 𝒮𝑘  such 

that ∑ |𝑝𝑘𝑖|2 = 1𝑛
𝑖=1  can be seen as a projection onto the unit 

hypersphere 𝕊3𝑛−4 . Therefore, a boundary PDM can be 

understood as a concatenation of a log-transformed version of 

this scaling factor and this normalized tuple of points [33]; it 

abstractly lives on the manifold ℝ1 × 𝕊3𝑛−4. 

3) S-rep: In a discrete s-rep (Fig. 1), each up spoke shares a 

skeletal point with a down spoke, and fold spokes share a 

skeletal point with both an up and a down spoke. The object 

interior can be completely represented by interpolating the 

discrete s-rep into a continuous skeleton with a continuous field 

of spokes forming a continuous s-rep whose spokes fill the 

interior of the object. This representation does not rely on any 

inherent parameterization. Statistical analysis is applied to 

these sparse spokes [19, 24, 34]. 

For a new object, we obtain its s-rep by an optimization that 

fits the interpolated form of a previously defined s-rep template 

to the object. Because these fits involve common statistically 

generated modes of variation, followed by refinement, the fits 

already have a reasonable initial correspondence. 

In this paper, we divide the skeleton into its three parts: up 

spokes proceeding from the skeletal sheet top, down spokes 

proceeding from the skeletal sheet bottom, and fold spokes. For 

the 𝑘 spokes on each part, the set of spoke tails on the skeletal 

sheet forms a PDM to which the aforementioned PDM scaling 

strategy can be applied to yield a point on ℝ1 × 𝕊3𝑘−4 ; the 

directional component of each spoke abstractly lives on the unit 

2-sphere 𝕊2. Therefore, the geometric properties of this s-rep 

abstractly lives on ℝ𝑘+1 × 𝕊3𝑘−4 × (𝕊2)𝑘 . More information 

on this is provided in Supplementary Section I. 

B. Previous Work on Correspondence 

Cootes and Taylor [7] first posed the correspondence 

problem combined with Principal Component Analysis (PCA) 

on manually defined significance points in a 2D boundary PDM. 

Manually placing landmarks is error-prone, subjective and 

time-consuming, which makes this approach impractical for 

defining correspondence, the more so in 3D than 2D. 

Various attempts have been made to solve the 

correspondence problem automatically [6, 12, 35, 36]. They 

can be categorized according to which of three alternative ways 

for building correspondence they follow. The first way is to 

manipulate surface correspondence simultaneously while 

computing geodesic deformation that is optimal according to an 

elastic Riemannian metric [13, 37-39]. The second way is to 

use a consistent, shape-sensitive method for fitting the object 

representation to the object, for each object in the training set [5, 

29, 40-42]. The third way is to tighten the resulting probability 

distribution on the representation properties [1, 25-27, 43]. 

Srivastava et al. [13] and Jermyn et al. [37] introduced an 

elastic correspondence method that treats shape comparisons 

and surface correspondence in a joint manner. Kurtek et al. [10, 

38] proposed a mechanism for computing geodesic paths 

between surfaces that are invariant to the parameterizations of 

surfaces and other shape-preserving transformations of surfaces, 

which was re-formulated and extended in [39] as a 

landmark-constrained correspondence method. 

There are two extensively used methods based on fitting 

consistency. The first is applied to boundary PDMs based on 

SPHARM (see Section II-A1). The second is applied to s-reps 

and consequently to s-rep implied boundary PDMs. 
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The SPHARM-based method uses a PDM made from the 

vertices of a triangular tiling of the object boundary. It produces 

consistency in the areas of the tiles and in the orientations of the 

tiles relative to the parameterizing sphere. Kelemen et al. [40] 

used this method to describe a population of 3D hippocampal 

shapes. Inspired by their experiments, Gerig et al. [6] applied 

the same method to study the similarity of lateral ventricles. 

Styner et al. [41, 42] addressed the correspondence problem for 

anatomical objects through SPHARM-implied PDMs. 

The s-rep-based method [5, 29] achieves correspondence by 

fitting a predefined template to each object instance. It achieves 

consistency either by deformation according to a common set 

of landmarks or by fitting each object over the coefficients of 

common eigenmodes produced by the PCA-like method called 

CPNS (Composite Principal Nested Spheres) [44, 45]. 

Correspondence based on tightening the probability 

distribution began with the work of Kotcheff and Taylor [25]. 

They posed the problem as one of finding the circle-based 

parameterization for each object in the training set that yields 

the tightest distribution. They measured tightness from the 

covariance matrix ⅀  on derived PDMs. Their measure was 

ln 𝑑𝑒𝑡 (⅀ + 𝛼𝐼) , where 𝐼  is the identity matrix and 𝛼  is a 

parameter that prevents the very thinnest modes (smallest 

eigenvalues) from disturbing the optimization process. 

Davies et al. [26] proposed a different objective function 

based on ⅀: MDL of the geometric representation [27]. In [12] 

they extended this approach to 3D statistical shape models 

based on a PDM description derived from a continuous 

parameterization. MDL uses an objective function 𝐹 =
∑ ln(𝜆𝑘 + 𝛼)𝑘 , where the 𝜆𝑘  are the first 𝑘  dominant 

eigenvalues of ⅀  (principal variances) and 𝛼  has the same 

effect as in Kotcheff’s method. The regularity of the points on 

each object in this method was achieved via the deformation of 

the common parameterization. 

