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Abstract. A generalized Principal Component Analysis (PCA) for var-
ious types of image-based data is proposed. We discuss two viewpoints
of classical PCA, forward and backward stepwise views, pointing out
that a backward approach leads to a much more natural and accessible
extension of PCA for dimension reduction on non-linear manifolds. In
particular, a general framework of composite Principal Nested Spheres
is proposed that generalizes PCA in a backward manner and composes
one or more such non-linear analyses with Euclidean data. The method
works for a variety of application areas, including point distribution mod-
els, medial representations, points and normals. In examples from a lung
motion study and from a population of prostates, composite PNS is
shown to give a more succinct representation than alternative methods
in the literature.
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1 Introduction

Principal component analysis (PCA) is a widely used data exploration method
in a variety of fields, for many purposes including dimension reduction and visu-
alization of important data structures. In image analysis the dimensionality of
objects under investigation is usually very high, so dimension reduction through
PCA is essential in some analysis; see for example, [14]. In particular, a prob-
ability distribution on object shape space can be concisely described by using
PCA.

Classical PCA is based on the Euclidean properties of vector space, especially
inner products and orthogonality. PCA is easily applicable for many data types
with these properties, an example of which is Functional PCA [15, 16], where the
data set consists of smooth curves and the goal is to understand the variation in
a set of curves. By a basis expansion of curves, the Euclidean properties are still
well-defined, so the Functional PCA is a complete analog of classical PCA. On
the other hand, many important data types in image analysis lack the Euclidean
properties, so classical PCA can not be directly applied. In particular, the feature
spaces of medical imaging data form high dimensional Riemannian manifolds.
Some important data types are listed, as follows:
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Medial shape representations Shapes of 2D or 3D objects are represented
in a parametric model, called m-reps in short, including directions, log sizes
and points as parameters. The data space here is a manifold that is a direct
product of Euclidean space and unit spheres. See [17].

Scaled Point Distribution Model Representing boundaries of 2D or 3D ob-
jects by their sampled coordinates gives the surface point distribution model
(PDM). A scaled PDM (SPDM) is constructed from a PDM by moving each
point towards some designated center point by some fixed factor such that
the sum of squared distances from the center point is unity. Thus an SPDM
is a PDM that lies on a unit hypersphere, which reflects only the shape of
the object.

Points and Normals Model As an extension of PDM, at each point a direc-
tion vector that is normal to the surface is attached, which gives a richer
description of the object shape. The feature space of the points and normals
model is a direct product of an SPDM space, a log scale factor Euclidean
space and unit spheres, which is similar to the space of m-reps.

Diffeomorphisms A common methodology for comparing shapes in image
analysis is to use diffeomorphisms ([7, 6]), i.e., smooth space warping func-
tions. A shape is considered as a distortion (i.e., diffeomorphism) of some
template. Thus a set of shapes is represented as a set of diffeomorphisms
and the variation in the population of diffeomorphisms can be studied to
understand variation in shapes. A diffeomorphism is represented by a vector
field. A useful interpretation of the vector field is to decompose the vector
into the direction and length, which leads to a feature space being a direct
product of Euclidean space and unit spheres.

Conventional statistical analysis, including PCA, is not directly applicable
to these types of data. However, there is a growing need for PCA-like methods
because the dimensionality of the data space is often very high. Generalized
PCA methods for manifold data can be viewed as forward or backward stepwise
approaches [11]. In the traditional forward view, PCA is constructed from lower
dimension to higher dimension. In the backward point of view, PCA is con-
structed in reverse order from higher to lower dimensions. These two approaches
are equivalent in Euclidean space but lead to different methodologies for mani-
fold data. Previous approaches for generalized PCA to manifold data are listed
and discussed in Section 2. Many commonly used methods can be viewed as the
forward approach. However, the backward viewpoint is seen to provide much
more natural and accessible analogues of PCA than the standard view. This is
discussed further in Section 2.2.

