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Abstract

In computer vision and image analysis, image registration between 2D projec-
tions and a 3D image while obtaining high accuracy and real-time computation
is challenging. In this paper, we propose a novel method that can speedily
detect the object’s 3D rigid motion or deformation from a small set of its 2D
projection images. The method consists of two stages: registration and pre-
registration learning. In the registration stage, using learned linear operators, it
iteratively estimates the motion/deformation parameters based on the current
intensity residue between the target projection(s) and the DRR(s) (digitally
reconstructed radiograph) of the estimated 3D image. The linear operators
are learned in the pre-registration learning stage: First, it builds a low-order
parametric model of the image region’s motion/deformation shape space from
its prior 3D images. Second, using learning-time samples produced from the
3D images, it formulates the relationships between the model parameters and
the co-varying 2D projection intensity residues by multi-scale linear regressions.
The calculated multi-scale regression matrices give the coarse to fine linear oper-
ators used in estimating the model parameters from the 2D projection intensity
residues in the registration. The method is called CLARET (Correction via
Limited-Angle Residues in External Beam Therapy). Its application to Image-
guided Radiation Therapy (IGRT ) requires only a few seconds and yields good
results in localizing a tumor under rigid motion in the head and neck and under
respiratory deformation in the lung using a small set of treatment-time imaging
2D projections.
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1. Introduction

In a variety of situations in therapy guidance in medicine, there is a planning-
time 3D image taken and there is a set of treatment-time 2D images taken that
are used to find the 2D/3D geometric transformation relating the treatment-time
layout to the planning-time layout (Markelj et al. [1]). Current available 2D/3D
registration methods (Russakoff et al. [2, 3], Khamene et al. [4], Munbodh et al.
[5]) find that geometric transformation that optimizes an objective function con-
sisting of a match term to the 2D image data and a regularization term. As
a fast optimization often requires many evaluations of the function’s Jacobian,
without further parallelization, the optimization-based registration methods are
structurally slow. With GPU parallelization recent optimization-based 2D/3D
registration methods are able to track the tumor within one second under pa-
tient’s rigid motion (Furtado et al. [6], Gendrin et al. [7]) or under patient’s
non-rigid motion (Li et al. [8, 9]). However, the mismatch in the registration
dimensionality often introduces a non-convex objective function which is prone
to make the optimization fall into a local minimum (a non-global solution). In
order to avoid local minima and to reduce the registration time, Li et al. [8, 9]
adopted a bootstrap approach where optimizations were initialized by regis-
tration results from former time points. Also in the same context of reducing
the registration time, registration methods that used Neural Networks modeled
rigid transformations (Banks and Hodge [10], Freire et al. [11], Zhang et al.
[12]), or non-rigid transformations (Wachowiak et al. [13]), using multi-layer
neural networks to have efficient computation at registration time. However,
to the best of our knowledge, there is no general framework that can support
both rigid and non-rigid 2D/3D registration. We have sought a learning-based
framework that is fast, general to both types of registration, and not based on
optimization.

In this paper, we describe the methodology of our general learning-based frame-
work that was initially presented in Chou et al. [14] for rigid registration and
Chou et al. [15] for non-rigid registration, respectively. (Steininger et al. [16]
later presented a similar approach for rigid registration.) In a way similar to
the face alignment algorithm AAM (Active Appearance Model) in Cootes et al.
[17] and the efficient tracking scheme in Jurie and Dhome [18], we seek a linear
operator M, calculated by linear regression, that when iteratively applied to
intensity differences (residue) R between DRRs (projections) of the presently
estimated 3D image and the measured images, yields the update of the estimated
transformation parameters ∆Ĉ needed to lessen the residue.

∆Ĉ = M ·R (1.1)

The registration process in eq. 1.1 requires no optimizations; therefore it can
support efficient registration. Different from the AAM, our linear operator M
estimates 3D transformation parameters from 2D projection intensity residues
R for the 2D/3D registration.

We describe our method in detail in the following sequence: First, we describe
our 2D/3D registration framework and our efficient approximation of the shape
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parameters C in section 2. In section 3, we describe how we obtain low-order
parametrization for rigid motion and for a deformation shape space. In section
4, we describe our regression learning to calculate the linear operator M and an
efficient multi-scale learning scheme. In section 5, we describe how we generate
commensurate projection intensities to support our regression estimation. In
section 6, we describe the experimental setup and clinical context of our medical
application. In sections 7 and 8, we present and then discuss our rigid and non-
rigid registration results.

2. 2D/3D Registration

In this section, we first describe the general framework of our 2D/3D image
registration method. Second, we describe our approach for efficient registration
within this framework.