The entropy 𝐻(𝑍) of a  𝑑-dimensional Gaussian distribution 

on the multivariate 𝑍 is linear in the MDL objective function 𝐹 

with 𝛼 = 0 if all the principal variances are used. Thus for a 

fixed dimension, minimizing the MDL is equivalent to 

minimize the geometric entropy 𝐻(𝑍)  if all the principal 

variances are used and are offset by 𝛼. Realizing this, Cates et 

al. [1] recast the boundary PDMs correspondence problem in 

terms of entropy. This allowed them to express not only the 

geometric properties but also the regularity properties by 

entropy on each object. Their objective function was 𝑄 =
𝐻𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦(𝑍) − ∑ 𝐻𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑂𝑏𝑗𝑒𝑐𝑡𝑖)

𝑁
𝑖=1 . In both entropies, 

offsetting the principal variances by 𝛼  was used. 𝑄  was 

minimized by shifting the points along each object boundary. 

Other methods try to obtain correspondence through various 

geometric features. Brett et al. [46], Hill et al. [47] and Wang et 

al. [48, 49] proposed various shape properties (e.g., regions of 

high curvature) to establish point correspondences. Shi et al. 

[50] represented sulcal shapes as square-root velocity functions 

of continuous open curves and computed geodesics in the 

quotient space, trying to preserve important local geometry. 

Oguz [43] presented an extension of [1] by combining the 

features of point location with curvature and image based 

features. Her work illustrates how multiple modalities can be 

included in an entropy-based approach. 

In this paper we present a correspondence method adopting 

the aforementioned combined entropy for our s-rep to improve 

correspondence of the sparse spokes. That is, we describe the 

object as an s-rep and shift the spokes on the skeletal sheet to 

tighten the probability distribution of spoke geometry while 

keeping the spoke distribution in each object interior regular. 

 

C. Correspondence Validation Metrics 

A good correspondence method should generate a 

probability distribution on shape describable by few parameters; 

the probability distribution should be capable of representing 

objects that did not participate in training, and it should only 

generate instances that are similar to those in the training set. 

These three properties are respectively called compactness, 

generalization and specificity, all of which were first proposed 

by Davies’ [51] and have been widely used in previous 

literature [12, 41, 43, 52] to evaluate the correspondence 

quality. For all three metrics, lower values are desirable. 

The compactness metric of a model 𝐶(𝑀) evaluates the total 

variance of the model using 𝐶(𝑀) = ∑ 𝜆𝑖 ,
𝑀
𝑖=1  where 𝜆𝑖  is the 

𝑖𝑡ℎ eigenvalue in the PCA model, 𝑀 is the dimension of the 

object description. The standard error of 𝐶(𝑀)  is 𝜎𝐶(𝑀) =

∑ 𝜆𝑖√2 𝑁⁄𝑀
𝑖=1 , where 𝑁 is the number of objects in the training 

set. To compare shape descriptions with different number of 

features (e.g., PDMs with different number of points), we 

measure compactness in both variance and dimension using a 

per-dimension variant of the compactness metric as 

𝐶(𝑀) =
1

𝘒
∑ 𝜆𝑖 ,

𝑀

𝑖=1

 (2) 

where 𝘒 is the number of features representing each object. 

The generalization ability of a model 𝐺(𝑀)  measures its 

capability of representing unseen instances of the objects being 

studied. Consider an arbitrary object 𝑖  (𝑖 ∈ 𝑁). A model is 

constructed by PCA using the remaining 𝑁 − 1  objects 

(excluding the 𝑖𝑡ℎ). The model is used to reconstruct the 𝑖𝑡ℎ 

using 𝑀 major modes of variation, and the reconstruction error 

is computed. 𝐺(𝑀) measures the average reconstruction error 

for all 𝑁 objects as 

𝐺(𝑀) =
1

𝑁
∑ 𝑒(𝑖, 𝑀)

𝑁

𝑖=1

, 𝑒(𝑖, 𝑀) = |𝑋𝑖 − 𝑋′
𝑖(𝑀)| (3) 

where 𝑋𝑖 is the location array for the 𝑖𝑡ℎ object and 𝑋′
𝑖(𝑀) is 

the location array for the reconstructed object for the 𝑖𝑡ℎ object 

using 𝑀  modes. In practice, the standard error of 𝐺(𝑀) 

(denoted by 𝜎𝐺(𝑀)), 𝜎𝐺(𝑀) = 𝜎/√𝑁 − 1, is usually computed to 

reason about the significance differences in generalization for 

different methods, where 𝜎 = √
1

𝑁
∑ (𝑒(𝑖, 𝑀) − 𝐺(𝑀))

2𝑁
𝑖=1  is 

the sample standard deviation. 

