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ABSTRACT 

The Support Vector Machine (SVM) is a powerful tool for 
classification. We generalize SVM to work with data objects 
that are naturally understood to be lying on curved manifolds, 
and not in the usual d-dimensional Euclidean space. Such 
data arise from medial representations (m-reps) in medical 
images, Diffusion Tensor-MRI (DT-MRI), diffeomorphisms, 
etc. Considering such data objects to be embedded in higher 
dimensional Euclidean space results in invalid projections (on 
the separating direction) while Kernel Embedding does not 
provide a natural separating direction. We use geodesic dis
tances, defined on the manifold to formulate our methodol
ogy. This approach addresses the important issue of analyzing 
the change that accompanies the difference between groups 
by implicitly defining the notions of separating surface and 
separating direction on the manifold. The methods are ap
plied in shape analysis with target data being m-reps of 3 di
mensional medical images. 

Index Terms— Image classification, Image shape analy
sis. 

1. INTRODUCTION 

Classification plays an important role in statistical shape anal
ysis [1, 2, 3] of medical images. For example, brain disorders 
like Alzheimer’s and schizophrenia are often accompanied by 
structural changes. By detecting these changes, classification 
help in understanding differences between populations. 

Classification methods like Fisher Linear Discrimination 
(FLD) [4], Support Vector Machines [5, 6] and Distance 
Weighted Discrimination (DWD) [7] were designed for data 
which are vectors in Euclidean space and do not deal ex
tensively with data which are parameterized by elements in 
curved manifolds. See [8] and [9] for an overview of com
mon existing classification methods. Examples of data on 
manifold include m-reps [10, 11] and DT-MRIs [12]. 

SVM has been widely used in image analysis since it han
dles the issue of High Dimension Low Sample Size (HDLSS) 
reasonably well. Kernel Embedding [13] is another approach 
where the data are mapped to a higher dimensional feature 
space and the above mentioned Euclidean methods are ap
plied. SVM is known to be widely used along with Kernel 

Embedding. The drawback of this method is that the results 
are not interpretable since it does not provide a natural direc
tion of separation. This issue is addressed here by generaliz
ing SVM which naturally handles data on curved manifolds. 

The notion of separating hyperplane, fundamental to 
many Euclidean classifiers, is intractable to explicitly com
pute when generalized to arbitrary manifolds. The approach 
adopted here is to find control points on the manifold, which 
represent the different classes of data, and then define the 
classifier as a function of the distances (geodesic distances on 
the manifold) of individual points from the control points (see 
section 2). We thus bypass the problem of explicitly finding 
separating boundaries on the manifold. In 2.3.1, a choice of 
the control points is proposed which generalizes the SVM 
criterion for manifolds. 

This approach will enable us not only to use the method 
on our motivating example of m-rep data, but it is also ap
plicable for DT-MRI, and several other sciences like human 
movement, mechanical engineering, robotics, computer vi
sion and molecular biology where non-Euclidean data often 
appear. 

1.1. M-reps as Shape Descriptor 

The medial representation is based on the medial axis of Blum 
[14]. There is a medial manifold sampled over an approxi
mately regular lattice, the elements of which are called medial 
atoms. When a medial figure consists of n medial atoms, its 
parameters are naturally understood to be lying in the carte
sian product manifold {�3 ×�+ × S2 × S2}n [15, 16]. 

Fig. 1. Medial atom with a cross section of the boundary 
surface it implies (left). An m-rep model of a hippocampus 
and its boundary surface (right). 
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2. METHODS 

Here we extend the ideas of separating hyperplane and sepa
rating direction (which are the foundations of many Euclidean 
classification methods such as Mean Difference, FLD, SVM 
and DWD) to data lying on a manifold. Our solution is based 
on the idea of control points (and the geodesic distance of 
data from these control points), as described in the following 
section. 

2.1. Control Points and The General Classification Rule 

We think about control points as being representatives of the 
two classes. If we name the control points as c1 and c2, then 
the proposed classification rule fc1 ,c2 

(x) is given by 

fc1 ,c2 
(x) = d2(c2, x) − d2(c1, x), (1) 

where c1, c2, and x � M and d(·, ·) is the geodesic distance 
metric defined on the manifold M. This rule assigns a new 
point x to class 1 if it is closer to c1 than c2, and to class 2 
otherwise. 

