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Abstract 

Learning probability distributions of the shape of anatomic structures requires fitting shape 

representations to human expert segmentations from training sets of medical images.  The quality of 

statistical segmentation and registration methods is directly related to the quality of this initial shape 

fitting, yet the subject is largely overlooked or described in an ad hoc way.  This paper presents a 

set of general principles to guide such training.  Our novel method is to jointly estimate the shape 

distribution and the best geometric model for any given image by iteratively relaxing purely 

geometric constraints in favor of the converging shape probabilities as the fitted object converges to 

its target segmentation.  These geometric constraints are carefully written to obtain non-self-

interpenetrating shapes and to impose the model-to-model correspondences required for useful 

statistical analysis.  The paper closes with example applications of the method to synthetic and real 

patient CT image sets, including same patient male pelvis and head and neck images, and cross 

patient kidney and brain images. 

 

1. Introduction 

Our target application, adaptive and image-guided radiotherapy (ART [1], IGRT [2]), requires a 

framework for accurately mapping anatomical objects from inter-fractional images into the same 

coordinate system as the planning or other reference image.  Current research activity is aimed at 

developing practical and reliable methods for space –filling non-rigid mapping [3,4,5,6,7,8] to 

overcome the shortcomings of current clinical methods based largely on rigid registration.  This 

work focuses on the framework required for probabilistic image segmentation as a means for 

automatically computing non-rigid mappings.  Probabilistic segmentation can also provide a basis 

for image guided surgery (e.g., [9,10]) and diagnosis [11]. 
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Probabilistic segmentation is based on understanding the shape variability of the anatomic 

structures found in medical images.  Robust probability density estimates of shape have been shown 

to be effective for object-based methods of probabilistic segmentation [9,12,13] for two reasons: 1) 

their relatively low dimensionality allows us efficiently to compute optimal solutions, and 2) the 

optimal solutions yield anatomically credible objects.  Geometrically legal space-filling non-rigid 

mappings can be derived from differential equations (e.g., optical flow [14,15], elastic flow [16], 

visco-elastic flow [6,17,18] or finite-element models [19,20]) and then reduced to lower dimension 

for statistical analysis by means of control points or decomposition via basis functions.  However, 

these methods cannot be restricted to credible shapes because one must trade off spatial resolution 

with the fact that the extremely high dimensions prevents learning the feature space of credible 

shapes from the limited number of training cases available [21]. Furthermore, while these methods 

have been applied to images with similar topology such as brain or inter-fractional or 4D scans, they 

have not been shown to be applicable to cross-patient images.  This paper therefore restricts its 

attention to models of one or more anatomic objects, e.g., of their surfaces or skeletons. 

The method presented here is based on statistical deformable shape models (SDSMs), which are 

object-based parametric shape model that characterizes shape changes relative to a “typical” 

instance.  The typical shape usually is taken to be the mean shape, and relative changes are encoded 

as a limited number of important eigenmodes of shape variability.  Using an SDSM, any particular 

shape in the space defined by the training set can be completely and uniquely identified by a few 

coefficients to within some small truncation error.  Once trained, SDSMs can be used as the basis of 

numerical methods for shape discrimination, comparison, and interpolation, for longitudinal shape 

studies [11], and for deformable image segmentation and registration [22, esp. 23,24].  (See [25] for 

a recent summary of clinical applications of both space filling and shape based image registrations.) 

Fig. 1 diagrams the process of training and use of the estimated probability distributions on the 

object(s). This paper is concerned with defining a framework for fitting parametric models to 

training images while maintaining credible, legal shapes with locational correspondence across the 

training population. 
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Fig. 1.  The process of training and using probability distributions on object shapes in clinical applications. The 

step outlined in bold, fitting training images with parametric models as input to statistical analysis, is the main 

subject of this paper. 

 

 

Fig. 2.  Fitting a statistical deformable model to a target training image.  (Top) 3D surface views and (bottom) 

single sagittal slice views of bladder template geometry (left) coarsely aligned to a target training image, (middle) 

deformably fit to that image, and (right) in the context of the actual grayscale data. 