The specificity metric 𝑆(𝑀) of a model measures the degree 

to which the model generates objects that are similar to those in 

the training set. Generally, a PCA model is built from the 

training set (ℒ) and a population of 𝑚 new instances (𝔗) are 

generated from this model using 𝑀 modes. 𝑆(𝑀) measures the 

average distance error as 

𝑆(𝑀) =
1

𝑚
∑ 𝑑(𝑖, 𝑀)

𝑚

𝑖=1

, 𝑑(𝑖, 𝑀) = |Φ𝑖(𝑀) − 𝑋𝑖| (4) 
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where Φ𝑖(𝑀) is the location array for the 𝑖𝑡ℎ instance in 𝔗. 𝑋𝑖 

is the location array for the object in ℒ that has the minimum 

distance to Φ𝑖(𝑀). The standard error of 𝑆(𝑀) is given by 

𝜎𝑆(𝑀) = 𝜎/√𝑚 , where 𝜎 = √
1

𝑚
∑ (𝑑(𝑖, 𝑀) − 𝑆(𝑀))

2𝑚
𝑖=1 . A 

value of 𝑚 = 1000 was used in this paper. 

III. METHODS 

Recall that our method optimizes the combined entropy in a 

training set of s-reps by sliding each of the sparse spokes (the 

thickened spokes of the same color in Fig. 2) on each object 

onto an interpolated spoke on the part of the skeletal sheet from 

which it proceeds. In this section, we elaborate on each of the 

method’s components: a) spoke shifting through interpolation, 

b) regularity properties calculation contributing to regularity 

entropy, c) geometric properties calculation contributing to 

geometry entropy, d) objective function and optimization. 

 

 

Fig. 2.  Discrete s-reps of two lateral cerebral ventricles, each represented as a 

3 × 13 sparse grid of spokes (the colored thickened lines). The thin gray spokes 
are the interpolated spokes describing the object interior. The color indicates the 

initial correspondence before any shifting using entropies. 

 

A. Spoke Shifting through Interpolation 

As previously discussed and as illustrated in Fig. 3a, an s-rep 

is made up of three regions of spokes: up, down and fold. The 

spoke shifting within each region is done independently. For an 

𝑚 × 𝑛 s-rep, there are (𝑚 − 2) × (𝑛 − 2) up (or down) spokes 

emanating from an interior grid position; the remainder 

emanate from an exterior grid position (the fold). The interior 

up and down spokes should be allowed to shift on the interior of 

the respective region via the spoke interpolation in [31]. The 

spokes emanating from the fold should be allowed to shift only 

on the fold via the spoke interpolation method in [24]. The 

spokes emanating from the corner of the grid are not allowed to 

shift. Fig. 3b visualizes the shifting of the up region. 

The spoke interpolation is based on an object-related 

intrinsic coordinate system, in which each quad (bounded by 

four neighboring spokes) on the skeletal sheet is projected as a 

unit grid. The sparse spokes are given successive integer grid 

coordinates (𝑢, 𝑣), with 𝑢 parameterizing the s-rep grid’s long 

axis and 𝑣 parameterizing its short axis (Fig. 4a). 

To optimize the aforementioned combined regularity and 

geometry statistics, each sparse spoke 𝑆(𝑢, 𝑣)  is slid to the 

shifted spoke at the interpolated position (𝑢 + ∆𝑢, 𝑣 + ∆𝑣) , 

where ∆u, ∆v ∈ (−1,1). Neighboring spokes are constrained so 

that their tails cannot cross on the skeletal sheet. 

 

Fig. 3.  (a) Each object is modeled with three regions: an up (cyan), a down 

(magenta) and a fold region (yellow). The green grids represent the skeletal 

sheet. (b) The up skeletal sheet with the original sparse spokes shown as 
thickened cyan lines; the interpolated spokes shown as thin cyan lines; the 

shifted spokes shown in thickened yellow. The thickened cyan spokes 𝑆(𝑢, 𝑣) 

are shifted to the thickened yellow position 𝑆(𝑢 + ∆𝑢, 𝑣 + ∆𝑣) by a small step 
(∆𝑢, ∆𝑣), and interpolating to that position. 

 
v

(1.5, 1.2)

(0.5, 6.6)

u  

Fig. 4.  (a) A skeletal sheet has its 3 × 13 skeletal points projected as a unit 
grid. The diamonds and balls respectively denote the interior and the exterior 

grid positions. Each interpolated spoke has coordinate (𝑢 + ∆𝑢, 𝑣 + ∆𝑣) (e.g., 
the spoke at the red dot is (1.5, 1.2), and at the cyan dot (0.5, 6.6)). (b) Part of 

the s-rep before and after shifting. The shared skeletal points (white balls in 
original s-rep) split and shift to a new place with its spoke. The cyan ball is the 

skeletal pt. of the up spoke, magenta (down) and yellow (fold). 
 

In general, each movable spoke has restriction on where it 

can shift to, according to the following criteria: 

1) For the interior up and down spokes (diamonds in Fig. 4a), 

∆𝑢 ∈ (−1, 1) and ∆𝑣 ∈ (−1, 1). 

2) The spokes on the exterior of the grid (green balls in Fig. 4a), 

be they up, down or fold spokes, shift to the same types of 

spokes in an adjacent quad edge by changing only ∆𝑢 or ∆𝑣. 