2.2. The Implied Separating Surface and Direction of 
Separation 

The zero level set of fc1 ,c2 
(·) is the analog of the separating 

hyperplane, while the geodesic joining c1 and c2 is the analog 
of the direction of separation. Thus, the separating surface is 
the set of points which is equidistant from c1 and c2. If we 
denote the separating surface by H(c1, c2), we can write, 

H(c1, c2) = {x � M : fc1 ,c2 
(x) = 0} (2) 

= {x � M : d2(c1, x) = d2(c2, x)} (3) 

In d dimensional Euclidean space, H(c1, c2) is a hyper
plane of dimension d − 1 that is the perpendicular bisector of 
the line segment joining c1 and c2. Note that the Mean Differ
ence method is a particular case of this rule, where the control 
points are the means of the respective classes. 

2.3. Choice of Control Points 

Having set the framework for the general decision rule for 
manifolds the critical issue now is the choice of control points. 
For example, Fig. 2 shows that for the given set of data, 
the control points corresponding to the red solid separating 
boundary do a better job of classification than the pair cor
responding to the black dotted boundary. So, the key to the 
construction of a good classification rule is to find the right 
pair of control points. 

2.3.1. The Manifold SVM (MSVM) method 

MSVM determines a pair of control points that maximizes 
the mimimum distance to the separating boundary. While 

Fig. 2. Two pairs of control points showing their respective 
separating boundary and separating direction on the surface of 
the sphere. Different colors (with symbols) represent classes. 
The solid red surface (great circle) separates the data better 
than the dotted black surface. 

the SVM criterion has many interpretations, it is the max
imum margin idea that generalizes most naturally to man
ifolds where some Euclidean notions such as distance are 
much more readily available than others (e.g., inner product). 
MSVM appears to be the first approach where all calculations 
are done on the manifold. As in the classical SVM literature, 
yi denotes the class label taking values -1 and 1. 

The zero level set of the function fc1 ,c2 
(·) (defined in (1)) 

defines the separating boundary H(c1, c2) for a given pair 
(c1, c2). Also, let X�(c1 ,c2 ) denote the set (to handle possible 
ties) of training points which are nearest to H(c1, c2). 

We would like to solve for some c̃1 and c̃2 such that 

(c̃1, c̃2) = arg maxc1 ,c2 
min d(xi,H(c1, c2)) (4)

i=1...n 

In other words, we want to maximize the minimum distance 
of the training points from the separating boundary. 

It is important to note that the solution of (c̃1, c̃2) in (4) is 
not unique. In fact, in the d dimensional Euclidean case there 
is a d − 1 dimensional space of solutions. Therefore, in order 
to make the search space for (c̃1, c̃2) smaller we propose to 
find (c̃1, c̃2) as 

(c̃1, c̃2) = arg max(c1 ,c2 )�Ck 
min d(xi,H(c1, c2)) (5)

i=1...n 

where, for a given k > 0, 
Ck = {(c1, c2) : ŷc1 ,c2 

fc1 ,c2 
(x̂(c1 ,c2 )) = k} (6) 

and, 
x̂(c1 ,c2 ) = arg min

x�X�(c1 ,c2) 
fc1 ,c2 

(x) (7) 

and ŷc1 ,c2 
is the class label of x̂(c1 ,c2 ). 

In Euclidean space, note that the distance of any point x 

from the separating boundary H(c1, c2) is 

fc1 ,c2 
(x)

d(x, H(c1, c2)) = 

���� 
���� (8)

2d(c1, c2) 



Therefore, using (5) - (8), and the fact x̂(c1 ,c2 ) is one of the Fig. 3 shows the performance (training error (left panel) 
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(�)too close to the separating boundary. The parameter � is 
called the tuning parameter. For large �, the training error 
(proportion of misclassified training data) tends to decrease. 
But increasing � indiscriminately tends to result in overfitting. 
This tradeoff is reflected by the cross-validation error (pro
portion of misclassified test data), which initially decreases, 
but increases when � becomes large enough that the error is 
driven by overfitting. A sensible choice of � is one which has 
low value of the cross-validation error. 

