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1 Introduction

Shape is an interesting and useful characteristic of objects. The problem of how to
classify and represent shapes is very complicated. In medical research, various diseases,
such as schizophrenia, have been associated with the shape of various brain parts (See
Paul Yushkevich, et al, 2001 for discussion and further references).

Figure 1.1: Example of shapes of interest

For example, consider the shape in Figure 1.1. It shows an example of one member
of a population of shapes of interest. There are bendings at the two ends and one bump
in the middle of the object.
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Figure 1.2: Coarse and fine scale M-reps

A class of convenient and powerful shape representations is M-reps (see Pizer, S.M.,
et al, 1999). These are being developed by S. M. Pizer, and the Medical Image Display
and Analysis Group (MIDAG) at UNC-Chapel Hill1. M-reps capture shape by dividing
the shape into parts coarsely or finely. Figure 1.2 shows both a coarse scale M-rep and
a fine scale M-rep of the shape shown in Figure 1.1.

The statistical analysis of populations of shapes represented by M-reps is straightfor-
ward when the general structures of the shapes are all the same because each member
of the population is represented by a vector of the same length. But this is a rather
restrictive assumption, and many medical imagining data sets need a more general rep-
resentation. This can be done in the M-rep framework, but a more complicated tree
structured representation is needed.

For example, for a population of hands, the palm and each finger can be represented
by a figure, which is a collection of M-rep parameters. Each hand is a multi-figural object
(see Figure 1.3).

Palm Finger 3

Finger 2

Finger 1

Finger 4

Thumb

Figure 1.3: An example of multi-figural object — hand

If every member in the population has five fingers, we can simply put all of the
features of one hand into a feature vector. Thus, the shape space is equivalent the
Euclidean space. And, we can do statistical analysis, such as finding center point and
quantifying the variation, on the Euclidean space spanned by those feature vectors.

1visit the MIDAG web site at http://www.cs.unc.edu/Research/Image/MIDAG
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It is not straight forward to analyze population structures when some hands do not
have five fingers. In this case, we can not get feature vectors of the same length. We use
tree structure to represent members of such a population.

To do a statistical analysis on a population of tree-structured objects, we want to find
the “center point” which is the closest objects to all the others. Furthermore, we want to
quantify the variability of the population based on the center point. A careful axiomatic
structure is developed here because it is a priori unclear which ideas from linear vector
spaces apply in this nonlinear spaces.

2 Basic definitions

In this research, we will deal with a population of multi-dimensional objects. The single
observation in this population is called a “tree”. What is a “tree”?

Definition 2.1. A tree is a simple graph such that there is a unique path (a set of
edges) between every pair of nodes (vertices). The set of nodes and edges are denoted
by V and E, respectively. Each edge can be denoted by an ordered pair of nodes.
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Figure 2.1: tree

Definition 2.2. The root is one designated node. The level of a node is the length
(number of edges) of the path to the root.
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The only node with level 0 is the root. We call the maximum level of the nodes level
of the tree. A tree with one node is called a trivial tree; otherwise, it is called the
non-trivial tree.

Example 2.1. The tree t in Figure 2.1 has 9 nodes and 8 edges. V = {ν0, ν1, ν2, . . . , ν8},
and E = {e1, e2, . . . , e8}. Let ν0 be the root of tree t. Note that {ν1, ν2, ν7, ν8} have level
1, and {ν3, ν4, ν5, ν6} have level 2. Thus, the level of the tree t is 2.

Definition 2.3. A binary tree is a tree t = (V, E), together with an edge labeling
function f : E → {0, 1} such that every node has at most one edge incident from it
labelled with 0 (called a left edge) and at most one edge incident from it labelled with 1
(called a right edge). For each left edge (ν, ω), ν is called the parent of ω and ω is called
the left child of ν. Similarly, we can define the right child. A tree t1 = (V1, E1) is called
a subtree of t if V1 ⊆ V , E1 ⊆ E and the root of tree t is in the set V1.

For simplicity, we will deal with the binary tree first.

Definition 2.4. Let t be a binary tree. Every node ω in t has a unique level-order
index, (ind(ω)) defined as follows:

• If ω is the root, let ind(ω) = 1;

• If ω is the left child of the node ν, let ind(ω) = 2 × ind(ν);

• Otherwise, if v is the right child of the node ν, let ind(ω) = 2 × ind(ν) + 1.
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Figure 2.2: Examples of binary trees. The numbers are level-order indices.

Definition 2.5. A complete binary tree is a binary tree for which the level-order
indices of the nodes form a complete interval 1, 2, . . . , n of integers. Otherwise, it is
called an incomplete tree.
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Example 2.2. In Figure 2.2, the tree on the left panel shows a complete binary tree and
the tree on the right panel shows an incomplete binary tree.

Definition 2.6. Let t be a binary tree. The set of all possible level-order indices of the
ith level is denoted by Ii and Ii = {2i, 2i + 1, . . . , 2i+1 − 1}.

Example 2.3. For any binary tree t, I0 = {1} and I2 = {4, 5, 6, 7}.

Remark 2.1. For a binary tree t, we denote the set of level-order indices of the nodes by
Ind(t).

Remark 2.2. For any binary tree t, the set of level-order indices of the nodes on the ith

level (denoted by t(i)) is a subset of Ii.

Definition 2.7. Let t1 and t2 be two binary trees. A binary tree t is called the union
(intersection) of binary trees t1 and t2 if the interval formed by the level-order indices
of the nodes in tree t is a union (intersection) of those of binary trees t1 and t2. That is,
Ind(t) = Ind(t1) ∪ Ind(t2) (or Ind(t) = Ind(t1) ∩ Ind(t2)). We denote it by t = t1 ∪ t2
(or t = t1 ∩ t2).

Remark 2.3. The definitions of union and intersection of binary trees can be generalized
to any tree population where we can define a “level-order index”.

Remark 2.4. All the definitions of the operations on the binary trees are based on the
level-order indices of the nodes.

3 Metric on binary trees without nodal information

In the previous section, we introduced some basic definitions. But we still can not do
statistical analysis on the binary tree population. A first question for statistical analysis
is, what is the “center point” of the binary tree population?

A notion of “center point” of a population is the binary tree which is the “closest to
all other trees”. This requires a metric on the space of binary trees. So, how can we
measure the distance between two trees?

Suppose we have two trees t1 and t2 shown in Figure 3.1. We can obtain t2 from t1
by adding two nodes and deleting one from t1; that is, the smallest number of addition
and deletion of nodes from one tree to the other is 3. So, can we define a tree metric
based on the total number of such deletions and additions?

For any two trees s and t, we will study the difference of the ith level, which will be
a component of the binary tree metric.
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Figure 3.1: Binary trees t1 and t2.

Definition 3.1. The total number of nodes which belong to s(i)�t(i) is called the
difference of the ith level (denoted by di), where s(i)�t(i) = (s(i) ∩ t(i)) ∪ (t(i) ∩ s(i))
and s(i) is the complement of s(i) in Ii. In other words,

di = di(s, t) =
∑
k∈Ii

1{k ∈ s(i)�t(i)}.

Let Ls and Lt be the levels of tree s and t respectively. For any integer n >
max(Ls, Lt), dn = 0.

Theorem 3.1. di is a pseudo-metric on the binary trees.

Proof. Suppose s, t and w are three binary trees.

1. [Identity]

di(s, s) =
∑
k∈Ii

1{k ∈ s(i)�s(i)}

= 0

2. [symmetry]

di(s, t) =
∑
k∈Ii

1{k ∈ s(i)�t(i)}

=
∑
k∈Ii

1{k ∈ t(i)�s(i)}

= di(t, s)
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3. [Triangle inequality]
Note that,

di(s, w) =
∑
k∈Ii

1{k ∈ s(i)�w(i)}

=
∑
k∈Ii

1{k ∈ s(i) ∩ w(i)} +
∑
k∈Ii

1{k ∈ w(i) ∩ s(i)}

=
∑
k∈Ii

1{k ∈ s(i) ∩ w(i) ∩ t(i)} +
∑
k∈Ii

1{k ∈ s(i) ∩ w(i) ∩ t(i)}

+
∑
k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)} +
∑
k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)}

Similarly, we have

di(w, t) =
∑
k∈Ii

1{k ∈ t(i)�w(i)}

=
∑
k∈Ii

1{k ∈ t(i) ∩ w(i)} +
∑
k∈Ii

1{k ∈ w(i) ∩ t(i)}

=
∑
k∈Ii

1{k ∈ t(i) ∩ w(i) ∩ s(i)} +
∑
k∈Ii

1{k ∈ t(i) ∩ w(i) ∩ s(i)}

+
∑
k∈Ii

1{k ∈ w(i) ∩ t(i) ∩ s(i)} +
∑
k∈Ii

1{k ∈ w(i) ∩ t(i) ∩ s(i)}

di(s, t) =
∑

k∈I(i)

1{k ∈ s(i)�t(i)}

=
∑
k∈Ii

1{k ∈ s(i) ∩ t(i)} +
∑
k∈Ii

1{k ∈ t(i) ∩ s(i)}

=
∑
k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)} +
∑
k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)}

+
∑
k∈Ii

1{k ∈ t(i) ∩ s(i) ∩ w(i)} +
∑
k∈Ii

1{k ∈ t(i) ∩ s(i) ∩ w(i)}

Therefore,

di(s, w) + di(w, t) − di(s, t)

= 2
∑
k∈Ii

1{k ∈ w(i) ∩ s(i) ∩ t(i)} + 2
∑
k∈Ii

1{k ∈ s(i) ∩ t(i) ∩ w(i)}

≥ 0
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Example 3.1. For the two binary trees t1 and t2 shown in figure 3.1, d0(t1, t2) = 0,
d1(t1, t2) = 1 and d2(t1, t2) = 2.