That is, for these spokes, the shifting is ∆𝑢 = 0, ∆𝑣 ∈ (−1, 1) 

or ∆𝑢 ∈ (−1, 1), ∆𝑣 = 0. 

3) For the corner spokes (blue balls in Fig. 4a), the shifting is 

∆𝑢 = 0 and ∆𝑣 = 0. 

After applying the above shifting independently to each 

region, the resulting s-rep may well not have any two spokes 

sharing a skeletal position (see Fig. 4b). 

To produce correspondence, the spoke shifting is optimized 

iteratively until convergence is achieved. Whereas the 

interpolation used in the shifting is always based on the original 

s-rep; the regularity and geometric properties to be discussed in 

Sections III-B,C are always based on the shifted s-rep. 

(a) (b) 

Original 

Shifted 

(a) (b) 
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B. Regularity Properties 

To measure the regularity of the spoke distribution of each 

s-rep in the training set, the grid of sparse spokes is formed into 

quads on both the skeletal sheet (connecting four neighbor 

spoke tails, shown as green balls and black grids in Fig. 5a-c) 

and the object boundary (connecting four neighbor spoke tips, 

shown as green or red sheets in Fig. 5a). At the fold there are 

curvilinear segments on the skeleton rather than quads. The 

regularity of the spokes is defined based on a tuple of features 

for each skeletal quad and its corresponding boundary quad. 

For each such quad-pair certain features can be understood to 

be approximately statistically independent and yet imply quad 

side lengths, areas, and inter-quad-pair volume. These are 

horizontal edge lengths, vertical edge lengths, average angle 

cosines over the sub-quads, and cosine of the normal swing 

between the upper-left and bottom-right corners. The length 

and angle properties are computed separately for the skeleton 

and boundary surfaces. Similar properties are computed for the 

region bounded by the fold curve on the skeleton and the 

corresponding fold region on the boundary (Fig. 5e). 

 

B2

B5

B7

B12

B2

B5

B7

B12

H
V

H

V

H
V

B5

 

Fig. 5.  Visualization of an 3 × 8 s-rep. (a) This s-rep has 24 up/down spokes 
(blue/magenta lines), 18 fold spokes (red lines). These spokes form 14 skeletal 
quads for the up/down region, each with a corresponding boundary quad (e.g., 

B5 denotes a boundary quad). (b-c) Each quad is divided into (23)2 sub-quads. 

(d) Each sub-quad in B5  is further subdivided into two triangles. (e) An 
example of the curvilinear segments on the skeleton and its corresponding fold 

region on the boundary. 𝐻 and 𝑉 denote the horizontal and vertical directions 
respectively. More subdivision is visualized in Supplementary Fig. 1 for 

up/down region and Supplementary Fig. 2 for fold region. 

 

All the quad edges are curved. As visualized in Fig. 5, we 

measure the lengths and angles by subdividing the quads and 

summing the lengths and averaging the angles measured from 

each subdivision. Moreover, quad subdivision into triangles 

handles the fact that the subdivision is curved. The normal 

swing is an approximation counting from the upper-left corner 

sub-triangle (e.g., the orange triangle in Fig. 5d) to the 

bottom-right corner sub-triangle (e.g., the yellow triangle). 

For each training s-rep, all the resulting measurements are 

analyzed to produce three regularity entropy terms (𝐸𝑐𝑜𝑠, 𝐸ℎ𝑒𝑙  

and 𝐸𝑣𝑒𝑙) from the following three approximately statistically 

independent feature sets: the angle cosines, the horizontal edge 

lengths, and the vertical edge lengths. 

 

C. Geometric Properties 

Tightening the probability distribution on the geometric 

properties of the s-reps in the training set is the basic means of 

producing correspondence. These properties include the 

positions of the skeletal points, the spoke radii, and the spoke 

directions. As with the regularity properties calculation, the 

geometric properties for the up, down and fold regions are also 

calculated separately and then combined across all regions. The 

geometric properties of the spokes in each region are computed 

in the same way. 

A complication is that the entropy formulas used to measure 

tightness assume the properties are Euclidean, i.e., the 

Pythagorean theorem applies, but unfortunately this does not 

hold for many of the aforementioned geometric properties. We 

deal with this by Euclideanizing the relevant properties via 

Principal Nested Spheres (PNS) analysis [44] and making them 

commensurate before applying PCA and thence the entropy 

formulas. The commensurated form of each scale factor of the 

𝑘𝑡ℎ  s-rep, denoted by 𝛾𝑘 , is �̅� × log(𝛾𝑘 �̅�)⁄ , where �̅�  is the 

geometric mean of 𝛾𝑘 and 𝑘 = 1,2, … , 𝑁. Each Euclideanized 

feature resulting from the PNS on the scaled skeletal points is 

commensurated by multiplying it with  �̅�. The commensurated, 

Euclideanized form of the spoke radii 𝑟𝑖
𝑘 , are similarly  �̅�𝑖 ×

log(𝑟𝑖
𝑘/ �̅�𝑖), where  �̅�𝑖 is the geometric mean of the radii for the 

𝑖𝑡ℎ spoke, 𝑖 = 1,2, … , 𝑛. PNS is applied to each spoke direction, 

which abstractly lives on 𝕊2, and the Euclideanized features are 

commensurated by multiplication with  �̅�𝑖. 