Note that there is a common characteristic of the data types listed above.
Namely, all feature spaces involve orientations either as a result of normalizing
alignments or explicitly e.g. surface normals. Thus the feature space becomes
a direct product of Euclidean space and unit (hyper) spheres. In this article,
we propose a framework for a backward generalization of PCA that works for
this type of data. This includes and generalizes Principal Nested Spheres (PNS,
[8]) and composite PNS [9]. Section 3 is devoted to explaining the methodology.
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In particular, Section 3.1 discusses a backward PCA method for data on unit
hyperspheres, and then the procedure of the proposed method by composing
Euclidean and manifold data is illustrated in Section 3.2.

Advantages of the proposed method are presented by some experimental
results in Section 4. We show two different data types, PDMs and m-reps. We
use composite PNS to describe the motion of the lung using landmark data
(PDM) extracted from CT images and to fit the Gaussian distribution in the
space of prostate shapes from m-rep data. We show that composite PNS captures
more variation in fewer dimensions than the standard PCA.

2 Generalized PCA for manifold data

In this section, we formulate the forward and backward stepwise views for Eu-
clidean PCA and analyze manifold extensions of PCA in terms of those.

2.1 Forward and Backward Stepwise View of PCA

In Euclidean space, or simply a vector space of dimension d, let X1, . . . , Xn be
column vectors that are inputs for Classical (Euclidean) PCA. The data matrix is
formed by aggregating the data vectors: X = [X1, , . . . , Xn]. Euclidean PCA can
be understood as an operation of finding affine subspaces ASi, where i = 1, . . . , d
represents the dimension of ASi.

A traditional forward stepwise view to Euclidean PCA is understood by
increasing the dimension i of ASi, starting from the empirical mean X̄ ≡ AS0.
In particular, given ASi, the direction ui+1 of great variance is added to ASi,
resulting in ASi+1. Therefore, we have

AS0 ⊂ AS1 ⊂ AS2 ⊂ · · · ⊂ ASd,

where each ASi is the best fit containing ASi−1 in the whole space ASd. A
simple example of the forward operation in depicted in Fig. 1. In 3-space, X̄ is
plotted as a black dot with the AS1 drawn as a line segment. AS2 is found by
adding an orthogonal direction to AS1, resulting in an affine plane AS2 plotted
in the right panel.

The viewpoint that seems more useful for generalization of PCA to manifold
data is the backward stepwise view. In backward PCA, principal components are
found in reverse order, i.e., ASis are fitted from the largest dimension, which
leads to

Rd = ASd ⊃ ASd−1 ⊃ · · · ⊃ AS1 ⊃ AS0.

In particular, ASd−1 is found from ASd by removing the direction ud of least
variance from all of the data points. Successively, ASi is the best fit in ASi+1 (not
in ASd). In the toy example in Fig 1, the backward operation can be understood
by viewing the plots from right to left. From R3, AS2 is fitted by removing a
direction u3, the direction of least variance. Then a line (AS1) is found within
AS2 in the same fashion, and so on.
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Fig. 1. (Top row) Input points in 3-space with mean and PC1 direction, and the affine
subspace formed by PC1–2 directions. (Bottom left) The unit sphere S2 with a geodesic
segment (great circle segment) and the tangent plane at the north pole. (Bottom right)
10 points along the equator with random perturbation and the geodesic mean (black
square) near the north pole illustrates the case where the geodesic mean on S2 is not
on the equator (S1) and does not represent the data well.

In Euclidean space the forward and backward approaches are equivalent. In
practice, the basis of ASi is formed by the eigenvectors uj , j = 1, . . . , i, of the
sample covariance matrix S = 1

n−1 (X− X̄)(X− X̄)T or the left singular vectors

of the centered data matrix (X− X̄).
However, in non-Euclidean spaces the choice of viewpoint affects the gener-

alizations of PCA, discussed next.

2.2 PCA approaches for manifold data

In curved manifolds we need to generalize important notions such as the sample
mean and straight lines (or directions) as they are not defined in general mani-
folds. A useful notion for generalization of mean is the Fréchet mean, defined as a
minimizer of sum of squared distances to data points. The Fréchet mean is widely
applicable, since it only requires a metric on the manifold. In Euclidean space,
the sample mean is the Fréchet mean with the usual metric ρ(x, y) = ∥x− y∥. In
curved manifolds, distances are commonly measured along geodesics. A geodesic
is an analog of straight lines in Euclidean space; it is roughly defined as the
shortest path between two points (see Fig. 1). The geodesic distance function
measures the shortest arc length between two points. With the geodesic dis-
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tance as its metric, the Fréchet mean is often called geodesic mean. A detailed
discussion can be found at [13].