Remark 3.1. From the example above, d0(t1, t2) = 0 where t1 �= t2. Hence, d0 is a pseudo-
metric not a metric. Similarly, for i = 1, 2, . . ., di is not a metric because we can find two
different binary trees s and t such that di(s, t) = 0.

For any two binary trees s and t without nodal information, denote

dI(s, t) =
∞∑
i=0

di(s, t), (3.1)

where “I” means “integer” to contrast with a “fractional part” coming later. Then dI(s, t)
is the total difference between two binary trees s and t.

Theorem 3.2. dI(s, t) =
∑∞

0 di(s, t) is a metric on the binary tree space without nodal
information.

Proof. Suppose s, t and w are three binary trees without nodal information.

1. Identity
It is easy to see that

dI(s, s) =
∞∑
i=0

di(s, s) = 0.

On the other hand, for two binary trees s and t, if dI(s, t) = 0, then s and t must
have the same tree structures because each item in the summation is zero. Hence,
s = t.

2. Symmetry
From theorem 3.1, di is a pseudo-metric for all i; that is, di(s, t) = di(t, s), ∀i.
Therefore,

dI(s, t) =
∞∑
i=0

di(s, t)

=
∞∑
i=0

di(t, s)

= dI(t, s)
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3. Triangle inequality
By theorem 3.1, we have di(s, t) ≤ di(s, w) + di(w, t) for all i = 0, 1, . . ..

dI(s, t) =
∞∑
i=0

di(s, t)

≤
∞∑
i=0

(di(s, w) + di(w, t))

≤ dI(s, w) + dI(w, t)

Remark 3.2. Since dI is always an integer, we called it the integer tree metric.

Remark 3.3. There is an intuitive representation of the integer part metric. It is the
smallest total number of added and deleted nodes required to move from one binary tree
to the other.

The distance dI(s, t) is the sum of the differences of each level of two trees. Therefore,
dI(s, t) counts the total number of nodes which show up only in either s or t, but not
both of them. That is,

dI(s, t) =
∞∑

k=1

1{k ∈ Ind(s)�Ind(t)}. (3.2)

Example 3.2. Let t1 and t2 be the binary trees shown in Figure 3.1. d0 = 0, d1 = 1 and
d2 = 2. Therefore, the integer tree metric is

dI(t1, t2) =
2∑

i=0

di(t1, t2) = 3.

Also,
Ind(t1) = {1, 2, 4} and Ind(t2) = {1, 2, 3, 5}

Therefore,
Ind(t1)�Ind(t2) = {3, 4, 5}

and by Equation (3.2), we have dI(s, t) = 3.
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4 Finding the median tree on the binary tree space

without nodal information

Now we have an integer metric dI on the binary tree space without nodal information.
We can try to answer the question presented in the previous section, what is the “center
point” of a sample of binary trees?

From now on, denote the set of all binary trees by T and the finite sample we are
interested by T = {t1, t2, . . . , tn}.

Definition 4.1. A tree is a minimizer tree according to the metric λ if it minimizes∑n
i=1 λ(t, ti) over all binary trees t ∈ T .

Definition 4.2. A tree is called a full binary tree if it contains all the nodes the binary
tree sample T .

Definition 4.3. The full tree with the minimum number of nodes is called support
binary tree.

By the definition of the metric dI and minimizer, we have the following property.

Proposition 4.1. A minimizer tree according to dI can not have a node which does not
appear in the sample. That is, a minimizer tree is contained in the support binary tree.

Theorem 4.2. If a tree s is a minimizer according to the metric dI , then all the nodes
of s must appear at least n

2
times in the binary tree sample T . Moreover, the minimizer

tree s (according to dI) must contain all the nodes, which appear more than n
2

times, and
may contain any subset of nodes that appear exactly n

2
times.

Proof. Let s be a minimizer according to the tree integer measure dI . Suppose some of
the nodes in s appear less than n

2
times and ν is the node with the largest level among

all of those nodes. If a node appears less than n
2

times, so do its children. We have that
ν must be a terminal node of s.

For the binary tree s′ = s\{ν}, the following equation is satisfied

n∑
i=1

dI(s
′, ti) =

n∑
i=1

dI(s, ti) + nν − (n − nν), (4.1)

where nν=#{appearance of the node ν in the sample T}. Since nν < n
2
, we have

n∑
i=1

dI(s
′, ti) <

n∑
i=1

dI(s, ti),
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which is a contradiction with the assumption that s is the minimizer.
From the proof above, if nν = n

2
, then

∑n
i=1 dI(s

′, ti) =
∑n

i=1 dI(s, ti); that is, s′ is
still a minimizer. Therefore, we have the minimizer may contain any subset of the nodes
that appear exactly n

2
times.

Finally, we will prove that the minimizer binary tree s contains all the nodes which
appear more than n

2
times.

Suppose the node ω appears more than n
2

times in the sample T and ω �∈ s. Without
loss of generality, we suppose ω is a children of some node in the binary tree s. Otherwise,
we can choose one of its ancestor nodes.

For the binary tree s′′ = s ∪ {ω}, the following equation is satisfied

n∑
i=1

dI(s, ti) =
n∑

i=1

dI(s
′′, ti) + nω − (n − nω), (4.2)

where nω=#{appearance of the node ω in the sample T}. Since nω > n
2
, we have

n∑
i=1

dI(s
′′, ti) <

n∑
i=1

dI(s, ti),

which is a contradiction with the assumption that s is the minimizer.

Corollary 4.3. If n is an odd number, then there is a unique minimizer (according to
dI), which consists of all the nodes with appearance more than n

2
times.

Remark 4.1. The theorem 4.2 is also called the majority rule (See David Banks, 1998,
page 204).

Remark 4.2. Formulating this concept in statistical terms, we call the minimizer the
median of the binary tree sample T .

Remark 4.3. If n is an even number, then the median binary tree may be not unique
because some nodes may have appearance number equal to n

2
.

Definition 4.4. The median binary tree (according to the binary tree metric dI) with
the smallest number of nodes is called minimal median binary tree.

Theorem 4.4. The minimal median binary tree (according to the integer binary tree
metric dI) is unique.

Proof. By the majority rule, the median binary tree contains all of the nodes with appear-
ance number greater than n

2
and may contain any subset of the nodes with appearance

number equal to n
2
. Therefore, for any median binary tree, we delete those nodes with n

2

appearance time to obtain the unique minimal median binary tree.

11



Since the integer tree metric dI only counts the total number of nodes in the sym-
metric set of their level-order index sets. We have the following theorem that allows easy
calculations.

Theorem 4.5. T is a sample of binary trees with size n; that is,

T = {t1, t2, . . . , tn}.

Suppose the full tree has order index set I ⊂ {1, 2, . . . , k} and the corresponding numbers
of appearance are ni, i = 1, 2, . . . , k. Then,

n∑
i=1

dI(ti, m) =
k∑

i=1

[ni · 1{ni ≤
n

2
} + (n − ni) · 1{ni >

n

2
}]

=
k∑

i=1

[
n

2
−

∣∣∣n
2
− ni

∣∣∣]
where m is the median tree of this sample T .

Proof. For any node with level-order index j in the full tree, if nj > n
2
, then it will be

included in the median binary tree by the majority rule. There are n − nj binary trees
in T which do not have nodes with order-index j. Hence, the contribution of the jth

node to the total sum
∑n

i=1 dI(ti, m) would be n − nj. If nj = n
2
, no matter that jth

node is included in the median binary tree, the contribution to the total sum is nj = n
2
.

Otherwise, this node will not be included in the median binary tree and its contribution
to the sum would be nj.

Furthermore, if ni ≤ n
2
,

n

2
−

∣∣∣n
2
− ni

∣∣∣ =
n

2
− (

n

2
− ni) = ni

Otherwise,
n

2
−

∣∣∣n
2
− ni

∣∣∣ =
n

2
+ (

n

2
− ni) = n − ni

Example 4.1. T is a sample of binary trees with n = 22 members, t1, t2, . . . t22. There are
four types of binary trees in T shown in Figure 4.1. Let N1 = 4, N2 = 5, N3 = 7, N4 = 6
be the numbers of trees of type I, II, III, IV respectively.
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Figure 4.1: An example of a binary tree sample
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Figure 4.2: Support tree tsup and median tree m of binary tree sample T

The support binary tree of the sample T is shown in the left panel in Figure 4.2. The
number of appearances of each node are n1 = 22, n2 = 9, n3 = 13, n4 = 9, n5 = 5, n6 =
6, n7 = 13. According to the majority rule, the median binary tree is m shown in the
right panel in Figure 4.2.