The result of this process is a collection of commensurate 

zero-mean features that can be concatenated to form a 

Euclidean feature tuple describing each s-rep. The sample 

covariance matrix derived from these tuples is used to form the 

geometry entropy 𝐸𝑔𝑒𝑜, as will be described in Section III-D. 

 

D. Energy Function and Optimization 

Euclideanization and commensuration of the geometric 

features of the 𝑖𝑡ℎ s-rep, 𝑖 = 1,2, … , 𝑛, yields a k-dimensional 

feature tuple 𝑋𝑖  that approximately follows a multivariate 

Gaussian distribution, 𝑋 ~ 𝑁(𝜇, 𝛴), where 𝜇 is the mean tuple, 

𝛴 is a 𝑘 × 𝑘 covariance matrix and 𝑛 is the number of s-reps in 

the training set [44]. This formulation can also be applied to the 

regularity properties after they have been made zero-mean and 

commensurate. The entropy of such an 𝑋 is 

𝐻(𝑥) =
𝑑

2
+

𝑑

2
ln 2𝜋 +

1

2
∑ ln 𝜆𝑖

𝑑

𝑖=1

 (5) 

where 𝑑 is the number of non-zero eigenvalues of 𝛴 and 𝜆1 , 

𝜆2, …, 𝜆𝑑 are the non-zero eigenvalues of 𝛴. 

In our application 𝑑 < 𝑘 , with the effect that computed 

eigenvalues beyond the 𝑑𝑡ℎ are small and contain almost pure 

noise. Including these in the sum contributes dominating 

negative terms of large magnitude to 𝐻(𝑥). Recall that Cates et 

al. method used a constant factor to prevent the smallest modes 

(those with smallest eigenvalues), which mainly constitute 

effects of noise, from disturbing the optimization process. In 

our method, we handle this problem by removing those 

eigenvalues with contribution (𝜆𝑖 ∑ 𝜆𝑖⁄ ) smaller than a prior 

threshold ϑ and correspondingly lowering 𝑑. This approach is 

applied separately to compute the geometric entropy 𝐸𝑔𝑒𝑜 and 

each of the three regularity entropies (𝐸𝑐𝑜𝑠, 𝐸ℎ𝑒𝑙 and 𝐸𝑣𝑒𝑙) for 

each object. For all the regularity entropies ϑ = 1% is used. 

Because the dimensionality of the geometric properties is high, 

for the geometry entropy ϑ = 0.1% is used. 

(a) (b) (c) (e) 

(d) 
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The regularity entropy 𝐸𝑟𝑒𝑔
𝑖  of the 𝑖𝑡ℎ s-rep is computed as 

𝐸𝑟𝑒𝑔
𝑖 = 𝐸𝑐𝑜𝑠

𝑖 + 𝐸ℎ𝑒𝑙
𝑖 + 𝐸𝑣𝑒𝑙

𝑖  (6) 

where 𝐸𝑐𝑜𝑠  indicates the angle cosine entropy. The overall 

regularity entropy of the N training s-reps is 𝐸𝑟𝑒𝑔 = ∑ 𝐸𝑟𝑒𝑔
𝑖𝑁

𝑖=1 . 

The correspondence is established by solving the 

optimization problem given by 

argmin
𝑥

𝑓(𝑥) = {𝑥 | 𝑓(𝑥) = ω𝐸𝑔𝑒𝑜 − 𝐸𝑟𝑒𝑔} (7) 

where ω  is the weight used to balance the tightness and 

regularization and 𝑥 is the collection of (∆𝑢, ∆𝑣) that shift the 

spokes. For the results reported later, we use the NEWUOA 

optimizer [53] to minimize (7) and use the one-plus-one 

evolutionary optimizer [54] to avoid local optima. However, 

other optimizers are possible. 

IV. EVALUATION AND RESULTS 

A series of experiments were performed to evaluate the 

proposed correspondence method. We first introduced the data 

sets in use. Second, we set the parameters involved in our 

objective function. Then we applied the proposed method to 

different data sets to investigate the tightness and regularity of 

the spoke distribution and the statistical parameters that were 

extensively used to measure the correspondence quality (see 

Section II-C). Finally, we compared our method with two of the 

state-of-the-art PDM-based methods, namely, SPHARM-PDM 

(spherical harmonics point distribution model) [15] and 

ShapeWorks [55] which is an up-to-date, enhanced 

open-source distribution of Cates et al. method [1]. Our 

program was implemented in C++ and Matlab. All experiments 

presented here were done on 64-bit 8GB 4-core PC. 

A. Data Sets 

Three types of data sets were employed for the results 

reported in this paper: synthetic objects and real world lateral 

ventricles and hippocampi. 

1) Synthetic Objects: A set of 80 synthetic lateral ventricles 

s-reps with all spokes identical except one that was shifted by a 

small random distance were produced to evaluate how the 

correspondence optimization affects the spoke variance. 

2) Lateral Ventricles: We were provided set of lateral 

ventricles that were semi-automatically segmented from 

magnetic resonance imaging (MRI) images in neonates [56]. 