A widely used approach to manifold PCA, called Principal Geodesic Analysis
(PGA, [3]), generalizes PCA in a forward stepwise manner. The first step in PGA
is to find a center point for the manifold data. Having the geodesic mean as the
center point in PGA, the second step is to find a geodesic (instead of a line) that
best represents the data, among all geodesics that pass through the geodesic
mean. The higher order components are again geodesics that are orthogonal to
the lower order geodesics. In practice, these geodesic components are computed
through a projection of the data onto the tangent space at the geodesic mean.
PGA and similarly defined forward approaches are developed for various types
of data; see e.g. [3] for m-reps data, [2] for DTI data, and [1] for landmark shape
data.

However, there has been a concern that the geodesic mean and tangent space
approximation can be very poor. As a simple example, consider the usual unit
sphere S2 and the data distributed uniformly along the equator of the sphere
as illustrated in Fig. 1. In this case, the equator itself is the geodesic that best
represents the data. However, the geodesic mean is located near the north or
the south pole, far from any data. PGA, as a forward method, finds princi-
pal geodesics through this geodesic mean, which fail to effectively describe the
variation in the data.

This observation motivated [4] to propose Geodesic PCA (GPCA). In GPCA,
the geodesic mean or any pre-determined mean is no longer used; instead it
finds the best approximating geodesic among all possible candidates. A center
point of the data is then found in the first geodesic component, and all other
components must be geodesics through the center point. In the equator example
above, GPCA finds the equator as the first component. GPCA can be viewed
as a backward approach, particularly when applied to S2, since the center point
is found last. In higher dimensional manifolds, for example in hyperspheres Sp

with p > 2 and Kendall’s shape spaces [1], GPCA is not fully backward, since
the method is built by considering lower dimensional components first, only with
an exception for center point. Nevertheless, the advantage of the method indeed
comes from the backward viewpoint, i.e., from reversing the order of the first
two steps.

In generalizations of PCA for higher dimensional manifolds, including hyper-
spheres Sp and Kendall’s shape spaces, the backward stepwise principle led to
a fully backward generalization of PCA: Principal Nested Spheres (PNS, [8]).
In taking the backward approach, it inherits the advantages of GPCA. More-
over, this allows the successive submanifolds to be non-geodesic. PNS has been
shown to provide more representative description of the data (compared to other
forward stepwise approaches) in a number of standard examples in [8]. In the
composite PNS we propose, PNS is used as an important building block.
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3 Composite Principal Nested Spheres

In this section, a method for direct product manifolds that possesses the advan-
tage of backward generalization of PCA is discussed. In particular, the feature
space is decomposed into directional parts in S2, shape parts in Sp, and size
parts in R+. Then the spherical parts of the manifold are analyzed by Principal
Nested Spheres (PNS), and a composite space of Euclidean parts and the result
of PNS is formed to take the correlation structure into account. We summarize
PNS in more detail and discuss the procedure of composite PNS.

3.1 Principal Nested Spheres

PNS generalizes PCA in a non-geodesic way for hyperspheres and Kendall’s
shape space, which was possible by taking the backward viewpoint. The first
step in PNS is to reduce the dimension d of Sd to d− 1. Specifically, we wish to
find the best approximating sub-manifold of dimension d − 1. PNS solves this
problem with a flexible class of sub-manifolds in the form of nested spheres.

A k-dimensional nested sphere Ak of Sd is nested within (i.e., sub-manifold
of) higher dimensional nested spheres; and Ak itself can be thought of as a k-
dimensional sphere. Ak need not be a great sphere. As an example, Ad−1 of Sd

is defined with an axis v1 ∈ Sd and distance r1 ∈ (0, π/2] as follows,

Ad−1(v1, r1) = {x ∈ Sd : ρd(v1, x) = r1},

where ρd is the geodesic distance function defined on Sd. The parameter v1 drives
the ‘direction’ that is not contained in Ad−1. In relation to the backward view of
Euclidean PCA in Section 2.1, the direction coincides to ud, which is orthogonal
to ASd−1. The distance from v1 to any point in Ad−1 is r1, which is responsible
for the curvature of Ad−1. This flexibility of curvature in Ad−1 allows PNS to
capture a certain form of non-geodesic variation.