Then by Theorem 4.5, the total distance of binary trees in T to the median tree m is

22∑
i=1

dI(ti, m) =
7∑

i=1

(11 − |11 − ni|)

= 47

In the tree space without nodal information, we can treat the sum of distances to the
median tree as the total variation of the sample.

5 Line and Projection in the binary tree space with-

out nodal information

In the binary tree space, each tree can be viewed as a point. Unlike Euclidean space,
the binary tree space is a nonlinear space according to the previous metric dI . Hence,
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the principle component analysis (PCA) in Euclidean space may not be applicable in
the nonlinear binary tree space. So, the question is “ Can we find an analogy way to
construct a manifold in binary tree space which consists of some binary trees plays the
role of a ‘line’, one-dimensional subspace in Euclidean space? ”

First, let’s consider the binary tree space without nodal information, T . In this case,
we will only consider the integer metric dI .

Definition 5.1. Suppose l = {u0, u1, u2, ...} is a sequence of binary trees. l is called a
treeline starting from u0 if for i = 1, 2, 3, . . .

1. the tree ui−1 can be obtained by deleting a terminal-node (denoted by νi ) from ui;

2. the node νi−1 is the parent of νi;

3. there does not exist a subtree of u0, denoted as u, such that u can be obtained by
deleting some ancestor nodes of ν1.

Remark 5.1. From another point of view, the tree ui is obtained by adding a node νi on
the tree ui−1.

Example 5.1. In Figure 5.1, the tree u1 is obtained by adding a node, ν1, with level-
order index 2 from the tree u0. Similarly, the u2 is obtained by adding a node, ν2, with
level-order index 4 from u1. Therefore, there exists a tree line l passing through u0, u1

and u2.

�1
�

��3

u0

�1
�

��2
�

��3

u1

�1
�

��2
�

��3
�

���4

u2

Figure 5.1: A tree sequence l0 = {u0, u1, u2, . . .} illustrating the idea of a treeline

Example 5.2. In Figure 5.2, the binary tree u1 is obtained by adding a node with level-
order index 2 from the binary tree u0; while, the binary tree u2 is obtained by adding
a node with level-order index 3 from u1. Those two adding nodes are on the same level
of a binary tree. Therefore, there does not exist any tree line passing through u0, u1, u2

and u3.
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Figure 5.2: A tree sequence l1 = {u0, u1, u2, u3 . . .} that is not be a treeline

Definition 5.2. A treeline l is called passing through the tree u if the tree u is an
element of the binary tree set l; i.e., u ∈ l.

Definition 5.3. Suppose v is a tree and l is a treeline as in Definition 5.1. The tree
w ∈ l is called the projection of v on the treeline l if w is the minimizer of dI(v, t)
where t runs over all the binary trees on the treeline l.

Proposition 5.1. The projection of a tree on a treeline exists and is unique.

Proof. Suppose l = {u0, u1, u2, . . .}. Let p be the index of the smallest dI closest member
of treeline l; i.e.,

p = inf{i : dI(ui, t) ≤ dI(uj, t), j = 1, 2, . . . , j �= i}

Consider the two elements up and up+1 in the treeline l. By definition of the treeline,
up can be obtained by deleting a node νp+1 from the tree up+1. Therefore, νp+1 �∈ Ind(t).
Otherwise,

dI(up+1, t) = dI(up, t) − 1

which is a contradiction with the definition of p. Thus,

dI(up+1, t) = dI(up, t) + 1.

Repeatly, for i ≥ p, we have

dI(ui+1, t) = dI(ui, t) + 1.

Similarly, we have, for i ≤ p

dI(ui−1, t) = dI(ui, t) + 1.

Hence, there is a unique tree up such that, for i �= p

dI(ui, t) > dI(up, t).

That is, the projection is unique.
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From Proposition 5.1, it makes easy to define projection function

w = Pl(v),

where l, w and v are given above.

6 Principal Component Analysis on Binary Tree Space

without Nodal Information

In classical statistics, the principal component analysis (PCA) is a useful tool to capture
the feature of a data set by decomposing the total variation to the center point. In
PCA analysis, the first principal component indicates the direction which captures the
largest variation of the data. Furthermore, we can find several other orthogonal directions
which often highlight additional interesting aspects of the data. Now consider the similar
problem in the binary tree space, can we develop a method to analyze the variation of
the data set?

As we know from the previous section, the treeline plays the role of “line”, i.e. one-
dimensional representation, in binary tree space. Recall that, for any tree sample T ,
the median binary tree m plays the role of “center point”. So, can we find a treeline l,
one-dimensional representation in binary tree space, passing through the median tree m
such that it maximizes the sum

n∑
i=1

dI(m, Pl(ti))? (6.1)

Recall that, if the population size n is odd, then the median tree is unique which
is also a minimal median tree. Otherwise, if n is an even number, those nodes with
appearance n

2
can be included in, or deleted from the median tree. So, the median tree

is not unique; while the minimal median tree is still unique.
Note that, for a sample T , the total variation does not depend on the choice of the

median trees. It is convenient to use the minimal median tree because it is unique and
it is a subtree of any other median trees.

Pythagorean theorem is a fundamental theorem for the decomposition of the variation
in the PCA in Euclidean space. Now, we will develop an analog theorem, which is called
tree version Pythagorean theorem in the binary tree space without nodal information.

Theorem 6.1. Let T be a sample of trees of size n and T = {t1, t2, . . . , tn}. Pl is a
projection function where l is a treeline running through a tree m. Then, ∀t ∈ T ,

dI(m, Pl(t)) + dI(Pl(t), t) = dI(m, t). (6.2)
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Proof. Suppose that the treeline l = {u0, u1, u2, . . .}. Without loss of generality, assume
that Pl(t) = uk.

�m
�
�
�
��

�
�

���

�
�

�� � � � �			�

Pl(t)
�

�
�

��
�
l

�

t

�

�

�

�

�

Figure 6.1: Projection of the tree t on the tree line l passing through m

By the definition of treeline, there are two possible relations between m and uk, either
m ⊂ uk or uk ⊂ m.

1. m ⊂ uk

Note that,
uk ∩ m ∩ t = ∅. (6.3)

In fact, if it is not empty, then there exists a terminal node of the tree uk, ν, which
is not included in the tree t and the tree m. Therefore, considering the binary tree
uk−1 = uk\{ν},

dI(uk−1, m) = dI(uk, m) − 1,

which is a contradiction with the assumption that the tree uk is the projection of
the tree t.
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Furthermore,

dI(Pl(t), m) + dI(Pl(t), t)

= dI(uk, m) + dI(uk, t)

=
∑

j

1{j ∈ m�uk} +
∑

j

1{j ∈ t�uk}

=
∑

j

1{j ∈ uk\m} +
∑

j

1{j ∈ t�uk}

=
∑

j

1{j ∈ m�t} + 2
∑

j

1{j ∈ uk ∩ m ∩ t}

= dI(t, m)

because uk is a projection of t, hence uk ∩ m ∩ t = ∅.

2. uk ⊂ m,

Similarly as Equation 6.3, we have

m ∩ uk ∩ t = ∅. (6.4)

Also,

dI(Pl(t), m) + dI(Pl(t), t)

= dI(uk, m) + dI(uk, t)

=
∑

j

1{j ∈ m�uk} +
∑

j

1{j ∈ t�uk}

=
∑

j

1{j ∈ m\uk} +
∑

j

1{j ∈ ti�uk}

=
∑

j

1{j ∈ m�t} + 2
∑

j

1{j ∈ m ∩ uk ∩ t}

= dI(t, m)

because uk is a projection of t, hence m ∩ uk ∩ t = ∅.
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Remark 6.1. In Euclidean space, Pythagorean theorem claims that in a right triangle
with legs a, b and hypotenuse c, c2 = a2 +b2. In the tree space, the hypotenuse (dI(t, m))
is the sum of two legs.

Corollary 6.2. Let T be a sample of trees with median tree m. Pl is a projection function
where l is a treeline running through m. Then, ∀t ∈ T ,

dI(Pl(t), m) + dI(Pl(t), t) = dI(t, m).

Theorem 6.3. Let T = {t1, t2, . . . , tn} be a sample. Maximizing the sum
∑n

i=1 dI(m, Pl(ti))
is equivalent to minimizing the sum

∑n
i=1 dI(ti, Pl(ti)) where l runs over all treelines pass-

ing median tree m.

Proof. From the tree version Pythagorean theorem 6.1, we have, for i = 1, 2, . . . , n,

dI(Pl(ti), m) + dI(Pl(ti), ti) = dI(ti, m)

Therefore,
n∑

i=1

dI(Pl(ti), m) +
n∑

i=1

dI(Pl(ti), ti) =
n∑

i=1

dI(ti, m)

Definition 6.1. The treeline l1 above is called principal one-dimensional represen-
tation, denoted by π1.

Remark 6.2. The principal one-dimensional representation, i.e. π1, might not be unique.

Definition 6.2. For a tree sample T = {t1, t2, . . .}, two treelines l1 and l2 are said to be
equivalent if

Pl1(ti) = Pl2(ti),∀i.

Remark 6.3. This equivalence of two treelines is relative; that is, for different tree samples,
their equivalence may be different.