 

We consider shape training as a special case of Bayesian image segmentation [26].  In SDSM-based 

segmentation, a starting shape is initialized to a target image and automatically deformed based on 

the eigenmodes of shape variation to optimally match the image data, as illustrated in fig. 2.  The 

deformation is driven numerically through the SDSM parameter space by minimizing an objective 

function including a term reflecting the probability of the deformed shape and a term measuring 
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how well the shape matches the image.  However, by using a shape parameterization that supports 

reasonable physical deformations, it is possible to define purely geometric conditions which 

establish and maintain legality and the locational correspondence over the training population we 

need to compute correct statistics.  After the training population has been fit, these first-round shape 

estimates are used to compute coarse statistics. The training images are then refit about a new mean, 

relaxing the purely geometric constraints as the shape statistics are iteratively refined.  This 

recomputation of an atlas, unbiased to a particular subset of the training instances, by computing a 

successively better estimate of a mean as the fits improve is comparable to the iterative computation 

of a Fréchet mean and fits to it used in the non-rigid registration framework [18,27]. However, in 

our method not only the mean but also the variability is being recomputed at each iteration. 

Our automatic method for shape training has been applied to a variety of anatomic structures 

from both synthetic and real 3D medical images, such inter-fractional and cross-patient male pelvis, 

inter-fractional head and neck, and cross-patient brain and kidney images.  Whereas inter-fractional 

SDSMs cover day-to-day anatomic shape change, such as the bladder filling and emptying, etc., 

cross-patient SDSMs must be able to account for much broader anatomic shape variability, such as 

how prostates differ in both shape and relationship to the neighboring bladder, rectum, and pubic 

bones from patient to patient. 

 

 

2. Method 

Extraction of shape representations of training cases has been accomplished in the following ways 

for the boundary-only shape models that are common in the statistical shape analysis literature. For 

these, the model is intiialized  by sampling the boundary voxels of each training sample to produce 

a non-folding tiled surface. Then each case’s surface is reparameterized to give correspondence 

according to geometric, mechanical, or local image properties.  As examples, [28] uses no image 

match grounds, but requires a regular sampling with tight geometric distributions.  Active 

appearance models [12,29] require both a tight geometric distribution as well as similar local image 

intensities.  The training method used in [30,31] reparameterizes the sampled surface according to 

an orthogonal decomposition based on spherical harmonics, then resamples the surface at locations 

corresponding to equally-distributed points on the parameterizing sphere in that framework.  [32] 

uses a finite element model to track voxel correspondences for a retrospective dose study.  [33] 
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describes parametric topological constraints for active contour models (snakes) [24,34] or active 

shape models.  Many of these approaches can obtain good results, but none directly constrain their 

shape statistics to the generation of only credible shapes or, for most, even of non-self-

interpenetrating shapes. 
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Fig. 3.  A detailed view of our method for the training step shown in fig. 1.  Shapes are fit to the training images 

iteratively according to a binary image segmentation algorithm, with purely geometric terms relaxed in favor of 

converging group statistics.  See Appendix I for a summary of the discrete medial representation and principal 

geodesic analysis. 

 

To obtain correspondence while maintaining a space of credible objects, our process is designed as 

a special case of binary image segmentation within the probabilistic segmentation framework.  The 

goal of our training process is therefore to jointly estimate both a parametric shape space that covers 

the organ shape over all n images, and at the same time to obtain the best set of corresponding 

descriptors of parametric models for each organ in each image.  As illustrated in fig. 3 and 

overviewed in algorithm 1, in this framework an energy function composed of internal geometric 

forces and external image match forces is optimized over a shape space.  Typically this space comes 

from the trained probability distributions, but in their absence, we rely on a shape parameterization 

that supports reasonable physical changes and a carefully written internal geometric term to 

constrain possible shape changes. 

The parameterization that we use is a discrete medial representation called m-reps, although the 

ideas can be generalized to other SDSMs with a well defined volumetric coordinate system and an 

explicit encoding of volumetric legality.  See Appendix I for a summary of m-reps [12] and its 
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governing statistical model, principal geodesic analysis [35].  Since m-reps capture not only 

positional information (i.e., of the skeleton and the implied boundary) but also orientational 

information (of spokes between the skeleton and the boundary), the parameterization handles 

plausible physical changes such as local twisting and bending in a way that can be easily captured 

by the statistical model.  Further, we can leverage differential geometry directly in our legality term 

to enforce non-self-interpenetration. 