3. RESULTS 

In this section, we compare the performance of MSVM with 
two other methods. Method (a) is Euclidean SVM on a single 
tangent plane (with the overall geodesic mean as base point). 
We will call this method TSVM. Method (b) is called Geodesic 
Mean Difference (GMD), attained by choosing the control 
points as the geodesic means of the respective classes. 

In our experiment, several values of the tuning parameter 
� (� = 15k, k = 0, . . . 7) are considered for each of MSVM 
and TSVM. The choice of the base 15 for � is not set in stone: 
we choose it as a reasonable compromise between coverage 
of a large range for � and the number of grid points. 

3.1. Application To Hippocampi Data 

This data consists of 82 m-rep models (of Hippocampi), 56 of 
which are from schizophrenic individuals and the remaining 
26 are from healthy control individuals (see [17]). Each of 
these models has 24 medial atoms, placed in a 8 × 3 lattice 
(see Fig.1). 

3.1.1. Training Error and Cross Validation Error 

We conduct the simulation study in the following way. For 
each run we randomly remove five data points from the pop
ulation of 82 and train our classifiers (for each �) on the re
maining 77 data points and test on the remaining five. Aggre
gating over several simulated replications, the training error 
and the cross-validation error are calculated. 

Fig. 3. Left: Training Errors against cost log15 �. Right: 
Cross-validation Errors against cost log15 �. Cross-validation 
error for MSVM is robust to the choice of �. 

From Fig. 3, we see that MSVM (� = 1) has train
ing error either very close to GMD or substantially smaller. 
On the other hand, for small values of � the training error of 
TSVM is much higher. MSVM fails to attain a training error 
of zero while TSVM acheive zero training error (at � = 155 

or higher). But this could be due to overfitting by TSVM, and 
this idea is validated by the increased cross-validation error 
for high � values. 

We note that the cross-validation error TSVM is sensi
tive to the choice of �, i.e., a good choice of � appears to be 
critical. In contrast, MSVM is much more robust against the 
choice of �. In particular, the fact that the cross-validation of 
MSVM is much more stable for high values of � is promising. 
MSVM attains the minimum cross validation error of all the 
methods at � = 152 . 

3.1.2. Shape Change Between The Two Groups 

In our context, the rule that best shows structural change in 
the hippocampus is the most valuable. The structural change 
captured by each method is shown in Figure 4. For each clas
sification rule (at the � which has the least cross-validation 
error), we project the data points on to direction of separation. 
The mean of the projected data is calculated. The projected 
data points with the lowest and highest projection scores give 
the extent of structural change captured by the separating di
rection. The objects in the left are the projected shapes with 
the highest score, and on the right, with the lowest score. The 
colormap shows the surface distance maps of the mean (of 
projected data points) and projected shapes. 

Fig 4 shows that GMD represents a large structural 
change. But its relevance is questionable because of its 
poor discriminating performance (Fig. 3). GMD shows a 
lot of structural change, but it fails to isolate the important 
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Fig. 4. Diagram showing the structural change captured by 
the different methods. Red, green, and blue are inward dis
tance, zero distance, and outward distance respectively. 

features which actually separate the two groups. Among the 
other methods, MSVM captures the change most strongly. 

4. DISCUSSION 

In this article we attempt to generalize SVM so that it can 
handle data on manifolds. The method was applied to m-rep 
models of hippocampi and compared with other approaches. 
The results were encouraging. It seems that by virtue of work
ing on the manifold (and not a tangent plane, like TSVM), 
MSVM provides a good balance of classifying power and in
formative separating direction. TSVM hardly captures any 
change. This could be related to overfitting where the sep
arating direction feels the microscopic noisy features of the 
training data and thus fails to capture the relevant structural 
changes. 

One could argue for comparing the method with the “ap
propriate” Kernel Embedding approach. It should be recalled 
that such an approach will not produce interpretable pro
jected m-reps (necessary to analyze the difference between 
the groups) and thus we are not interested in them. The pos
sibility of doing Euclidean SVM on multiple tangent planes 
has not been explored here, but it can be an area of research. 
We believe this is one of the first attempts to do classification 
working on the manifold and preliminary results suggest that 
this approach identifies a meaningful separating direction. 
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