Remark 6.4. Let k be the maximum level of a tree sample T . If all the components
with level no more than k are the same for two tree lines l1 and l2, then l1 and l2 are
equivalent. Therefore, for simplicity, we only represent the tree line by the components
with level no more than k.
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Figure 7.1: A sample of trees without nodal information.
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7 Example

We have developed some basic concepts and ideas on trees (without nodal information).
Now, let’s look at a toy example.

T is a sample of trees with n = 11 members, t1, t2, . . . t11. Based on the integer tree
metric dI , the support tree (tsup) and median tree (m) are shown in Figure 7.1. Note
that, n = 11 is an odd number. Therefore, the median tree is unique.

In the left panel, the level-order index set of the support tree is {1, 2, 3, 4, 6, 7}. And
the numbers of appearance of each node are n1 = 11, n2 = 11, n3 = 6, n4 = 4, n5 =
0, n6 = 6, n7 = 3, respectively.

According to the majority rule, the median tree consists of all nodes with appearance
number more than n

2
. The median tree was shown on the right panel in figure 7.2.

Full tree Median tree

Figure 7.2: Support tree and median tree

The total variation of the sample T to its center, the sum of distances between each
tree ti and median tree m, is

11∑
i=1

dI(ti, m) = 17.

Next, we will find a treeline, one-dimensional representation in the tree space T ,
which explains the greatest variability.

There are three different equivalent treeline classes passing through the median tree
m. We have three representative treelines shown in Figure 7.3, l1, l2, and l3.

The projections of tree sample T on representative treeline l1 are shown in Figure 7.6.
The total distance of the median tree m and the projection of tree ti on tree line l1 is

11∑
i=1

dI(m, P1(ti)) = 4

Similarly, we can obtain the projection of the tree sample T on treelines l2 and l3.
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Figure 7.4: Representative treeline l2
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Figure 7.5: Representative treeline l3
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Figure 7.6: Projection of the tree sample on the treeline l1

22



P
2
(t

1
) P

2
(t

2
) P

2
(t

3
)

P
2
(t

4
) P

2
(t

5
) P

2
(t

6
)

P
2
(t

7
) P

2
(t

8
) P

2
(t

9
)

P
2
(t

10
) P

2
(t

11
)

Figure 7.7: Projection of the tree sample on the treeline l2
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Figure 7.8: Projection of the tree sample on the treeline l3
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11∑
i=1

dI(m, P2(ti)) = 10

11∑
i=1

dI(m, P3(ti)) = 3

Therefore, tree line l2 is the one-dimensional representation of the tree sample T .

8 New metric δ on tree space with nodal information

The integer tree metric dI captures some structure of the tree population. Sometimes,
the nodes of the trees contain some useful information, which should also be used in the
statistical analysis.

Now, we will define a metric on the trees with nodal information which extends the
integer tree metric. Denote the information contained in the node with level-order index
k on the tree t by (xtk, ytk, . . .). For simplicity, we explicitly treat the case (xtk, ytk).

Generally, the values of the nodal information, xtk and ytk, have no restriction and
can be any real value. But, after some appropriate transformation, the nodal information
can be assumed to be bounded. For example, for a mapping f ,

f : x → 1

2
√

2
[
2

π
arctan(x) + 1]

f(x) ∈ [0,
√

2
2

]. From now on, we assume that xtk, ytk ∈ [0,
√

2
2

]. We take
√

2
2

as the bound
because the Euclidean distance between two-dimensional vectors, whose entries satisfy
this bound, is at most 1.

For any trees s and t, define the new metric (proof given in Theorem 8.3)

δ(s, t) = dI(s, t) +

[ ∞∑
k=0

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
∞∑

k=0

αk(x
2
sk + y2

sk)1{k ∈ Ind(s)\Ind(t)}

+
∞∑

k=0

αk(x
2
tk + y2

tk)1{k ∈ Ind(t)\Ind(s)}
] 1

2

(8.1)

where {αk} is a positive weight series with
∑

k αk = 1.
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In equation (8.1), the second term in the summation is at most 1 (proof given in
proposition 8.1). We denote the second term as fδ where “f” means fractional part of
the metric. Recall that, the first term in the summation is denoted as dI where “I”
means integer part of the metric (see section 3). Therefore, we can rewrite δ as

δ = dI + fδ (8.2)

Also, note that fδ is a square root of a weighted sum of squares. When trees s and
t have the same tree structure, fδ(s, t) can be viewed as a weighted Euclidean distance.
In particular, the nodal information can be combined into a single long vector. Then,
fδ(s, t) is a weighted Euclidean metric on these vectors.

When trees s and t have different tree structures, it is convenient to replace the
missing nodal information with (0, 0). Thus, we can rewrite fδ as

fδ(s, t) = [
∞∑

k=0

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
∞∑

k=0

αk((xsk − 0)2 + (ysk − 0)2)1{k ∈ Ind(s)\Ind(t)}

+
∞∑

k=0

αk((0 − xtk)
2 + (0 − ytk)

2)1{k ∈ Ind(t)\Ind(s)}] 1
2

(8.3)

This also allows the nodal information to be combined into a single long vector. Then,
fδ(s, t) is a weighted Euclidean metric on these vectors.

For another view of fδ is to rescale the entries of the vector by the square root of the
weights αk. Then, fδ is the ordinary Euclidean metric on these rescaled vectors.

From now on, we will develop all the theorems for general weight sequences. But, we
will use the power weight sequence, where the weight is {2−(2i+1)} for the node on the
ith level, i = 0, 1, 2, . . . in T in the examples.

Insight into the metric δ comes from Example 8.1.

Example 8.1. t1 and t2 are two trees with nodal information listed below.

level-order index t1 t2
1 (0.5,0.5) (0.2,0.5)
2 (0,0.1) (0.7,0.1)

The following figure shows the graphical representation 2of two trees t1 and t2.

2For every node with nodal information (x, y), we take x as the length and y as the width of the

nodal box in the graphical representation.
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Figure 8.1: Graphical representation of trees t1 and t2 in Example 8.1

Note that, t1 and t2 have the same tree structure which implies the integer part of
the distance, dI(t1, t2) = 0.

δ(t1, t2) = fδ(t1, t2)

=

√√√√1

2
((0.5 − 0.2)2 + (0.5 − 0.5)2)︸ ︷︷ ︸

k=1

+
1

23
((0 − 0.7)2 + (0.1 − 0.1)2)︸ ︷︷ ︸

k=2

= 0.3260

where k is the level-order index, 1
2

and 1
23 are the weights of the two nodes, respectively.

As noted above, fδ can be viewed as a weighted metric on the vectors (made up of
combined nodal information) [0.5, 0.5, 0, 0.1]′ and [0.2, 0.5, 0.7, 0.1]′.

From the alternative point of view, fδ(t1, t2) is the ordinary Euclidean distance be-
tween the two weighted vectors �v1 and �v2

�v1 = [
0.5√

2
,
0.5√

2
,

0√
23

,
0.1√
23

]′;

�v2 = [
0.2√

2
,
0.5√

2
,

0.7√
23

,
0.1√
23

]′.

Proposition 8.1. For any two trees with nodal information, the fractional part is at
most 1, i.e.

fδ(s, t) ≤ 1

Proof. Note that, for k ∈ s(i) ∩ t(i),

(xsk − xtk)
2 + (ysk − ytk)

2 ≤ 1

because xsk, xtk, ysk, ytk ∈ [0,
√

2
2

].
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Similarly, we have
x2

sk + y2
sk ≤ 1

for k ∈ Ind(s)\Ind(t), and
x2

tk + y2
tk ≤ 1

for k ∈ Ind(t)\Ind(s). Therefore,

fδ(s, t) =
∞∑

k=1

αk((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

≤
∞∑

k=0

αk

= 1

When we use a general weight sequence, the fractional part can be very small. In
some problems, the level of the trees in the population is finite. We can assign equal
weight on those nodes.

A convenient finite population of trees are all subtrees of a particular tree. In partic-
ular,

Definition 8.1. Let w be any tree in T . A tree t is said to be a member of Tw if

Ind(t) ⊂ Ind(w) (8.4)

Note that, the previous definition is not restrictive because w can be the union of any
finite population of trees. Thus, Tw plays a role similar to the “subspace generated by a
set of vectors”.

Proposition 8.2. If two trees w1 and w2 have the same tree structures, i.e., Ind(w1) =
Ind(w2), then Tw1 = Tw2.

Using the notation N(t) to denote the total number of nodes of tree t, ∀t ∈ Tw, we
have

N(t) ≤ N(w)

In the tree subspace Tw, we can assign equal weight 1
N(w)

to each node. That is, the
weight αk is

αk =




1
N(w)

, if k ∈ Ind(w)

0, if k �∈ Ind(w).

(8.5)
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Thus, we can restrict the metric δ to the following metric ρ: for any two trees s, t ∈ Tw,

ρ(s, t) = dI(s, t) +


 1

N(w)

N(w)∑
k=1

((xsk − xtk)
2 + (ysk − ytk)

2)1{k ∈ Ind(s) ∩ Ind(t)}

+
1

N(w)

N(w)∑
k=1

((xsk)
2 + (ysk)

2)1{k ∈ Ind(s)\Ind(t)}

+
1

N(w)

N(w)∑
k=1

((xtk)
2 + (ytk)

2)1{k ∈ Ind(t)\Ind(s)}




1
2

= dI(s, t) + fρ(s, t)

(8.6)

Example 8.2. Let t1 and t2 be the trees as given in Example 8.1. They are members in
the tree subspace Tw, where Ind(w) = {1, 2, 3}.