Each ventricle was preprocessed using SPHARM-PDM and 

deformed to an initial skeletal model (manually defined by an 

expert) using thin plate spline registration. We selected 31 

resulting ventricle s-reps for our tests presented here. 

3) Hippocampi: We were provided s-reps fitted to a set of 

binary images of the hippocampi that were segmented from the 

MRI scans from normal control datasets in a schizophrenia 

study [5]. We randomly selected 40 of them for our tests. 

For the latter two data sets, a Procrustes alignment based on 

the boundary points and their corresponding skeletal points 

implied by s-rep spokes was performed before applying the 

proposed correspondence method. 

 

B. Parameter Selection 

We first determined the best interpolation level ( ∂ ) for 

computing the regularity and geometric properties. Then we 

studied how to determine the weight to best balances the 

tightness and regularization entropies. 

1) Interpolation Level 

The regularity properties described in Section III-B were 

computed based on subdivision of the curved quad edges into 

2∂ linear pieces. We sought the ∂ that balances the accuracy 

and efficiency by investigating the changes of the skeletal and 

boundary quad areas and of the 3D region volume bounded by 

the corresponding quad-quad (or line-quad for fold region) pair 

and the average time used for interpolating to each region of 10 

different s-reps with ∂ = 0,1, … ,8 on the real lateral ventricles. 

As shown in Supplementary Fig. 3, both areas and the 

volume change significantly as we increase ∂ up to 2, but there 

is little change when we increase ∂ from 2 to any high level. 

That is, ∂ = 0  or ∂ = 1  is inappropriate for the regularity 

properties computation; while ∂ = 2 or 3 can achieve adequate 

accuracy. Since ∂ = 3  takes three times the time of ∂ = 2 

(Supplementary Table I), we use ∂ = 2: each edge is divided 

into 4 sub-edges, each quad is divided into 16 sub-quads. 

2) The Weight for the Tightness and Regularization 

Consider the weight ω on 𝐸𝑔𝑒𝑜 in (7). For different datasets, 

different values of ω  yield best correspondence quality, as 

measured through s-rep implied boundary points. As an 

example, Supplementary Fig. 4 compares the statistical 

performance via specificity, generalization, and compactness 

measures as described in Section II-C for the real lateral 

ventricles using different ω. S-rep spoke tips (∂ = 0) were 

collected and used as boundary PDMs for these measurements. 

The results show that ω = 4 obtains the best performance. 

We suggest that ω = 𝐸𝑟𝑒𝑔/𝐸𝑔𝑒𝑜 is a reasonable initial value 

to try for any particular dataset, where 𝐸𝑟𝑒𝑔  and 𝐸𝑔𝑒𝑜  are 

calculated from the input, aligned s-reps; then one would 

switch ω up and down to investigate if better results can be 

obtained. This approach yielded weights ω = 30, ω = 4 and 

ω = 13, respectively used for our synthetic objects, real lateral 

ventricles and hippocampi. 

 

C. Comparisons between Aligned and Optimized S-reps 

We applied the proposed method to the three aforementioned 

datasets and compared the entropies, shape variances and 

correspondence quality measurements between the aligned, 

non-optimized s-reps (referred to as aligned s-reps) and the 

correspondence-optimized s-reps from our method (referred to 

as optimized s-reps). S-rep spoke tips at subdivision level 0 

(∂ = 0) were used as the implied boundary points (PDMs) for 

the statistical measurements in this subsection. 

1) Synthetic Objects 

We began with a predefined template s-rep from a lateral 

ventricle (Fig. 6a). Each synthetic s-rep was formed from the 

template by moving only one particular fold spoke. The spoke 

was moved to an interpolated fold position by a small distance 

according to a Gaussian distribution (Fig. 6b-c). As depicted in 

Fig. 6c-d, after our program is applied the spokes agreement 

improved in location as well as lengths. Similar results were 

observed in Supplementary Fig. 5. 
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Fig. 6.  (a) The template s-rep; (b) the fold curve (green curve) and fold spoke 

(red line) of the template and the 80 synthetic s-reps on top of each other, with 
the corresponding fold spoke dispersed from the original place (the red line 

pointing out from the green ball in oval) by a step with σ = 0.4; (c-d) the 
corresponding spaced spokes distribution before and after correspondence 

optimization, respectively. The color denotes each case in the training s-reps. 

 

 

Fig. 7.  Left: entropies and the objective function (𝑓(𝑥) in (7)) during the 

iterations for the 80 synthetic objects; right: the changing of 𝐸𝑔𝑒𝑜 of the up 

region for the real hippocampi. 

 

The evolution of entropy values during the optimization are 

illustrated in Fig. 7 (left panel). During the iterations 𝐸𝑔𝑒𝑜 

decreases from -10.47 to -38.64. 𝐸𝑟𝑒𝑔 changes little (from the 

beginning of 531.76 to the end of 533.95); nevertheless, the 3D 

region volumes bounded by the fold curve on skeleton and the 

corresponding quad on boundary associated with this fold 

spoke have their variances in the ratio 
𝜎𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑

𝜎𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
= 0.16; and as 

shown in Table I, the standard deviation of each regularity 

property decreases. All three metrics of the shape model 

performance improved (Supplementary Fig. 6) in a similar way 

as that graphed in Fig. 8. 