2.1. General 2D/3D Registration

The goal of the 2D/3D registration is to match a transformed 3D grey-scale
source image to a set of target 2D projections Ψ. We denote the projection
intensity at pixel location x = (x1, x2) for a projection angle θ as Ψ(x; θ). The
registration can be formulated as an iterative process. Let I denote the 3D
source image and I(t) denote the 3D image at iteration t. At iteration t, the
estimated 3D image region’s motion/deformation parameters Ĉ(t) define a geo-
metric transformation T (Ĉ(t)) in a shape space determined from the 3D images.
Ĉ(t) are calculated by the estimated parameter updates ∆Ĉ(t) (eq. 2.1) ob-
tained from projection intensity residues R between the target 2D projections
Ψ(x; θ) and the computed projections P(x, I(t − 1); θ) of the transformed 3D
source image at iteration t − 1. After parameter estimation in each iteration,
image transformation (eq. 2.3) is required in order to produce updated com-
puted projections for the parameter estimation in the next iteration. We denote
the computed projection intensity at pixel location x from a projection angle θ
from a 3D image I(t− 1) in iteration t− 1 as P(x, I(t− 1); θ).

{
Ĉ(0) = 0

Ĉ(t) = Ĉ(t− 1) + ∆Ĉ(t)
(2.1)

R[Ψ(x; θ),P(x, I(t− 1); θ)] = Ψ(x; θ)−P(x, I(t− 1); θ) (2.2)


I(t) = I(0) ◦ T (Ĉ(t))

I(0) = I

T (0) = I (the identity transformation)

(2.3)
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The projection operator P is formulated by a simulation of the imaging
process. For example, in the medical literature, to simulate a 3D image’s x-ray
projections from its 3D volume (i.e., digitally reconstructed radiographs
(DRRs)), we perform ray casting to simulate the photon attenuation for a
given imaging geometry (figure 2.1). We note that although eq 2.2 indicates a
simple subtraction of the projection of the 3D image from the target
projection, in actual clinical application it is necessary to apply additional
processing to account for x-ray scatter in the target projection. This will be
explained further in section 5.

Figure 2.1: An x-ray projection is simulated by ray casting on a 3D image volume. The dashed
lines and the arrows indicate the ray directions.

One way to obtain the estimated parameter updates ∆Ĉ(t) at iteration t is
to optimize certain measure ρ of the concatenated intensity residue R|| with
respect to the parameter updates ∆C. The concatenated intensity residues R||,
defined as the concatenation over all of the projection angles θ of the residues
Rθ: R|| = Rθ1 ||Rθ2 || · · · ||RθΓ .

∆Ĉ(t) = arg
∆C

min
∥∥∥R||[Ψ(x),P(x, I(0) ◦ T (Ĉ(t− 1) + ∆C))]

∥∥∥
ρ

(2.4)

Without parallelization computations iteratively accomplishing this optimiza-
tion are structurally slow. Moreover, the optimization may easily converge to
local minima since the energy functional in eq. 2.4 is not convex.

2.2. Efficient Linear Approximation of ∆C

We propose a different method to calculate ∆C using multi-scale linear op-
erators M. At iteration t of the registration, our method estimates the mo-
tion/deformation parameter updates ∆Ĉ(t) by applying a linear operator Ms

of scale s to the current concatenated intensity residue R||. That is,

∆Ĉ(t) = R||[Ψ(x),P(x, I(t−1))] ·Ms, where s = 1, 2, · · · , S; t = 1, 2, · · · , tmax
(2.5)

Typically, S = 4 and tmax ≤ 10 are satisfactory. The computation in eq. 2.5
involves only matrix multiplications by Ms, computing the projections by P,
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and subtractions. This makes the registration structurally fast. The calcula-
tion of the multi-scale linear operators M involves a machine learning process
described in detail in section 4.

3. Shape Space Modeling

Our method limits the motion/deformation to a shape space. To allow M to
be accurately learned, we require a low-order parametrization C of this shape
space. We describe the shape space calculation for rigid motions and for non-
rigid deformations in section 3.1 and 3.2 respectively.

3.1. Rigid Motion Modeling

Rigid motions are modeled explicitly as the variation in the Euler’s six dimen-
sional rigid space:

C = (tx, ty, tz, rx, ry, rz) (3.1)

where tx, ty, tz are the translation amounts in cm along the world’s coordinate
axes x, y, z, respectively; and rx, ry, rz are the angular rotation in degrees (◦)
about the image center successively around the world’s coordinate axes x, y, z,
respectively.

3.2. Deformation Modeling

We model deformations as a linear combination of a set of basis deformations
calculated through PCA analysis. In our target problem, a cyclically varying
set of 3D images {Jτ over time τ} are available at pre-registration learning time.
From these a mean image J̄ and a set of deformations φτ between Jτ and J̄ can
be computed. The basis deformations can then be chosen to be the primary
eigenmodes of a PCA analysis on the φτ . The computed mean image J̄ will be
used as the reference mean image I throughout this paper.