Note that,

ρ(t1, t2) = fρ(t1, t2)

=

√√√√1

3
((0.5 − 0.2)2 + (0.5 − 0.5)2)︸ ︷︷ ︸

k=0

+
1

3
((0 − 0.7)2 + (0.1 − 0.1)2)︸ ︷︷ ︸

k=1

= 0.4397

We can see that δ(t1, t2) < ρ(t1, t2). The reason is that, the metric δ puts much
smaller weights on higher levels. Thus, the nodal information of the nodes on higher
level has small impact on the distance. Because this property is unappealing, for finite
level tree spaces, we will use the metric ρ instead of δ.

Now, we will show that δ is a metric.

Theorem 8.3. δ is a metric on the tree space with nodal information.

Proof. Suppose s, t and u are any three trees with nodal information.
Note that

δ(s, s) = dI(s, s) + fδ(s, s) = 0.

Also, the symmetry property is straight forward because dI and fδ are both symmetric
functions on tree space.
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Now, we will prove the triangle inequality; that is,

δ(s, t) ≤ δ(s, u) + δ(u, t).

Recall that dI is a metric on the tree space without nodal information and pseudo-
metric on the tree space with nodal information (see Theorem 3.2 in section 3). Thus,
the triangle inequality is satisfied; that is,

dI(s, t) ≤ dI(s, u) + dI(u, t)

Also, fδ is the same as the weighted Euclidean distance between two information
vectors. Therefore, the triangle inequality is satisfied.

Thus, in general, the triangle inequality is satisfied. δ is a metric on the tree space
with nodal information.

9 Formulating the nodal information and represent-

ing the tree

In this section, we will discuss how to represent the tree of different tree structures and
nodal inforamtion.

In Example 8.1, we use a table to represent the trees by listing the level-order indices
on the left column followed by the corresponding nodal information.

For example, t is a tree with level-order index set Ind(t) = {k1, k2, . . .}, where k1 <
k2 < · · · . Then, we can represent the tree in the following table.

level-order index t
...

...
k1 (xtk1 , ytk1)
...

...
k2 (xtk2 , ytk2)
...

...

Note that, for a node which does not appear in the tree t, we will record its nodal
information as “n/a” in the table above.

As we mentioned in the previous section, each tree is associated with a numerical
data vector. The fractional part distance fδ is the weighted Euclidean distance between
those vectors. We use the following rule to formulate the nodal information vector.
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Rule of nodal information vector
For a tree t, its associated nodal information vector �v is defined as

�v = [v1, v2, . . .],

where for k = 1, 2, . . . ,

(v2k−1, v2k) =




(xtk, ytk), if k ∈ Ind(t)

(0, 0), if k �∈ Ind(t).
(9.1)

If T is a sample of trees in the finite level tree subspace Tw, then for every element in
the sample T , (v2k−1, v2k) = (0, 0), when k �∈ Ind(w). Therefore, we can simply record
the nodal information as a vector of length 2N(w).

Furthermore, the fractional part metric fρ on finite level trees is proportional to the
ordinary Euclidean distance d. That is, for t1, t2 ∈ Tw,

fρ(t1, t2) =
1√

N(w)
d(�v1, �v2),

where �v1 and �v2 are the nodal information vectors of the trees t1 and t2 respectively.

10 Median-mean tree of the tree sample with nodal

information

In section 4, we have already discussed “how to find the median tree for a tree sample
T = {t1, t2, . . . , tn} without nodal information? ”. The final solution to this problem for
the metric dI is the majority rule. Now, we have a new metric δ which also considers
nodal information. We will develop a new “center point” of the tree sample with nodal
information called the median-mean tree. The name “median-mean” is used because it
has properties of both a median with respect to dI and a mean with respect to fδ.

Definition 10.1. A tree is called a median-mean tree for a sample T , denoted by mδ,
if it minimizes

n∑
i=1

dI(t, ti) (10.1)
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over all trees t ∈ T and has nodal information

xmδk =

∑n
i=1 xtik1{k ∈ Ind(ti)}∑n

i=1 1{k ∈ Ind(ti)}
(10.2)

ymδk =

∑n
i=1 ytik1{k ∈ Ind(ti)}∑n

i=1 1{k ∈ Ind(ti)}
(10.3)

Remark 10.1. The new “center point” mδ is called “median-mean” because its tree
structure complies with the majority rule with appearance number at least n

2
times and

its nodal information can be calculated as a “sample mean”.

The median-mean tree defined in Definition 10.1 may or may not be unique, as shown
in Examples 10.1 and 10.2 below. A variation which is unique is given in Definition 10.2.

Definition 10.2. The median-mean tree with the smallest number of nodes is called the
minimal median-mean tree with nodal information (denoted by µδ).

The following example shows the lack of the uniqueness of median-mean tree. But
the minimal median-mean is unique.

Example 10.1. For a tree sample T = {t1, t2}, the nodal information is listed below.

level-order index t1 t2
1 (0.3,0.4) (0.5,0.5)
2 (0.1,0.1) N/A
3 N/A (0.2,0.2)

t
1

t
2

Figure 10.1: Graphical representation of the tree sample of Example 10.1

There are four median-mean trees for this sample. Their nodal information is:
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level-order index information
1 (0.4,0.45)
2 N/A
3 N/A

level-order index information
1 (0.4,0.45)
2 (0.1,0.1)
3 N/A

level-order index information
1 (0.4,0.45)
2 N/A
3 (0.2,0.2)

level-order index information
1 (0.4,0.45)
2 (0.1,0.1)
3 (0.2,0.2)

Figure 10.2: Graphical representation of the four median-mean trees in Example 10.1

The first one is the minimal median-mean tree µδ, which has the smallest number of
nodes. Note that, its structure is the same as that of the minimal median tree without
nodal information, µ.

In the following Example 10.2, both the median-mean and the minimal median mean
tree are unique.

Example 10.2. For a tree sample T = {t1, t2, t3, t4}, the nodal information is listed
below.

level-order index t1 t2 t3 t4
1 (0.2,0.2) (0.3,0.3) (0.2,0.3) (0.3,0.2)
2 (0.1,0.3) (0.3,0.5) (0.2,0.1) N/A
3 (0.3,0.1) (0.2,0.3) N/A (0.3,0.4)

In this example, the median tree is unique without nodal information. If we consider
the nodal information, we will get only one median-mean tree listed below which is also
the minimal median-mean tree.
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Figure 10.3: Graphical representation of the tree sample in Example 10.2

level-order index information
1 (0.25,0.25)
2 (0.15,0.2)
3 (0.2,0.2)

The two examples above motivate the following proposition.

Proposition 10.1. The minimal median-mean tree with nodal information is unique.
Also, it has the same tree structure as that of the minimal median tree without nodal
information.

Proof. Since the median-mean tree minimizes equation (10.1), the median-mean tree is
also a median without nodal information. By Theorem 4.4, the minimal median is unique
without nodal information. Hence, the minimal median-mean tree is also unique.

We will use the following Example 10.3 to show that the median-mean tree may not
minimize the sum

n∑
i=1

δ(ti, mδ)

Example 10.3. For a tree sample T = {t1, t2, t3}, the nodal information is listed below.

level-order index t1 t2 t3
1 (0.2,0.2) (0.2,0.2) (0.2,0.2)
2 (0,0.3) (0.3,0) (0,0)

In this example, there is a unique median-mean tree with nodal information mδ, listed
below.

level-order index nodal information
1 (0.2,0.2)
2 (0.1,0.1)
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3∑
i=1

δ(ti, mδ) = 0.2081

Now we consider a subtree s of this median-mean tree.

level-order index s
1 (0.2,0.2)
2 (0.06,0.06)

The total distance from s to the other trees is:

3∑
i=1

δ(ti, s) = 0.2049.

Hence,
3∑

i=1

δ(ti, mδ) >

3∑
i=1

δ(ti, s)

That is, the median-mean tree mδ does not minimize the sum
∑

i δ(ti, t) over all t.

Remark 10.2. The median tree without nodal information minimizes the sum
∑

i dI(ti, t),
overall t, while the median-mean tree with nodal information mδ may not minimize the
sum

∑
i δ(ti, t). This is not surprising, because even in Euclidean space R

d, the sample
mean minimize the sum of squared distances to the data, not the sum of distances.

Now, for a tree sample T , we have a metric δ. Our next question is how to quantify
the variation of the sample to the “center point”— median-mean tree.

An important foundation of “variation” is the tree function:

Vδ(s, t) = dI(s, t) + f 2
δ (s, t). (10.4)

Definition 10.3. Let T be a sample of trees with nodal information. mδ is a median-
mean according to the metric δ. The variation of a tree t to the median-mean is defined
as Vδ(t, mδ).

Remark 10.3. Vδ(·, mδ) is a function defined on a tree space, but it is not a metric because
the triangle inequality is not satisfied, just as squared Euclidean distance is not a metric.