Lower dimensional nested spheres are defined similarly. Since Ad−1 is essen-
tially a sphere, Ad−2 can be defined again with a pair (v2, r2) and in a way that
Ad−2 is nested within Ad−1. Iteratively, one can continue to build a sequence of
nested spheres Sd ⊃ Ad−1 ⊃ · · · ⊃ A1. Fig. 2 shows a geometric structure of
nested spheres that are recursively defined and fitted.

In PNS with a data set X1, . . . , Xn ∈ Sd, the pair (v, r) of nested spheres is
fitted to the data iteratively so that the fitted nested spheres represent the data.
[8] proposed minimizing the sum of squared distances to the data, that is, the
d− 1 dimensional PNS is

Âd−1 = argmin

n∑
i=1

ρd(Ad−1, Xi)
2, (1)

where ρd(Ad−1, Xi) is defined as follows. Each Xi can be projected on Ad−1

along the minimal geodesic that joins Xi to Ad−1. Denote XP
i for the projec-

tion. The length of the minimal geodesic is the distance, that is ρd(Ad−1, Xi) =
ρd(X

P
i , Xi). Note that each observation gets a signed residual zd,i.
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Fig. 2. The nested sphere Ad−1(v, r1) in Sd and its relation to Sd−1, through some
isomorphism f1. Recursively, Ad−2 is found in Sd−1.

The second (or the d − 2 dimensional) PNS is found with the projections
XP

i . Since XP
i ’s are on Âd−1, one can use the method (1) by treating Âd−1

and {XP
i } as Sd−1 and {Xi}, respectively. Simply put, Âd−2 is fitted to XP

i ’s
by minimizing the sum of squared distances. In general, we recursively find the
sequence of PNS from the (iteratively) projected data.

The lowest level principal nested sphere Â1 is then a small circle, with in-
trinsic dimension 1. The Fréchet mean of XP

1 , . . . , XP
n ∈ Â1 is used as the best

0-dimensional representation of the data in the framework of PNS. Denote the
Fréchet mean as Â0, and keep the signed deviations z1,i of X

P
i for later use.

As a result, PNS constructs the sequence of the best approximating sub-
manifolds

Sd ⊃ Âd−1 ⊃ · · · ⊃ Â1 ⊃ {Â0},

for every dimension. The backward principle is essential to PNS, since the for-
ward stepwise generalizations of PCA are not be equivalent to PNS (see Sec-
tion 2.2) and are even not clearly defined for non-geodesic variation.

Furthermore, we wish to represent the data in an Euclidean space for further
analysis, especially for composite PNS, discussed later in Section 3.2. Recall that
in the procedure above, we have collected the signed residuals zk,i. The Principal
Scores matrix of the data by PNS is obtained by combining those residuals into
a d× n data matrix

Z =

 z1,1 · · · z1,n
...

. . .
...

zd,1 · · · zd,n

 , (2)

where each column is the corresponding sample’s coordinates in terms of the
PNS. Each entry in row k is a perfect analogue to the kth principal component
score in a Euclidean space.

When using the computational algorithm proposed in [8] for the optimiza-
tion task (1), the procedure is computationally fast when the dimension and
number of samples are moderate. However, in the high dimension low sample
size situation where for example d > 1000 and n < 100, strict application of the
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iterative procedure results in a very slow computation. [8] has shown that the
intrinsic dimensionality of the data can be reduced to n− 1 without losing any
information and that the first d−n PNS can be found trivially by an application
of singular value decomposition. This fact is used when it applies, including the
experiments in Section 4.

3.2 Composite of Euclidean and Manifold data

We now introduce the general framework of composite PNS. Suppose the feature
space is a direct product manifold, e.g.,

M = Rd1 × (Sp)d2 × (Sq)d3 , (3)

for some d1, d2, d3 ≥ 1, p, q ≥ 2.
The various data types introduced in Section 1 fall into this structure. For

example, the feature space of the Points and Normals model with k landmark
points is R3k × (S2)k (PDMs × Normals). The feature space of the PDMs with
k points is S3k−1 × R+, where the spherical part represents the shape of the
lung and R+ represents the size of the lung. The size variable is log-transformed
as done in [9]. Therefore, the feature space of the the Points and Normals model
becomes S3k−1 × R × (S2)k. Similarly the feature space of the m-rep model
with k medial atoms is (R3 ×R+ × S2 × S2)k = S3k−1 ×Rk+1 × (S2)2k, by a
normalizing operation and log transformation.