 

 

Algorithm 1:  Iteratively Training Models of Shape Variability 

 

Input:  IIII, a collection of image segmentations i defining geometric truth 

 

1. Ro = HandFit( i in IIII s.t. i is reasonably typical )    

2. Until difference(Rk,Rk+1) < convergence error: 

2.1. For each i in IIII: 

2.1.1. Find mi s.t. mi = Arg Min(sim trans of Rk) Energy(Rk,i)  

2.1.2. Find mi s.t. mi = Arg Min(global deformations of Rk) Energy(Rk,i) 

2.1.3. Find mi s.t. mi = Arg Min(local deformations of Rk) Energy(Rk,i) 

2.2. (Rk+1, Shape stats) = Principal Geodesic Analysis( MMMM={mi} )  

 

 

This method section of this paper is organized to follow fig. 3. After discussing the inputs to the 

process in section 2.1, we describe the initial model-to-image alignment in section 2.2.  The energy 

function is overviewed in 2.3, the internal geometric term is explained in 2.4 and the external image 

term is explained in 2.5.  The iterative optimization framework is described in 2.6.  Algorithm 1 

gives an additional overview of the method.  A major contribution of this paper is the iterative 

fitting of models and shape probability estimation indicated in step 2 of algorithm 1. Additional 

novel contributions are describing the principles and design of shape terms for the energy function 

used in steps 2.1.1-2.1.3 that maintain object correspondence and legality during the training fitting, 

and describing the iterative shape estimation where purely geometric terms are relaxed as shape 

statistics become available.  
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2.1 Materials 

 

For inter-fractional shape study, our method begins with a collection of CT scans from a single 

patient over the course of a multi-day treatment regimen.  Typical images are 512×512×40 voxels in 

dimension and have 1×1×3 mm voxel resolution.  The CT images include both treatment and non-

treatment organs.  Between 12 and 18 scans are collected for inter-fractional studies.  Other studies 

have slightly different image characteristics, but the method remains the same; details are given in 

the results section for the various case studies presented. 

Expert raters segment structures of interest in each image by drawing contours of target and 

non-target organs on transaxial slices.  Methods to generate ground truth from these segmentations 

comprise a separate area of research beyond the scope of this paper [36].  Because the quality of the 

manual segmentations is critical to the quality the derived model, at the present time we train 

against individual raters whose segmentations have been reviewed and, if necessary, edited by other 

experts.  Precautions are taken to control for intra-rater variability across images of the same 

patient.  For example, segmentations from one image are transferred to the next, coarsely registered 

with the corresponding objects, and then edited to match the objects in that day’s image. Moreover 

the prostate volume is not allowed to change from day to day. Based on anecdotal evidence these 

precautions are believed to control for random variations that would be observed when segmenting 

each image de novo.  The segmentations are then scan-converted to a label image per organ.  These 

label images have the same extent and resolution as the source images, but all voxel values are set 

to either 1, if that voxel is inside or on the segmentation's boundary, or 0 otherwise.  Throughout 

this paper, we will refer to these per organ label training images as the set I1-n, where n is the 

number of images in this population. 

 

 

2.2 Initialization 

 

Our training process starts by hand manipulating a model to be modestly representative of the shape 

we are attempting to train.  This typical shape is the presumptive geometric template for the shape 

space, R0.  R0 is our reference shape, from which all other shapes will initially be derived and 

relative distances measured.  As long as the initial model has sufficient sample resolution and 

correct topology (e.g., tubes for vessels, a bent blob for kidney, a multi-blob figure for liver), our 
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method converges for even arbitrarily poor starting models such as a generic slab.  However, it is 

quite clear that the quality of the SDSMs we compute and the speed of convergence is directly 

related to the input quality at each step, making a good initial shape estimate particularly important. 

Using R0 as a coordinate system governing our region of interest, we can identify in R0 a set of 

model-centric landmarks, LM, which we wish to keep explicitly in correspondence to within some 

tolerance throughout the training population.  These LM correspond to a set of explicitly identified 

anatomic features, LI, landmarks noted by the raters on the segmentations they manually produce.  

For example, when training a prostate shape model, we use posterior and anterior poles and the 

urethral entrance and exit.  Although we typically use only surface points as landmarks, our shape 

parameterization provides a volumetric model-centric coordinate system, which allows landmarking 

of positions both inside or on the object, such as the opening of the prostatic urethra, and outside the 

object, such as the nearest boney landmark to the prostate. 