Recall that, the median-mean tree is not unique when the sample size n is an even
number and some nodes appear n

2
times in the sample. Does the total variation depend

on the choice of median-mean tree? The following proposition will answer this question.
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Theorem 10.2. T is a finite sample of trees with nodal information. The sum of vari-
ation to the median-mean of each element in the sample

n∑
i=1

Vδ(ti, mδ) (10.5)

is a constant over all median-mean trees of the sample T .

Proof. Suppose n = 2q, where q is some positive integer, since otherwise the median-mean
tree is unique. Let s be any median-mean tree, that is not the minimal median-mean
tree µδ. We will prove that

n∑
i=1

Vδ(ti, s) =
n∑

i=1

Vδ(ti, µδ). (10.6)

Since µδ is the minimal median-mean tree, µδ is a subtree of s. Thus, there exists a
sequence of median-mean trees {si}, such that

µδ = s1 ⊂ s2 . . . ⊂ sK = s.

where si+1 has one more node (denoted by ki+1) than si. It is straight forward that the
node ki+1 appears exactly q = n

2
times in the sample.

For 1 ≤ p ≤ K − 1,

n∑
i=1

Vδ(ti, sp+1)

=
n∑

i=1

Vδ(ti, sp) −
n∑

i=1

αkp+1(x
2
tikp+1

+ y2
tikp+1

)1{kp+1 ∈ Ind(ti)}

+ qαkp+1(x
2
sp+1kp+1

+ y2
sp+1kp+1

)

+
n∑

i=1

αkp+1((xtikp+1 − xsp+1kp+1)
2 + (ytikp+1 − ysp+1kp+1)

2)1{kp+1 ∈ Ind(ti)}

(10.7)

By the definition of the median-mean tree, we have

n∑
i=1

((xtikp+1 − xsp+1kp+1)
2 + (ytikp+1 − ysp+1kp+1)

2)1{kp+1 ∈ Ind(ti)}

=
n∑

i=1

(x2
tikp+1

+ y2
tikp+1

)1{kp+1 ∈ Ind(ti)}

− q(x2
sp+1kp+1

+ y2
sp+1kp+1

)

(10.8)
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Combining equations (10.7) and (10.8), we have

n∑
i=1

Vδ(ti, sp+1) =
n∑

i=1

Vδ(ti, sp)

Repeatly over p = 1, 2, . . . , K − 1, we have

n∑
i=1

Vδ(ti, µδ) = · · · =
n∑

i=1

Vδ(ti, s).

Remark 10.4. This shows why the median-mean tree is a very natural notion of “center”.

11 Treeline and Projection in finite level tree sub-

space Tw

In section 10, we have defined the center point of a sample of trees with nodal information
and the total variation of the sample to its median-mean tree. Also, according theorem
10.2, the total variation is constant over all choices of median-mean trees.

In Euclidean space, principal component analysis (PCA) provides a useful decompo-
sition of complex data sets, in terms of simple one-dimensional representation. Binary
tree space is not a linear space, but we still seek useful one-dimensional representations.
There are two important types, defined below, and called “treeline”.

In this section, we will define the treeline which plays the role of line in Euclidean
space. Hence, we will develop an analogy of PCA to find treelines, which explain impor-
tant features of the sample.

Definition 11.1. Suppose l = {u0, u1, u2, . . .} is a sequence of trees with nodal informa-
tion in the subspace Tw. The set l is called a structure treeline (s-treeline) starting
from u0 if for i = 1, 2, 3, . . .,

1. ui−1 can be obtained by deleting a terminal node (denoted by νi) from the tree ui;

2. The next node to be deleted, νi−1 is the parent of νi;

3. There does not exist a subtree of u0, denoted as u, such that u can be obtained by
deleting some ancestor nodes of ν1.
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In this definition, the nodes in the s-treeline with level-order index k have the same
nodal information. Since every element in the s-treeline is a subtree of w, the length of
the s-treeline is finite and can not exceed the level of the tree w.

Figure 11.1: Tree structure of an example tree w.

Figure 11.2 shows an example of an s-treeline in Tw, where w has the tree structure
shown in figure 11.1.

Figure 11.2: An example of an s-treeline in Tw, for w defined in Figure 11.1.

An s-treeline indicates a direction of changing tree structures. The following definition
will describe a quite different direction in which all trees have the same tree structure
but changing nodal information.

Definition 11.2. Suppose l = {uλ : λ ∈ R} is a set of trees with nodal information
in the subspace Tw. The set l is called an information treeline (i-treeline) passing
through a tree u0 if

1. every tree uλ has the same tree structure as u0;

2. the nodal information vector is equal to �v0 +λ�v, where �v0 is the information vector
of the tree u0 and �v is some fixed vector, �v �= �0.
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Remark 11.1. An i-treeline is determined by the tree u0 and vector �v. Also, it is a set of
trees of the form

l = {u : u has same structure as u0 with nodal

information equal to �v0 + λ�v}

Note that, there are uncountably many elements in an i-treeline because it has the
same cardinality as the real numbers. Figure 11.3 shows some elements with λ =
1.0, 1.75, 3.0, 3.5 and �v = [0.2, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.2]′ in an i-treeline in Tw.

Figure 11.3: An example of an i-treeline in Tw

From now on, both s-treelines and i-treelines are called treelines. An analogy of the
first principal component is the treeline which explains most of the data. Before finding
this, let’s define the projection of a tree on a treeline in the tree subspace Tw.

Definition 11.3. Let l be a treeline. For any tree t, a tree on the treeline is called a
projection of the tree t if it minimizes ρ(t, u) over all trees u on the treeline l.

Recall that, the projection of a point on a line is unique in Euclidean space. Is it still
unique in the tree space with nodal information?

Proposition 11.1. The projection of a tree t on a treeline l is unique.

Proof. We will prove it for s-treelines and i-treelines separately.

1. l is an s-treeline.

Suppose l = {u0, u1, u2, . . .}. Let p be the index of the smallest dI closest member
of treeline l; i.e.,

p = inf{i : dI(ui, t) ≤ dI(uj, t), j = 1, 2, . . . , j �= i}
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Consider the two elements up and up+1 in the treeline l. By definition of the s-
treeline, up can be obtained by deleting a node νp+1 from the tree up+1. Therefore,
νp+1 �∈ Ind(t). Otherwise,

dI(up+1, t) = dI(up, t) − 1

which is a contradiction with the definition of p. Thus,

dI(up+1, t) = dI(up, t) + 1.

Repeatly, for i ≥ p, we have

dI(ui+1, t) = dI(ui, t) + 1.

Similarly, we have, for i ≤ p

dI(ui−1, t) = dI(ui, t) + 1.

Hence, there is a unique tree up such that, for i �= p

dI(ui, t) > dI(up, t).

Now, we will prove that the tree up is the unique projection of t on the s-treeline l
by considering the fractional part fρ as well. Recall that, for i �= p,

ρ(ui, t) − ρ(up, t) = (dI(ui, t) − dI(up, t)) + (fρ(ui, t) − fρ(up, t)).

Also,
dI(ui, t) − dI(up, t) ≥ 1.

Furthermore, we will prove that

|fρ(ui, t) − fρ(up, t)| < 1.

Note that, since the fraction part of the distance is always no more than 1,

|fρ(ui, t) − fρ(up, t)| ≤ 1.

In fact, for any two trees on the s-treeline, one of the two trees is a subtree of the
other one. Without loss of generality, assume that the tree ui is a subtree of the
tree up, and

Ind(up)\Ind(ui) = {k1, k2, . . . , kq}.
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Note that, if
|fρ(ui, t) − fρ(up, t)| = 1,

then, fρ(ui, t) = 0 and fρ(up, t) = 1. Therefore,

1 = f 2
ρ (up, t) − f 2

ρ (ui, t) ≤
q∑

i=1

αki
< 1.

Hence, the inequality is satisfied. Thus,

ρ(ui, t) − ρ(up, t) > 0

i.e., up is the unique projection.

2. l is an i-treeline. Suppose the i-treeline l = {uλ; λ ∈ R} and all the elements have
the same tree structure. In this case, the integer part metric dI(uλ, t) is a constant
over all λ. Also, the fractional part metric is the ordinary Euclidean distance
between weighted information vectors. By the uniqueness of the projection in the
Euclidean space, the projection of a tree t on an i-treeline is also unique.

Remark 11.2. From the proof above, the projection of a tree t on an s-treeline according
to the metric ρ has the same tree structure as that of the projection without nodal
information.

Since the projection of a tree t on a treeline l is unique, we denote the projection by
Pl(t).

Definition 11.4. A tree is called an average support tree (denoted by ta) if it is a
support tree and its nodal information is

xtak =

∑n
i=1 xtik1{k ∈ Ind(ti)}∑n

i=1 1{k ∈ Ind(ti)}
(11.1)

ytak =

∑n
i=1 ytik1{k ∈ Ind(ti)}∑n

i=1 1{k ∈ Ind(ti)}
. (11.2)

Proposition 11.2. Let T be a sample of trees. The median-mean tree is a subtree of the
average support tree.
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In this paper, we focus on s-treelines where every element is a subtree of the average
support tree which is an important assumption in the tree version Pythagorean Theorem
11.4.

The Pythagorean Theorem is critical to the decomposition of the sums of squares
in classical analysis of variance (ANOVA). An analog of this is now developed for tree
population.