 
Table I.  Standard deviation of the quad regularity properties associate with that 

fold spoke across the training set before and after optimization. Vertical edge 

length on skeleton (𝜎𝑣𝑒𝑙_𝑠), vertical edge length on boundary (𝜎𝑣𝑒𝑙_𝑏), angle 

cosine of the upper-left corner (𝜎𝑐𝑜𝑠 _𝑢𝑙), angle cosine of the bottom-right corner 

(𝜎𝑐𝑜𝑠 _𝑏𝑟) and angle cosine of the normal swing (𝜎𝑐𝑜𝑠 _𝑛𝑠). 

 

2) Hippocampi 

For the hippocampi dataset the entropies of up, down and 

fold regions were minimized separately. In each region, 𝐸𝑟𝑒𝑔 

increased and 𝐸𝑔𝑒𝑜 decreased (e.g., Fig. 7, right panel for up 

region) in a similar pattern (Supplementary Table II). 

The correspondence quality between the optimized s-reps 

and the aligned s-reps are compared in Fig. 8. The error bars 

graphed on each line show the significance differences in each 

metric. The specificity (Fig. 8a) and generalization (Fig. 8b) 

measures for the s-rep-implied PDMs are based on the s-rep 

shape space. The compactness measures were computed both 

from the s-reps native geometric properties (Fig. 8c) and then 

from the s-rep-implied PDMs (Fig. 8d), whether on geometric 

properties or PDMs, were all computed via CPNS. As detailed 

in Section II-C, for all three measures lower values mean better 

performance. 

The optimized s-reps are superior in compactness and 

specificity. In generalization, the aligned s-reps are superior for 

a number of eigenmodes (M > 10). However, the compactness 

graphs suggest that fewer than 10 eigenmodes would be enough 

for statistical applications, and in this range the generalization 

of the optimized s-reps are slightly superior. 

 

 

Fig. 8.  Comparisons between optimized and aligned s-reps for the hippocampi. 
(a) specificity; (b) generalization; (c-d) compactness with s-reps geometric 

properties and with s-rep implied PDMs, respectively. For all three metrics, 

lower values are desirable. 

 

3) Lateral Ventricles 

For the lateral ventricle dataset the entropies of all three 

regions are shown in Table II. In all regions, 𝐸𝑟𝑒𝑔  increases 

(reflecting improved regularity) while 𝐸𝑔𝑒𝑜  decreases 

(reflecting a tightened probability distribution). The entropies 

of the up and the down regions have similar values because of 

the symmetry of the brain lateral ventricle, but 𝐸𝑔𝑒𝑜 of the up 

region decreases more than that of the down region, possibly 

because the surface of the up region has lower curvature and its 

spoke geometries are less tight at the beginning. 

 
Table II.  Regularity entropy (𝐸𝑟𝑒𝑔) and geometry entropy (𝐸𝑔𝑒𝑜) of each region 

before (R1) and after (R2) optimization. 

 
As shown in Table III, optimization yields smaller geometric 

eigenvalues in all regions. The dominant portion of this 

decrease is in the first six eigenvalues (Supplementary Fig. 7). 

The portion of total variance captured by the two dominant 

(c) 

(d) 

(a) (b) 

Before 

After 

Original place 

Original place 

 σvel_s σvel_b σcos _ul σcos _br σcos _ns 

Original 0.0059 0.0059 0.0417 0.0469 0.1414 

Optimized 0.0007 0.0008 0.0208 0.0323 0.0262 

 

 
Up region  Down region  Fold region 

𝐸𝑟𝑒𝑔 𝐸𝑔𝑒𝑜  𝐸𝑟𝑒𝑔 𝐸𝑔𝑒𝑜  𝐸𝑟𝑒𝑔 𝐸𝑔𝑒𝑜 

R1 290.0 -35.7  305.4 -36.6  214.4 -35.4 

R2 334.8 -41.2  348.2 -38.0  226.3 -50.2 

 

(a) (b) 

(c) (d) 
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eigenvalues increased (Table IV), suggesting that the optimized 

s-reps capture more variance in fewer principal directions. 
 

Table III. Total variances (∑ λi) of the lateral ventricle s-reps 

 
 
Table IV. Contribution of the first two dominant s-rep eigenvalues before and 

after optimization. 

 
The statistical shape model performance of optimized s-reps 

compared with aligned s-reps is laid out in Fig. 9. As with Fig. 8 

in Section IV-C2, S(M) (Fig. 9a) and G(M) (Fig. 9b) measures 

for the s-reps are based on s-rep shape spaces. C(M)  was 

computed via CPNS from both s-reps features (Fig. 9c) and 

then from s-rep-implied PDM features (Fig. 9d). 

 

 

Fig. 9.  Comparisons between optimized and aligned s-reps for lateral ventricles. 

(a) specificity; (b) generalization; (c-d) compactness with s-reps geometric 

features and with s-rep-implied PDMs (∂ = 0), respectively. 

 

As with the previous hippocampi dataset, the optimized 

s-reps are also superior to the aligned s-reps in compactness and 

specificity. In generalization, the optimized s-reps are superior 

in the first 9 eigenmodes, which would be enough for statistical 

applications according to the compactness graph. 