3.2.1. Deformation Shape Space and Mean Image Generation

In order to model the deformation space realistically, our method computes a
deformation-based intrinsic mean as a Fréchet mean image J via an LDDMM
(Large Deformation Diffeomorphic Metric Mapping) framework (described in
Beg et al. [19]) on the cyclically varying set of 3D images {Jτ over time τ}. The
Fréchet mean J , as well as the diffeomorphic deformations φ from the mean
J to each image Jτ , are computed using a fluid-flow distance metric dfluid as
described in Lorenzen et al. [20]:

J = arg
J
min

N∑
τ=1

dfluid(J, Jτ )2 (3.2)

5



= arg
J
min

(
N∑
τ=1

ˆ 1

0

ˆ
Ω

||vτ,γ(x)||2dxdγ +
1

α2

ˆ
Ω

||J(φ−1
τ (x))− Jτ (x)||2dx

)
(3.3)

where Jτ (x) is the intensity of the pixel at position x in the image Jτ , vτ,γ is
the fluid-flow velocity field for the image Jτ in flow time γ , α is the weighting
variable on the image dissimilarity, and φτ (x) describes the deformation at the

pixel location x: φτ (x) = x+
´ 1

0
vτ,γ(x)dγ.

The Fréchet mean image J and the deformation φτ to J corresponding to the
image Jτ are calculated by gradient descent optimization. The set {φτ over τ}
can be used to generate the deformation shape space by the following statistical
analysis.

3.2.2. Statistical Analysis

With the diffeomorphic deformation set {φτ over τ} calculated, our method
finds a set of linear deformation basis functions φipc by PCA analysis. The

scores λiτ (basis function weights) for each φipc yield φτ in terms of these basis
functions.

φτ = φ+

N∑
i=1

λiτ · φipc (3.4)

We choose a subset of n eigenmodes that capture 95% of the total variation.
Then we let the n basis function weights λi form the n-dimensional parametriza-
tion C.

C = (c1, c2, · · · , cn) (3.5)

= (λ1, λ2, · · · , λn) (3.6)

4. Machine Learning

With the motion/deformation’s shape space we calculate linear operators M
that correlate coarsely to finely sampled model parameters C with the cor-
responding projection intensity residue vectors R. We describe our regression
learning to calculate the linear operators M in section 4.1 and an efficient multi-
scale learning strategy in section 4.2.

4.1. Residues to Model Parameters Regression Learning

As detailed in section 4.2 we select a collection of model parameters {Cκ over
cases κ} for learning. Each case is formed by a selection of parameter settings.
We train from deviations from the reference image, so ∆C = Cκ. We use linear
regression to correlate the selected modeled parameters Cκ in the κth case with
the co-varying projection intensity residue set {Rκ,θ over the projection angle
θ}. Rκ,θ(x) can be formulated as the projection intensity difference at pixel
location x = (x1, x2) from a projection angle θ between the mean image (or
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an untransformed 3D image for the rigid case) I and the image I ◦ T (Cκ)
transformed with the sampled model parameter Cκ:

Rκ,θ(x) = P(x, I ◦ T (Cκ); θ)−P(x, I; θ) (4.1)

We concatenate the residues at each projection angle to formulate a residue set

in a vector R
||
κ = (Rκ,θ1 ,Rκ,θ2 , · · · ,Rκ,θΓ) and build a linear regression for all

cases κ = 1, 2, · · · ,K: 
C1

C2

...
CK

 ≈


R
||
1

R
||
2

...

R
||
K

 ·M (4.2)

The regression matrix M that gives the best estimation of the linear operators
per parameter scale is computed via a pseudo-inverse:

M = (R||ᵀR||)−1R||ᵀC (4.3)

4.2. Multi-scale Learning

To provide adequate regression learning, C must be sufficiently sampled to cap-
ture all the shape variations. However, the direct implementation needs an
exponential time computation. Instead, we have designed an efficient learn-
ing scheme that learns the model parameters from large to small scales, 1 to
S, yielding S scale-related regression matrices M1,M2, · · · ,MS . At the sth

scale of learning, each model parameter ci is collected from the combinations
of ±3σi · (S − s + 1)/S and 0 where σi is the standard deviation of the basis
function weights λi observed at pre-registration time. In the registration stage
the calculated multi-scale linear operators are applied sequentially, from M1 to
MS , to give new estimations of the model parameters from large to small scale.
After evaluating the estimation accuracy for target examples of both the rigid
and non-rigid types, we found that four scales of learning (S = 4) produced
dense enough samples in C for CLARET to achieve the required registration
accuracy.