Theorem 11.3. (Tree version Pythagorean Theorem: Part I) Let l be an i-treeline pass-
ing through a tree u in the tree space T . Then, for any t ∈ T ,

Vρ(t, u) = Vρ(t, Pl(t)) + Vρ(Pl(t), u) (11.3)

Proof. The projection tree Pl(t) has the same tree structure as the tree u. Therefore,

dI(Pl(t), u) = 0 (11.4)

and
dI(t, Pl(t)) = dI(t, u).

We also need to prove

f 2
ρ (t, u) = f 2

ρ (t, Pl(t)) + f 2
ρ (Pl(t), u). (11.5)

for the i-treeline l.
Note that, for the nodes with level-order index k ∈ Ind(t)\Ind(u), the contribution

of its nodal information to both sides of equation (11.5) is the same. Thus, without loss
of generality, we assume Ind(t) ⊂ Ind(u). Its information vector has the same length as
that of the tree u by adding zeroes on Ind(u)\Ind(t).

The metric ρ is the same as the Euclidean distance of two weighted vectors. Thus, it is
straight forward that equation (11.5) follows from the ordinary Pythagorean theorem.

Theorem 11.4. (Tree version Pythagorean Theorem: Part II) Let T = {t1, t2, . . . , tn}
be a sample of finite level trees. Let l be an s-treeline where every element is a subtree of
the average support tree of T . Then, for any u ∈ l,

n∑
i=1

Vρ(ti, u) =
n∑

i=1

Vρ(t, Pl(ti)) +
n∑

i=1

Vρ(Pl(ti), u) (11.6)

Proof. In Theorem 6.1, we have proved that, for any i,

dI(ti, u) = dI(t, Pl(ti)) + dI(Pl(ti), u). (11.7)
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Therefore,
n∑

i=1

dI(ti, u) =
n∑

i=1

dI(ti, Pl(ti)) +
n∑

i=1

dI(Pl(ti), u). (11.8)

We need to prove that
n∑

i=1

f 2
ρ (ti, u) =

n∑
i=1

f 2
ρ (ti, Pl(ti)) +

n∑
i=1

f 2
ρ (Pl(ti), u). (11.9)

In fact, since l passes through the tree u, we have Pl(ti) ⊂ u or u ⊂ Pl(ti). Without
loss of generality, we assume that

Pl(t1) ⊂ u, . . . , Pl(tK) ⊂ u, Pl(tK+1) ⊃ u, . . . , Pl(tn) ⊃ u (11.10)

for some K = 0, 1, . . . , n.
If Pl(t) ⊂ u, for k ∈ Ind(Pl(t)) ∩ Ind(u), two trees Pl(t) and u have the same nodal

information, therefore,

f 2
ρ (Pl(t), u) =

∞∑
k=1

αk((xuk)
2 + (yuk)

2)1{k ∈ Ind(u)\Ind(Pl(t))}. (11.11)

Furthermore, the tree Pl(t) is the projection of the tree t on the treeline l. Therefore,

Ind(t) ∩ Ind(u) = Ind(t) ∩ Ind(Pl(t)) (11.12)

since Pl(t) is a subtree of the tree u,

Ind(t) ∩ Ind(u) ⊃ Ind(t) ∩ Ind(Pl(t)).

Also, if there exists a node ν, such that

ν ∈ Ind(t) ∩ Ind(u), but ν �∈ Ind(t) ∩ Ind(Pl(t)),

then we can find a tree u∗, such that Ind(u∗) ⊃ Ind(u) ∪ {ν}, which is a contradiction
with the assumption that the tree Pl(t) is the projection of the tree t. Therefore, we have
Equation 11.12.

Recall that, the squared fractional part distance between the two trees t and u is,

f 2
ρ (t, u) =

∞∑
k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk((xtk − 0)2 + (ytk − 0)2)1{k ∈ Ind(t)\Ind(u)}

+
∞∑

k=1

αk((0 − xuk)
2 + (0 − yuk)

2)1{k ∈ Ind(u)\Ind(t)}

(11.13)
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Thus, by the definition of f 2
ρ , and by Equation (11.12),

f 2
ρ (t, Pl(t)) =

∞∑
k=1

αk((xtk − xPl(t)k)
2 + (ytk − yPl(t)k)

2)1{k ∈ Ind(t) ∩ Ind(Pl(t))}

+
∞∑

k=1

αk((xtk − 0)2 + (ytk − 0)2)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk((0 − xPl(t)k)
2 + (0 − yPl(t)k)

2)1{k ∈ Ind(Pl(t))\Ind(t)}

=
∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk((xtk − 0)2 + (ytk − 0)2)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk((0 − xuk)
2 + (0 − yuk)

2)1{k ∈ Ind(Pl(t))\Ind(t)}

(11.14)

Note that, the tree Pl(t) is a subtree of the tree u; that is,

Ind(Pl(t)) ⊂ Ind(u).

Also, by Equation 11.12,

Ind(t) ∩ Ind(u) ∩ Ind(Pl(t)) = Ind(t) ∩ Ind(Pl(t)) ∩ Ind(Pl(t)) = ∅.
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Thus, combining Equations (11.14) and (11.11), and using Equation (11.13), we have

f 2
ρ (t, Pl(t)) + f 2

ρ (u, Pl(t))

=
∞∑

k=1

αk((xtk − xuk)
2 + (ytk − yuk)

2)1{k ∈ Ind(t) ∩ Ind(u)}

+
∞∑

k=1

αk((xtk − 0)2 + (ytk − 0)2)1{k ∈ Ind(t)\Ind(Pl(t))}

+
∞∑

k=1

αk((0 − xuk)
2 + (0 − yuk)

2)1{k ∈ Ind(Pl(t))\Ind(t)}

+
∞∑

k=1

αk((xuk)
2 + (yuk)

2)1{k ∈ Ind(u)\Ind(Pl(t))}

= f 2
ρ (u, t) +

∞∑
k=1

αk((xtk − 0)2 + (ytk − 0)2)1{k ∈ Ind(t) ∩ Ind(u) ∩ Ind(Pl(t))}

+
∞∑

k=1

αk((xuk − 0)2 + (yuk − 0)2)1{k ∈ Ind(t) ∩ Ind(u) ∩ Ind(Pl(t))}

= f 2
ρ (u, t)

because Ind(t) ∩ Ind(u) ∩ Ind(Pl(t)) = ∅.
By now, the single tree version Pythagorean theorem is satisfied when the tree Pl(ti)

is a subtree of the tree u. That is, for i < K,

Vρ(ti, u) = Vρ(ti, Pl(ti)) + Vρ(Pl(ti), u). (11.15)

For i > K, Pl(ti) ⊃ u. Note that, the tree Pl(ti) is the projection of the tree t, which
implies,

Ind(Pl(t)) ∩ Ind(u) ∩ Ind(ti) = ∅.
Thus,

(Ind(ti)\Ind(Pl(ti))) ∪ (Ind(Pl(ti))\Ind(u)) = Ind(ti)\Ind(u), (11.16)

(Ind(Pl(ti))\Ind(u)) ∪ (Ind(ti) ∩ Ind(u)) = Ind(t) ∩ Ind)(Pl(t)) (11.17)

and
Ind(Pl(ti))\Ind(t) = Ind(u)\Ind(t). (11.18)
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Hence, using Equation (11.13) and Equation (11.16),

f 2
ρ (ti, u) =

∑
k∈Ind(ti)∩Ind(u)

αk((xtik − xuk)
2 + (ytik − yuk)

2)

+
∑

k∈Ind(ti)\Ind(Pl(ti))

αk(x
2
tik

+ y2
tik

) +
∑

k∈Ind(Pl(ti))\Ind(u)

αk(x
2
tik

+ y2
tik

)

+
∑

k∈Ind(u)\Ind(ti)

αk(x
2
uk + y2

uk)

(11.19)

Using Equation (11.14), Equation (11.17) and Equation (11.18),

f 2
ρ (ti, Pl(ti)) =

∑
k∈Ind(Pl(ti))\Ind(u)

αk((xtik − xuk)
2 + (ytik − yuk)

2)

+
∑

k∈Ind(ti)∩Ind(u)

αk((xtik − xuk)
2 + (ytik − yuk)

2)

+
∑

k∈Ind(ti)\Ind(Pl(ti))

αk(x
2
tik

+ y2
tik

) +
∑

k∈Ind(u)\Ind(ti)

αk(x
2
uk + y2

uk)

(11.20)

Also,

f 2
ρ (Pl(ti), u) =

∑
k∈Ind(Pl(ti))\Ind(u)

αk(x
2
uk + y2

uk) (11.21)

By equations (11.19), (11.20) and (11.21), we have

n∑
i=K+1

(f 2
ρ (ti, u) − f 2

ρ (ti, Pl(ti)) − f 2
ρ (Pl(ti), u))

=
n∑

i=K+1

∑
k∈Ind(Pl(ti))\Ind(u)

αk[(x
2
tik

+ y2
tik

) − ((xtik − xuk)
2 + (ytik − yuk)

2) − (x2
uk + y2

uk)]

=
n∑

i=K+1

∑
k∈Ind(Pl(ti))\Ind(u)

2αk(xtikxuk − x2
uk + ytikyuk − y2

uk)

= 0

(11.22)

Note that, each entry in the summation is not equal to zero.
Finally, summarizing Equation (11.15) over i = 1, 2, . . . , K and combining Equation(11.22)

and Equation (11.7), the Pythagorean theorem without nodal information, we have Equa-
tion (11.9).
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12 Principal Component Analysis on finite level trees

with nodal information

In section 8, we have defined a new metric δ on the tree space with nodal information
and a specific metric ρ on the finite level tree space. Note that, δ (ρ) is the sum of
the integer part metric dI and the fractional part fδ (fρ). Furthermore, we have defined
the variation of a sample of trees about its “center point”— median-mean tree. In this
section, we will mainly discuss the problem of finding simple explanation the variation
of the sample.