D. Comparisons between S-reps and PDM-based Methods 

As a further validation of the proposed method, this 

experiment compares the statistical performance among the 

optimized s-rep implied PDMs, the SPHARM-PDM and the 

ShapeWorks on real lateral ventricles and hippocampi datasets. 

On inspection, all the resulting s-reps appear to be of good 

quality and imply high quality boundary PDMs. As an example, 

Fig. 10 shows the surface mesh of the mean PDM implied by 

the optimized s-reps as well as its deformations along the first 

two dominant s-rep implied PDM eigenmodes. Each main 

eigenmode describes some plausible pattern of shape changes 

observed in the population. 

The PDM-based evaluations for the s-reps involved in our 

comparison were based on spoke boundary points only (named 

B_PDM) and on boundary and skeletal points (named 

BS_PDM), for each optimized s-rep at interpolation level 2. 

This yields a B_PDM of 1218 points and a BS_PDM of 2212 

points for a 3 × 13 lateral ventricle s-rep; and of 738 and 1332 

points, respectively for a 3 × 8  hippocampus s-rep. The 

SPHARM-PDMs used subdivision level 10 and SPHARM 

degree 11, which yields a PDM with 1002 points. The 

ShapeWorks used these SPHRM-PDMs as the input and 

optimized them with scaling off. All PDMs were scaled to lie in 

a same space. 

The comparisons of statistical measurements among these 

PDMs are laid out in Fig. 11 (top row for lateral ventricles and 

bottom row for hippocampi). 

For both data sets, the specificity and compactness measures 

on our optimized s-rep implied PDMs are noticeably superior to 

both the SPHARM-PDM and the ShapeWorks methods. The 

generalization measure on s-reps is better than both methods for 

low numbers of eigenmodes (M), e.g., M < 15 for lateral 

ventricles and M < 5 for hippocampi, but worse than the 

optimized PDMs at higher numbers especially for hippocampi. 

This is probably because the hippocampi have small curvature 

and most of the shape variance in the training population 

located on the boundary so that pure boundary PDM 

optimization performs better. 

The BS_PDM gains in all measures over the B_PDM for 

both objects, suggesting that the skeletal points capture some 

interior correspondence. This observation is consistent with [22, 

29] that the use of point information alone ignores many of the 

higher order geometric features that s-reps provide, such as 

orientation and width. 

As shown in Supplementary Fig. 8, PCA-based compactness 

measures on the PDMs, albeit not properly applicable to the 

aforementioned non-Euclidean shape representations (see  

 

 

Fig. 10.  The hippocampi (first row) and lateral ventricles (second row) model mean and ±3 standard deviations in two eigenmodes. The shapes are generated from 

boundary PDMs implied by the optimized s-reps level 2 (∂ = 2) spoke tips. 

 Up region Down region Fold region 

Aligned 0.0034 0.0031 0.0019 

Optimized 0.0029 0.0028 0.0015 

 

 Up region (%)  Down region (%)  Fold region (%) 

Before After  Before After  Before After 

𝜆1 36.73 39.10  38.04 42.04  31.32 37.17 

𝜆2 22.67 25.08  21.39 23.00  23.65 27.06 

 

(a) (b) 

(c) (d) 

+3√𝜆1 −3√𝜆1 Mean −3√𝜆2 +3√𝜆2 
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Fig. 11.  Comparisons among the optimized s-rep implied PDMs, the SPHARM-PDM and the ShapeWorks on lateral ventricles (top row) and hippocampi (bottom 

row). The compactness for all models were computed via CPNS. All figures share the same legend as located in the middle column. 

 

Section III-C and Supplementary Section I), led to the same 

conclusion as those based on CPNS. 

V. CONCLUSION AND FUTURE WORK 

In this work we proposed a novel group-wise optimization of 

skeletal properties to establish an enhanced s-rep 

correspondence. The proposed method represents each object 

in the training set as an s-rep, whose spokes are shifted along its 

skeletal part using spoke interpolation in each sample so as to 

tighten the probability distribution on those spokes’ geometric 

properties while sampling the object interior regularly. The 

correspondence is established by minimizing an objective 

function that balances entropy derived from geometric 

properties and entropy derived from regularity properties. All 

these properties are computed from s-rep spokes. 

This method effectively lowers the entropies and improves 

the correspondence of the spokes. It noticeably tightens the 

distribution of the corresponding spokes over the training set 

and disperses the spokes of each s-rep regularly. And it 

noticeably reduces the total variance of the spoke geometries. 

Moreover, the proposed method yields models with improved 

model properties as measured via generalization, specificity 

and compactness. Surprisingly, on our two objects sets, the 

result of our entropy-based correspondence optimization on the 

skeleton showed superior boundary point statistics even when 

compared to an entropy-based boundary correspondence 

methodology. 

In this work, we evaluated the established s-rep 

correspondence with respect to model shape probability 

distributions. Main applications of shape models though 

include classification, hypothesis testing, segmentation via 

shape statistics, and registration in statistically generated shape 

spaces. These applications were not evaluated here and future 

research is needed to show the improvement of our s-rep 

correspondence method for these purposes. 
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