5. Commensurate Projection Intensity Generation

X-ray scattering effects happen in the target projection. However, the regres-
sion estimators M are not invariant to the projection intensity scales and vari-
ations caused by x-ray scatter. Therefore, our method uses a normalization
filter (section 5.1) and a following histogram matching (section 5.2) to gener-
ate commensurate intensities between learning-time computed projections and
registration-time target projections.
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5.1. Local Gaussian Normalization

To account for variations caused by x-ray scatter, we perform a 2D Gaussian-
weighted normalization for each pixel in the learning projections (see figure 5.1
(d)) and the target projections (see figure 5.1 (b)). To calculate the normalized
value Ψ′(x; θ) at a pixel location x = (x1, x2) for each projection angle θ, we
subtract a Gaussian-weighted spatial mean µ′(x1, x2) from the raw pixel value
Ψ(x1, x2) and divide it by a Gaussian-weighted standard deviation σ′(x1, x2).

Ψ′(x1, x2) =
Ψ(x1, x2)− µ′(x1, x2)

σ′(x1, x2)
(5.1)

µ′(x1, x2) =

∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ·Ψ(ξ, η)]

(2A+ 1)× (2B + 1)
(5.2)

σ′(x1, x2) =

(∑x1+A
ξ=x1−A

∑x2+B
η=x2−B [G(ξ, η; 0, w) ·Ψ(ξ, η)− µ′(x1, x2)]

2

(2A+ 1)× (2B + 1)

) 1
2

(5.3)

where 2A + 1 and 2B + 1, respectively, are the number of columns and rows
in the averaging window centered at (x1, x2); the function G is a zero mean
Gaussian distribution with a standard deviation w. We choose A, B, and w
to be a few pixels to perform a local Gaussian-weighted normalization for our
target problem (see section 6).

5.2. Histogram Matching

In addition, in order to correct the intensity spectrum differences between the
normalized learning projection Ψ′learning and the normalized target projection
Ψ′target, a function Fω on intensity achieving non-linear cumulative histogram
matching within the region ω of an object of interest is applied. To avoid having
background pixels in the histogram, the object region ω is determined as that
pixel set whose intensity values are larger than the mean value in the projection.
That is, Fω is defined by

Fω(Hf (Ψ′target)) ≈ Hf (Ψ′learning) (5.4)

whereHf is the cumulative histogram profiling function. The histogram matched
intensities Ψ?

target (see figure 5.1 (c)) can be calculated through the mapping:

Ψ?
target = Ψ′target ◦ Fω (5.5)

6. Experimental Setup and Clinical Context

We describe the experimental setups for evaluating the method and provide
some clinical context. Our target problem is IGRT (Image-guided Radiation
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(a) (b) (c) (d)

Figure 5.1: (a) A raw Cone-Beam CT (CBCT) projection (target projection), (b) a local
Gaussian normalized CBCT projection (normalized target projection), (c) histogram matched
CBCT projection (normalized and histogram matched target projection) and (d) a local Gaus-
sian normalized DRR of a Fréchet mean CT (learning projection) from a lung dataset. As
shown in the images, after normalization and histogram matching, the intensity contrast in
the target projection becomes closer to that in the learning projection.

Therapy). There the 3D image I is the planning CT (Computed Tomography),
and the target projection images Ψ are treatment-time imaging kV projections.
In particular, the kV projections are produced by 1) a rotational CBCT (Cone-
beam CT) imager or 2) a stationary NST (Nanotube Stationary Tomosynthesis)
imager specified in Maltz et al. [21]. Our method’s application to IGRT, called
CLARET (Correction via Limited-Angle Residues in External Beam Therapy)
Chou et al. [14, 15] has shown promise in registering the planning CT to the
treatment-time imaging projections. We describe the two treatment imaging ge-
ometries in section 6.1 and CLARET’s specialization for head-and-neck IGRTs
and lung IGRTs in sections 6.2 and 6.3, respectively.

6.1. Treatment Imaging Geometry

6.1.1. Cone-beam CT (CBCT)

A CBCT is a rotational imaging system with a single radiation source and a
planar detector, which are mounted on a medical linear accelerator. This pair
rotates by an angle of up to 2π during IGRT, taking projection images Ψ during
traversal (figure 6.1 (a)). A limited-angle rotation provides a shortened imaging
time and lowered imaging dose. For example, for a 5◦ rotation, it takes ∼ 1
second. In our CBCT imaging system, projections were shifted 16 cm to the left
for acquiring CBCT scans in a half-fan mode. Half-fan mode means that the
imaging panel (40 cm width by 30 cm height, source-to-panel distance 150 cm)
is laterally offset 16 cm to increase the reconstructed diameter to 46 cm. The
method’s linear operators can be trained for projection angles over 360 degrees
at 1 degree intervals beforehand at planning time. Then at treatment time the
method can choose the linear operator that is closest to the current projection
angle.

6.1.2. Nanotube Stationary Tomosynthesis (NST)

An NST is a stationary imaging system mounted on a medical linear accelera-
tor that can perform imaging without interfering with treatment delivery. As
illustrated in figure 6.1 (b), it consists of an arrangement of radiation sources
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arrayed around the treatment portal, together with a planar detector. The
geometry thus is fixed and known beforehand. Firing the sources in sequence
produces a different 2D projection image Ψ per source. Each projection image
requires ∼ 200 ms.