In standard statistics, principal component analysis (PCA) is a very useful tool to
explain the variation in terms of a few orthogonal directions (i.e., one-dimensional repre-
sentations). But for tree space which is not a Euclidean space, can we develop an analog
of the PCA method?

When all the trees in the sample T have the same tree structure, it is straight forward
that the median-mean tree mδ has the same tree structure as the other trees and the
sum of the integer part distances

n∑
i=1

dI(ti, mρ) = 0.

Also, fρ is proportional to the Euclidean distance between two vectors. Therefore, we
can apply standard PCA in this case.

Next, a more difficult question is how to analyze the variation when not all the trees
have the same tree structures in T . To analyze the variation, we need to take both the
integer part metric and the fractional part into account; that is, we should consider both
tree structure and nodal information.

Recall that, in section 5 and section 6, we have developed the idea of tree line as a
one-dimensional representation of the data in the binary tree space. Also, we developed
the tree version PCA on tree space without nodal information.

Now, on the binary tree space with nodal information, we will combine the tree version
PCA and the standard PCA on Euclidean space to develop a new PCA on tree space
with nodal information. We will use the tree version PCA to capture interesting features
of the tree structure and use standard PCA to analyze the nodal information.

Definition 12.1. An s-treeline is called a one-dimensional principal structure rep-
resentation of the sample T if it minimizes the sum

n∑
i=1

Vρ(ti, Pl(ti)) (12.1)
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over all binary s-treelines l passing through the minimal median-mean tree µρ in the
sample T .

According to the tree version Pythagorean theorem, (Theorem 11.4) minimizing the
sum (12.1) is equivalent to maximizing the following sum

n∑
i=1

Vρ(µρ, Pl(ti)) (12.2)

Example 12.1. Let T be a sample of finite level trees in Tw with sample size n = 5m,
where w is shown in figure 12.1. There are five types of trees and each has m elements
in T . Suppose trees t(i−1)m+1, . . . , tim have type i, for i = 1, 2, 3, 4, 5.

w

Figure 12.1: Binary tree w

I II III IV V

Figure 12.2: Representative of the binary tree sample T . There are m elements of each
type.
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level-order index I II III IV V
1 (0.7,0.7) (0.7,0.7) (0.7,0.7) (0.2,0.2) (0.2,0.2)
2 (0.3,0.3) (0.5,0.5) (0.4,0.4) (0.3,0.3) (0.5,0.5)
4 n/a n/a n/a (0.1,0.1) (0.1,0.1)

The support tree tsup and average support tree ta of the sample T are shown in the
figure 12.3.

support tree average support tree

Figure 12.3: Support tree and average support tree of the sample T

The median-mean tree mρ, center point of the sample T , is shown in Figure 12.4.
Note that, there is a unique median-mean tree of the sample T . The nodal information
of the average support tree ta and the median-mean binary tree mρ is listed in the table
below.

level-order index ta mρ

1 (0.5,0.5) (0.5,0.5)
2 (0.4,0.4) (0.4,0.4)
4 (0.1,0.1) n/a

Some calculation shows that the total variation to the center point is

5m∑
i=1

Vρ(ti, mρ) = 2.18m (12.3)

where N(w) = 4 in the definition of the metric ρ.
Now, we will find the treeline to describe features of the data. Note that, there is a

unique s-treeline l = {u1, u2, u3} in this example.
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median−mean

Figure 12.4: The median-mean tree mρ of the sample T

Figure 12.5: The unique s-treeline l for the sample T .

Also, the projections of the five types of trees are u2, u2, u2, u3, u3 respectively. Some
calculation results in:

5m∑
i=1

Vρ(Pl(ti), mρ) = 2.01m

and
5m∑
i=1

Vρ(Pl(ti), ti) = 0.17m

which verifies the tree version Pythagorean theorem, i.e.,

5m∑
i=1

Vρ(ti, mρ) =
5m∑
i=1

Vρ(Pl(ti), mρ) +
5m∑
i=1

Vρ(Pl(ti), ti).

In the example 12.1, the proportion of variation that the one-dimensional structure
representation explains is ∑5m

i=1 Vρ(Pl(ti), mρ)∑5m
i=1 Vρ(ti, mρ)

=
2.01

2.18
= 92.2%.
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We can see that, there is no other s-treeline to explain more about the total variation
in the example 12.1. Now we will use the other type of treeline — i-treeline.

Recall that, in Definition 11.2, an i-treeline is determined by a tree u0 and an infor-
mation vector �v.

Definition 12.2. Let �c be any vector of information. An i-treeline e, determined by u0

and �v, is called a �c-induced i-treeline if �v is a restriction of �c, in particular,

(v2k−1, v2k) =




(c2k−1, c2k), if k ∈ Ind(u0)

(0, 0), if k �∈ Ind(u0).
(12.4)

Each tree tj, it has a unique projection Pl(tj) on the s-treeline l, which is a one-
dimensional structure representation. For any vector �c and tree Pl(tj), there is a �c-induced
i-treeline ej. Now, we will find a vector (first principal component �p1) which minimizes

n∑
j=1

Vρ(tj, Pej
(tj)).

over all vectors �v.
Similar to the PCA in ordinary Euclidean space, we will find the orthogonal vectors

p2, p3, . . .. Furthermore, denote the induced i-treeline by the vector �pk passing through
the tree Pl(tj) by ejk.

The idea of �c-induced i-treeline is now illustrated in the context of the previous
example 12.1,

�p1 = [1, 1, 0, 0, 0, 0, 0, 0]′

and
�p2 = [0, 0, 1, 1, 0, 0, 0, 0]′.

Thus,

5m∑
i=1

Vρ(Pl(ti), Pei1
) = 0.15m (12.5)

and
5m∑
i=1

Vρ(Pl(ti), Pei2
) = 0.02m (12.6)
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According to the equations (12.5) and (12.6), it is straight forward that

5m∑
i=1

Vρ(Pl(ti), Pei1
) +

5m∑
i=1

Vρ(Pl(ti), Pei2
) = 0.17m =

5m∑
i=1

Vρ(Pl(ti), ti).

Note that, in Example 12.1, the total variation, 2.18m, was decomposed into three
parts. The first part, 2.01m, was explained by the first principal structure treeline. And,
two information treelines explain 0.15m and 0.02m respectively.

Example 12.2. w is a tree with level-order index set Ind(w) = {1, 2, 3, 7}. T =
{t1, t2, . . . , tn} is a sample of trees in the tree subspace Tw. Also, there are four types of
trees in the sample T , type I, II, III, IV (see the table below). The numbers of elements
of each type are 1, 1, m and m (m > 1).

level-order index I II III IV
1 (0.5,0.5) (0.3,0.3) (0.5,0.5) (0.3,0.3)
2 (0.2,0.2) (0.2,0.2) (0.2,0.2) (0.2,0.2)
3 (0.3,0.3) (0.7,0.7) (0.3,0.3) (0.7,0.7)
7 (0.1,0.1) (0.1,0.1) n/a n/a

The total variation is

2m+2∑
i=1

Vρ(ti, mρ) = 0.05m + 2.06. (12.7)

There are two s-treelines passing through the unique median-mean tree, l1 and l2. By
calculation,

2m+2∑
i=1

Vρ(Pl1(ti), ti) = 0.05m + 0.05.

and
2m+2∑
i=1

Vρ(Pl2(ti), ti) = 0.05m + 2.06.

Hence, the s-treeline l1 is the one-dimensional structure representation. By the tree
version Pythagorean theorem,

2m+2∑
i=1

Vρ(Pl1(ti), mρ) =
2m+2∑
i=1

Vρ(ti, mρ) −
2m+2∑
i=1

Vρ(Pl1(ti), ti) = 2.01.
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Therefore, the proportion of the total variation that the one-dimensional structure
representation l1 explains is∑2m+2

i=1 Vρ(Pl1(ti), mρ)∑2m+2
i=1 Vρ(ti, mρ)

=
2.01

0.05m + 2.06

Note that, this proportion is arbitrary small by taking m large. Thus, this is an example
where the tree structure component of variability (in either the l1 or l2) is negligible. So,
it is important to also analyze information structure.

Next, we will find the principal i-treeline to decompose the variation in the direction
of information.

By calculation, the first principal component is

�p1 = [−1,−1, 0, 0, 2, 2, 0, 0]′;

Furthermore,
2m+2∑
i=1

Vρ(Pei1
(ti), ti) = 0.

By the Pythagorean theorem, the proportion of variation explained by the i-treeline is

0.05m + 0.05

0.05m + 2.06
,

which converges to 1 as m → ∞.
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