Let X(i) ∈ M be the ith observation, i = 1, . . . , n. According to (3), we
decompose each X(i) into a tuple of components

X(i) = (x(i), y1(i), . . . , yd2(i), z1(i), . . . , zd3(i)),

where x(i) ∈ Rd1 , yj(i) ∈ Sp, and zj(i) ∈ Sq. For the jth component in Sp,
collect yj(1), . . . , yj(n) ∈ Sp that are the inputs of PNS and thus we get a
principal scores matrix Yj of size p× n (Eq. (2)). Likewise, For each of the jth
component in Sq, PNS gives a principal scores matrix Zj of size q×n. Euclidean
components also form a d1 × n matrix X = [x̃(1), . . . , x̃(n)], where x̃(i) is a
centered version, i.e., x̃(i) = x(i)− n−1

∑n
i=1 x(i).

In order to incorporate the correlation between the Euclidean components X
and spherical components Yj and Zj , define a composite data matrix

Zc = [X T ,YT
1 , . . . ,YT

d2
,ZT

1 , . . . ,ZT
d3
]T ,

by vertically stacking the scores matrices.
Let the spectral decomposition of the d = d1 + pd2 + qd3 dimensional square

matrix 1
n−1ZcZT

c be UΛUT , where U = [u1, . . . ,ud] is the orthogonal matrix of
eigenvectors and Λ is the diagonal matrix of eigenvalues λ1, . . . , λd. Similar to
the conventional PCA, the eigenvectors uk represent the directions of important
variation in the space of Zc which lead to the Principal Arcs when converted
back to the original space M. Likewise, the eigenvalues λk represent the vari-
ation contained in each component. Principal Arc scores for each component
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are computed by uT
kZc, which is the vector of the kth scores of all n samples.

Note that we do not center the data set, as opposed to the conventional PCA
approach via eigen-decomposition. This is because each variable in Zc is already
centered.

The analysis of composite PNS can be used in the same fashion as Euclidean
PCA is used. Both provide a nested sequence of subspaces (or sub-manifolds)
for dimension reduction, and PC scores (or PA scores) that are important for
visualization of important data structure, and for further analysis such as PC
regression.

The advantage of composite PNS comes from the flexible class of sub-manifolds
instead of subspaces. As shown in Section 4, the proposed method gives a more
effective decomposition of the space compared to Euclidean PCA and PGA.

4 Applications to Image-based Data

Advantages of composite PNS are illustrated through analyses of two data types.
The experimental results show that composite PNS gives a more effective de-
scription of the PDMs and m-reps in lower dimension than Euclidean PCA and
PGA.

4.1 Lung Motion Study by PDM

Respiratory motion analysis in the lung is important for understanding the motil-
ity of tumors in the lung of an individual patient for radiation therapy applica-
tions. In-correspondence [12] PDMs of the lung boundary across respiration are
used to characterize the respiratory motion [10]. Analysis by ordinary PCA has
been used; we analyze this data by composite PNS.

We consider two examples, each with 10 respiratory time points. The first
data set is from 4D NURBS-based Cardiac-Torso (NCAT) phantom thorax CTs.
The second data set is from Respiration-correlated CT of a real patient. Retro-
spectively sorted CT data sets were provided by a GE 4-slice scanner using a
Varian device recording patients’ chest position.

The difficulty of the problem is two-fold; the dimension is very high (d =
31650, which could be much higher depending on the number of points on the
surface) while the sample size is small (n = 10), and the major variation is
non-linear, as shown in Fig. 3 for the NCAT data sets.