(a) (b)

Figure 6.1: (a) The 30◦ CBCT geometry: rotational imaging system with tomographic angle
θ = 15◦. The image detector is laterally offset for half-fan acquisition. (b) The NST geometry:
stationary sources arrays with maximum tomographic angle θ = 22.42◦

6.2. Head-and-neck IGRT

In head-and-neck IGRT, the use of an immobilization device allows very lit-
tle geometric difference between planning time and treatment time other than
a rigid transformation. Therefore, in the pre-registration learning, CLARET
samples clinically credible variations (±2 cm, ±5◦) in the Euler’s 6-space C to
capture the treatment-time patient’s motions. With a single planning CT I of
the patient the learning computed projections P(x, I ◦ T (C); θ) are generated
by transformation of those credible variations T (C) and projection from a given
tomographic angle θ to the transformed 3D volume I ◦ T (C).

In the registration, CLARET iteratively applies S multi-scale linear operators,
from M1 to MS to estimate the rigid transformation parameters from the 2D
intensity residues formed by the difference between the normalized target projec-
tions Ψ? and the normalized projections computed from the presently estimated
rigid transformation applied to the planning-time 3D image.

6.3. Lung IGRT

In lung IGRT, the respiratory motion introduces non-rigid transformations.
In the pre-registration learning stage, a set of 10-phase RCCTs (Respiratory-
correlated CTs) collected at planning time give the cyclically varying 3D images
{Jτ over the phase τ}. This image set is used to generate the deformation shape
space C. From these RCCTs, a respiratory Fréchet mean image J and the de-
formation φτ to J corresponding to the CT Jτ are calculated via an LDDMM
framework. See an example respiratory Fréchet mean image in figure 6.2 (c).
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(a) (b) (c)

Figure 6.2: (a) Planning CT at the End-Expiration (EE) phase (b) planning CT at the
End-Inspiration (EI) phase and (c) respiratory Fréchet mean CT generated via an LDDMM
framework from a lung dataset .

The deformation basis functions φpc are then generated by PCA analysis on the
deformation set {φτ over phase τ}. In Liu et al. [22], they have shown that a
shape space with three eigenmodes adequately captures 95% respiratory vari-
ations experienced at treatment time. See the first two principal deformation
basis functions in figure 6.3.

(a) (b)

Figure 6.3: The (a) first and (b) second principal deformation basis functions analyzed from
the RCCTs of a lung dataset. Colored lines indicate heat maps of the deformation magnitudes.
As shown in the images, the first principal motion is the expansion / contraction of the lung

and the second principal motion is along SI direction.
−→
X : Left to Right (LR);

−→
Y : Anterior

to Posterior (AP);
−→
Z : Superior to Inferior (SI).

To generate credible variations in the deformation space C for learning the linear
operator M, CLARET samples the largest scale of parameters by three standard
deviations of the scores appeared in the planning image set {Jτ over phase τ}
for each PCA-derived basis function. With the generated Fréchet mean image
J̄ = I the learning computed projections P(x, I ◦ T (C); θ) are generated by 1)
transformation based on those credible variations T (C) and 2) projection from
a given tomographic angle θ to the transformed 3D volume I ◦ T (C).

Before lung IGRT, the Fréchet mean image obtained at planning time is rigidly
registered to the treatment-time patient setup manually. During lung IGRT,
CLARET iteratively applies S multi-scale linear operators, from M1 to MS
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to estimate the scores C on the basis functions φpc from current 2D intensity
residues R. The residues are formed by the difference between the normalized
and histogram matched target projections Ψ? (see figure 5.1 (c)) and the nor-
malized projections (see figure 5.1 (d)) computed from the presently estimated
deformation applied to the Fréchet mean image.

7. Experiments and Results

We show CLARET’s rigid registration and non-rigid registration results in sec-
tions 7.1 and 7.2, respectively. In particular, we tested the rigid registration
using the NST imaging system for the head-and-neck IGRT and tested the non-
rigid registration using a CBCT imaging system for the lung IGRT.

7.1. Rigid Registration Results

We tested CLARET’s rigid registration by synthetic treatment-time projections
and by real phantom projections, as described in sections 7.1.1 and 7.1.2, re-
spectively. The registration quality was measured by the mean absolute error
(MAE ) and mean target registration error (mTRE ). The MAE in any of the
parameters of C is the mean, over the test cases, of the absolute error in that
parameter. The mTRE for a test case is the mean displacement error, over all
voxels in a 16×16×16 cm3 bounding box (the probable tumor region) centered
at the center of the pharynx in the planning CT I.

mTRE(I) =
1

χ

χ∑
i=1

‖I(yi) ◦ T (Ctrue)− I(yi) ◦ T (Cest)‖2 (7.1)

where χ is the number of pixels in the probable tumor region, yi = (y1, y2, y3)
is the tuple of the ith voxel position, and Ctrue, Cest are the true and the
estimated transformation parameters, respectively.

7.1.1. Synthetic Treatment Projections

We used noise-added DRRs (digitally reconstructed radiographs) of target CTs
as the synthetic treatment-time projections. The DRRs (see figure 7.1(a)) were
generated to simulate the NST projections with dimension: 128×128; and pixel
spacing: 3.2 mm (see figure 2.1). The target CTs were transformed from the
patient’s planning CT by taking normally distributed random samples of the
translation and rotation parameters within the clinical extent: ±2 cm and ±5◦,
respectively. The planning CTs are with a voxel size = 1.2 mm lateral × 1.2 mm
anterior-posterior × 3.0 mm superior-inferior. The number of imaging positions
was varied to find the minimum number with sub-CT-voxel accuracy in terms
of mTRE.

Zero mean, constant standard deviation Gaussian noise was added to the DRRs
to generate the synthetic projections. The standard deviation of the noise was
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(a) (b) (c)

Figure 7.1: (a) A raw DRR from a x-ray source in the NST (b) DRR with Gaussian noise
added (c) the NST geometry of two opposing x-ray sources

chosen to be 0.2 × (mean bony intensity - mean soft tissue intensity). This
noise level is far higher than that produced in the NST system. An example
synthetic projection is shown in figure 7.1(b).

We first studied how many projection images are needed for CLARET’s learn-
ing to obtain sub-voxel accuracy. The results on 30 synthetic test cases of a
head-and-neck dataset, displayed in figure 7.2(a), show that two projection im-
ages are enough for CLARET to have sub-CT-voxel accuracy. Figure 7.2(a)
also shows the method’s improving accuracy when more projections were used.
However, we note that redundant projections may contribute error in the pa-
rameter estimation. Therefore, the 4-projection geometry (figure 7.2(a)), which
uses the middle x-ray source on each imaging bank, produced the sufficient and
necessary projections that captured the simulated rigid motions. Figure 7.1(c)
shows the geometry of the two opposing x-ray sources that generated the two
projection images in the study. We note that the choice of opposing sources is
such that the maximum tomographic angle ( 22.5 degrees) is formed with the
NST system.

In addition, we studied the effect of the number of scales for CLARET learning.
Figure 7.2(b) shows that increasing the number of scales for CLARET learning
reduces the registration errors.

Table 1 shows the statistics of the errors in each rigid parameter from 90 syn-
thetic test cases generated from three patients’ planning CTs (30 cases for each
CT). In those test cases, CLARET performed registration using only the two
opposing NST projection images. See the geometry in figure 7.1(c).

(mm; ◦) Tx Ty Tz Rx Ry Rz mTRE

MAE 0.094 0.302 0.262 0.1489 0.0248 0.1540 0.524
SD 0.085 0.211 0.715 0.1093 0.0174 0.2824 0.728

Table 1: Mean absolute errors (MAE) and standard deviation (SD) of the absolute errors of
the six rigid parameters appeared in the 90 synthetic test cases where CLARET used two
synthetic NST projection images to do the registration.

13



(a) (b)

Figure 7.2: Boxplot results of errors in varying (a) the number of projections used and (b)
the number of scales used for CLARET’s rigid registration. Red dots are the outliers. In (a),
projections of equally-spaced sources were used.

7.1.2. Real Treatment Projections

We tested CLARET’s rigid registration on a head phantom dataset. NST pro-
jections (dimension: 1024× 1024; pixel spacing: 0.4 mm) of the head phantom
were downsampled to dimension 128×128 with a pixel spacing of 3.2 mm (figure
7.3(a)). The dimension of the planning CT is 512×512×96 with a voxel size of
3.43 mm3. The ground truth was obtained by rigidly registering all 52 NST pro-
jections to the planning CT by the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
optimization of the similarity metric in projection space.1 The initial mTRE
over the head region is 51.8 mm. With 4-scale learning (S = 4), CLARET
obtained a sub-voxel accuracy of 3.32 mm using only two projections in 5.81
seconds. It was computed on a 16-core laptop GPU (NVIDIA GeForce 9400m)
where the parallelization is limited. 32 times speed-up ( 0.18 seconds per regis-
tration) can be expected when using a 512-core GPU. As shown in figure 7.3(b)
and figure 7.3(c), CLARET is more accurate as more projections and scales
are used in its learning. The registration time is approximately linear with the
number of projections used.