The two examples yield similar results. Fig. 3 shows scatter plots of NCAT
lung data by the usual PCA (in the left panel) and by composite PNS (in
the right panel). The dimension of the data space is reduced to 3 to visualize
the structure of major variation. The non-linear variation apparent in the PCA
subspace is represented as a linear motion in the sub-manifold of composite PNS.
Observe that the sum of variances contained in PC 1-2 is roughly the amount
of variation in the first principal arc. The data set from the real patient gives a
similar result, where the cumulative proportions of variances in the first three
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Fig. 3. (Left) Scatterplot of NCAT lung data by PC scores in the first three components
of Euclidean PCA. Time points are labeled as 0-9 in the scatterplot and the proportion
of variance contained in each component appears in the labels of axes. Major variation
in the data is non-linear. (Right) Scatterplot of the NCAT lung data by PA scores
of composite PNS. The non-linear variation is captured in the first principal arc, and
thus the variation appears linear. The first component in composite PNS contains more
variation (98.74% of the total variation) than 92.64% of PCA.

Table 1. Discrepancy of 1D approximations at each time point of the real patient lung
motion. L2 distance in real PDM scale with unit mm/100 is used.

time point 1 2 3 4 5 6 7 8 9 10

PCA 65.2 69.9 88.7 77.7 38.9 74.4 44.1 69.8 74.6 57.6
composite PNS 38.2 66.9 66.1 55.6 37.8 36.7 30.4 63.0 60.2 44.6

sub-manifolds (96.38%, 97.79%, and 98.63%, respectively) are higher than those
of PCA (93.52%, 96.25% and 97.74%).

We also measure the discrepancy between the PDM at each time point and its
1D approximation by PCA or composite PNS. The discrepancy here is computed
by the square root of sum of squared distances between corresponding points. In
the patient lung data, the discrepancy of 1D approximations by composite PNS
is uniformly smaller than that by PCA, as summarized in Table 1.

4.2 Shape Space of Prostate by M-reps

The m-rep models a solid human organ by few medial atoms, each of which
consists of a location and two equal-length spokes to boundary. The m-rep model
with k atoms lie on M = (R3×S2×S2×R+)k. The data set we analyze is from
the generator discussed in [5]. It generates random samples of objects whose
shape changes and motions are physically modeled (with some randomness) by
anatomical knowledge of the bladder, prostate and rectum in the male pelvis.
In the data, as in actual within-patient anatomical variation, the changes of the
prostate consist of a small deformation composed with a rigid transformation.
[5] has proposed and used the generator to estimate the Gaussian distribution
model of shapes of human organs. Due to high dimensionality of the feature
space, a dimension reduction is required.
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Fig. 4. Result on prostate m-reps data: (Left) Scree plot shows composite PNS captures
more variation in low dimension than PGA. (Middle) Scatterplot by PG scores in the
first two components. (Right) Scatterplot by composite PNS in the first two principal
arcs. The curving variation left by PGA is captured in composite PNS.

The prostate m-reps consist of k = 15 atoms, and the dataset we analyze has
60 samples. The locations of atoms inR3k are treated as a PDM and decomposed
into SPDM (representing shapes) in S3k−1 and a size variable in R+. Perform-
ing log transformation, the feature space becomes S3k−1 ×Rk+1 × (S2)2k. We
compare the performance of dimension reduction by Principal Geodesic Analysis
(PGA) as done in [5] and composite PNS.

In the left panel of Fig. 4, the proportion of the cumulative variances, as
a function of number of components, shows that composite PNS captures the
variation more succinctly than PGA. The scatterplots in Fig. 4 illustrate the
advantage of taking backward and composite ideas. In particular, the obvious
center point of the data cloud is not in the origin (geodesic mean) of PGA
scatterplot (middle panel). Moreover, the curving variation in the the first two
components will lead to a poor fitting of a Gaussian distiribution. On the other
hand, the quadratic form of variation that requires two PGA components is
captured by a single composite PNS component, and the the data spread more
elliptically, which in turn leads to a better Gaussian fit.

5 Conclusion

We propose a general framework for doing backward PCA for various image data
types. In particular, composite PNS works for a wide variety of applications and
leads to a more succinct description of the data, as shown in the example of
size and SPDM shape changes with application to the lung motion and in the
example of the population of prostates. The advantage of composite PNS comes
from 1) decomposition of the feature space into spheres where the backward
PCA can be applied and 2) composition of Euclidean and manifold data to take
the correlation into account.
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The general framework of composite PNS we propose can be used to a variety
of applications over both computer vision and medical imaging.
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