7.2. Non-rigid Registration Results

We tested CLARET’s non-rigid registration with synthetic and real patient
cone-beam projections, as described in sections 7.2.1 and 7.2.2, respectively.
Respiratory-correlated CT (RCCT ) datasets (CT dimension: 512× 512× 120;
voxel size = 1 mm lateral × 1 mm anterior-posterior × 2.5 mm superior-inferior)
were generated by a 8-slice scanner (LightSpeed i, GE Medical Systems), acquir-
ing multiple CT images for a complete respiratory cycle at each couch position

1Results in Frederick et al. [23] suggests that 2D/3D registration accuracy is higher than
3D/3D registration accuracy for the NST geometry.
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(a) (b) (c)

Figure 7.3: (a) One of the testing NST projection of a head phantom. (b) Time plots and (c)
error plots of CLARET’s registrations on a real head-and-neck phantom dataset. Registrations
were accelerated on a 16-core laptop GPU (NVIDIA GeForce 9400m).

while recording patient respiration (Real-time Position Management System,
Varian Medical Systems). The CT projections were retrospectively sorted (GE
Advantage 4D) to produce 3D images at 10 different respiratory phases.

7.2.1. Synthetic Treatment Projections

We used DRRs of the target CTs as the synthetic treatment-time projections.
The DRRs were generated to simulate projections in a kV CBCT imaging sys-
tem (x-ray source and imaging panel) mounted on the gantry of the medical
accelerator (Varian Medical Systems). In the CBCT imaging system, projec-
tions were acquired in a half-fan mode, in which the imaging panel (40 cm width
by 30 cm height, source-to-panel distance 150 cm) is laterally offset 16 cm to
increase the reconstructed diameter to 46 cm. The target CTs were deformed
from the patient’s Fréchet mean CT by taking normally distributed random
samples of the coefficients of the first three eigenmodes of the deformation of
the patient’s RCCTs.

For each one of the 10 CLARET’s registrations, in our studies so far we used
a single simulated coronal projection (dimension: 128× 96; pixel spacing: 3.10
mm) at angle = 14.18◦ (see figure 5.1(d)) as the input. (Future studies will inves-
tigate the effect of this pixel spacing on the registration quality.) The registra-
tion quality was then evaluated by measuring the 3D tumor centroid difference
between the CLARET-estimated CT and the target CT. 3D tumor centroids
were calculated from their active contour (Snake) segmentations (Yushkevich
et al. [24]). As shown in Table 2, after registration CLARET can reduce more
than 85% of centroid error.

Case # 1 2 3 4 5 6 7 8 9 10

Before 8.23 21.33 21.78 20.05 9.86 10.24 10.92 15.72 14.87 19.91
After 1.30 0.78 1.52 3.33 0.75 1.31 0.45 1.57 2.07 2.72

Table 2: 3D tumor centroid error (mm) before and after CLARET’s registration for the 10
randomly generated test cases.
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We studied CLARET’s registration quality in average DVF (Displacement Vec-
tor Field) error over all cases and all CT voxels versus different angular spacings
for learning. In this study registrations using two projections with four different
spread angles were tested by 30 randomly generated test cases. Figure 7.4(a)
shows the average DVF error reduces with appropriately large angular spacings.
However, tumor motion or respiratory motion may not be visible or inferable in
projections from certain angles. For example, the tumor would be “occluded”
by denser organs (i.e., mediastinum). Therefore, in figure 7.4(a) the respiration
motion may not be inferable from the 9.68-angle projection and therefore that
projection contributes error in the parameter estimation.

We also studied CLARET’s registration quality by measuring the average DVF
error versus the number of projections used for learning. For each number of
projections, we also generated 30 random test cases. Figure 7.4(b) shows no
particular trend. As a result, we used a single projection to test CLARET’s
non-rigid registration for the real patient data in the next section.

(a) (b)

Figure 7.4: Boxplot results of errors in varying (a) the angular spacing and (b) the number
of projections used for CLARET’s non-rigid registration. Red dots are the outliers. In (a),
two projections for each test were used. For the zero-degree test case, only one projection
was used. In (b), DRRs spanning 9.68◦ about 14.18◦ were used in each test. For the single
projection test case, it was tested at angle = 14.18◦ (see figure 5.1(d)).

7.2.2. Real Treatment Projections

We tested CLARET on 5 lung datasets with the CBCT imaging system men-
tioned before (in a half-fan mode with 16 cm lateral offset). In this real patient
study, a single coronal CBCT projection (dimension: 1024 × 768; pixel spac-
ing: 0.388 mm) downsampled to dimension: 128 × 96 with pixel spacing: 3.10
mm at 14.18◦ (see figure 5.1(a)) at both the EE (End-Expiration) and the
EI (End-Inspiration) phases were used for CLARET’s testing. The Fréchet
mean CT was rigidly pre-aligned to the patient’s treatment setup manually be-
fore IGRT. We measured the 3D tumor (see figure 7.6(a)) centroid difference
between CLARET-estimated CT and the reconstructed CBCT at the same res-
piratory phase as the testing projection. For the Gaussian normalization, we set
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the RMS width of the Gaussian window to 31.98 mm for this imaging geometry
where CLARET yielded the smallest 3D centroid error for a lung dataset (see
figure 7.5). (Future studies will check whether this window size is also best for
other datasets.) The results shown in Table 3 suggest a consistency of registra-
tion quality between the synthetic tests and the real patient tests. The mean
and standard deviation of 3D tumor centroid errors after registration are 2.66
mm and 1.04 mm. These errors include an uncertainty in tumor position in
the CBCT projections, owing to variability in the manual segmentations in the
CBCT reconstructions, and residual tumor motion within the EE and EI phase
intervals. Based on repeatability measurements of the manual segmentations
and tumor motion analysis of the RCCT datasets, we estimate the standard
deviation uncertainty in manually determined tumor 3D position to be 1 mm.
The average computation time is 2.61 seconds on a 128-core GPU, NVIDIA
GeForce 9800 GTX. 4 times speed-up ( 0.65 seconds) can be expected when
using a 512-core GPU for acceleration.

Our clinical application requires improved tumor localization relative to none
at all. Assuming mean lung tumor motion extent of about 10 mm, the standard
deviation uncertainty is about one-third of the motion extent, or 3 mm. So
in order to improve on current clinical practice we need to achieve a standard
deviation uncertainty of 2 mm or smaller. Since most of the motion is 1D
in the inferior-superior direction, we would like to achieve 2 mm uncertainty
or smaller at least in the inferior-superior direction. CLARET achieves the
clinically desired accuracy where the mean and standard deviation of 2D tumor
centroid errors after registration are 1.96 mm and 1.04 mm.

CLARET reduces errors in the directions orthogonal to the projection direction
(coronal plane) more than those in the projection direction. As shown in Table
3, most of the percentages of the 2D error reduction (coronal plane error re-
duction), except cases from patient #1, are greater than those of the 3D error
reduction. This is expected because the single projection used communicates
tumor positions directly in the two dimensions orthogonal to the projection di-
rections but communicates tumor positions along the projection direction only
from perspective effects. For directions orthogonal to the projection directions,
CLARET can particularly accurately locate the tumor. See figure 7.7 discussed
in the next section.

Figure 7.6(b) shows the 3D meshes of the tumors in the mean CT, the CBCT
at EE respiratory phase, and the estimated CT of a lung dataset for visual
validation. As shown in the figure, CLARET moves the tumor up superiorly in
the lung from the mean image; this is expected physiologically for the EE phase.
Figure 7.7 shows the same 3-space lines in the mean CT, the reconstructed
CBCT at the EE phase and the CLARET-estimated CT of a lung dataset. The
fact that the lines pass near the tumor centroid in the CLARET-estimated CT
and results shown in Table 3 indicate that CLARET can accurately locate the
tumor in the directions orthogonal to the projection direction (coronal plane).
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Figure 7.5: 3D tumor centroid error plots on a lung dataset with varying sizes of the Gaussian
window used for CLARET’s local Gaussian normalization.

(a) (b)

Figure 7.6: (a) Manual segmented contours in the reconstructed CBCT at specific phase.
These were used for 3D centroid calculation. (b) Tumor meshes in the mean CT (gray), in
the target CBCT at the EE respiratory phase (blue) and in the CLARET-estimated CT (red)
of a lung dataset. The background is a coronal slice of the mean CT for illustration. The
overlap between the estimated and the target tumor meshes indicates a good registration.

8. Conclusions and Discussion

We presented a novel rigid and non-rigid 2D/3D registration method that esti-
mates an image region’s 3D motion/deformation parameters from a very small
set of 2D projection images of that region. Our clinical goal is to model not
only temporal changes in tumor position and shape (tumor tracking), but also
those for the surrounding organs at risk. In this context the volume of interest
is known to exhibit deformations (Mageras et al. [25], Rosu et al. [26]). The
method is based on producing limited-dimension parameterization of geometric
transformations based on the region’s 3D images. The method operates via
iterative, multi-scale regression, where the regression matrices are learned in a
way specific to the 3D image(s) for that patient. The synthetic and real test
results have shown our method’s promise to provide fast and accurate tumor
localization with a small set of treatment-time imaging projections for IGRT.
Faster registration is expected when uses a modern GPU for higher level of
parallelization.
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(a) (b) (c)

Figure 7.7: The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT at the
EE phase and (c) the estimated CT of the same lung dataset used in figure 7.6(b). Upper
row: lines locating the tumor centroid in the CBCT at the EE phase; lower row: lines locating
the diaphragm contour in the CBCT at the EE phase.

However, in order to obtain such registration accuracy, our method requires a
well-modeled motion/deformation shape space that includes all credible varia-
tions of the image region. In many radiation therapy situations for certain parts
of the body, collecting the required number of 3D images of the patient to form
the well-modeled shape space is not directly obtainable in current therapeu-
tic practice. Future work will investigate the possibility of modeling the shape
space through a patient population.

To make our method more robust for the IGRT application, future work will
also evaluate the method on more patient datasets and study the effects of
the projection resolution and the normalization window size on the registration
accuracy.
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