 

 

Fig. 4.  An image landmark identified at the tip of a segmentation with (left) large tolerance and (right) a  tighter 

tolerance. 

 

The initial step in fitting R0 to a particular label image is then to align R0 to the image according to 

the landmark pairings LM to LI.  This alignment can remove global transformations such as 

translation, scale, or rotation from the shape-space we are attempting to estimate.  The more tightly 

aligned the training cases are to each other, the more tightly the geometric template will be able to 

fit the data, and the more representative the derived statistics of deformation will be.  We have 

explored a variety of methods for designating this initial alignment: we frequently use a Procrustes 

similarity transform, although with some highly variable objects, we could use an affine transform.  
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And one could imagine integrating even more complex non-linear landmark based registrations 

such as [37,38], but then the probability distributions would not be describing these shape changes. 

In the absence of explicit landmarks, implicit landmarks from curvature or other derived properties 

may be computed.  For simple synthetic objects, it is sometimes sufficient to align the centroid, 

volume, and orientation of R0’s surface to by similarity transform to the image moments of the 

binary training image. 

 

 

2.3 Defining the Energy Function 

 

The best deformation of R0 into each training image is computed numerically, by optimizing model 

parameters according to a metric that measures the goodness of a model, M, fit to a given image, I.  

This energy metric normally consists of two terms, an “external” image match term and an 

“internal” geometric typicality term.  This division can be theoretically founded in probabilistic 

terms.  We seek M = Arg MaxM p(M|I), i.e., the model with the greatest probability density given 

the image.  This formulation is frequently called the posterior density, so the method is called one of 

posterior optimization [26].  An application of Bayes rule together with an application of the 

logarithm to both sides of the equation and removing terms that are constant in M yields M = Arg 

MaxM [log p(M) + log p(I|M)].  log p(M) then measures the geometric typicality, and log p(I|M) 

measures the image match. Other choices for these two terms are possible; but if one assumes 

Gaussian distributions, it is natural to use squared distances as proxies for log p since the log of a 

normal distribution is linear in a squared distance.  The remainder of this section describes how we 

go about designing the distance terms that are minimized in our energy function. 

 

 

2.4 Internal Geometric Energies 

 

Without statistics, estimating shape likelihood requires approximations specific to the 

characteristics of the underlying parameterization.  The essential problem is that the underlying 

parameter space from which the models are drawn is much larger than the shape space that we are 

trying to cover.  Therefore, we restrict the models generated during training to a compact and legal 
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subspace where we are confident that features are in correspondence across the training population.  

To this end, we impose three purely geometric conditions on the posterior. 

First, we impose a penalty against nonuniformity of samples, i.e., irregularity in the discrete 

medial grid.  Second, we use a legality measurement based on differential geometry to identify and 

prevent local self-intersections.  And third, we penalize shapes that are not near the presumptive 

mean. In addition, in recent trials a reward for model smoothness has been shown to be of use. 

 

 

2.4.1 Sampling Control 

Establishing feature correspondence across the training population implies that there is a unique set 

of parameters that best describes each training case.  However, it is possible to find two quite 

different models that have nearly the same image match in I, so we differentiate them by 

establishing an additional geometric criterion.  As an example, there are many possible cubic 

approximations to a given function, but by preferring certain end conditions, we can identify a 

unique "best" approximating function. 

 

 

Fig. 5.  A medial mesh (thick lines) and implied surface (thin lines) with a (left) high nonuniformity penalty and 

(right) low nonuniformity penalty.  Meshes with high irregularity may imply similar surfaces as more regular 

meshes, but can result in qualitatively inferior results and break our volumetric correspondence assumptions. 

 

In our case, we want a unique and legal “best” model to represent a given training image.  That is, if 

shape models M and O both represent the same data, we need that M ≈ O.  Otherwise, the 

correspondence requirements will not be met.  The geometric criterion that we use to distinguish 

medial sheets with similar implied boundaries is the uniformity of the medial grid.  Medial sheets 

with samples bunched together form difficult to interpolate configurations that poorly capture the 
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object.  Following the Markov assumption that the likelihood of a sample conditioned on the model 

is the same as the likelihood of the sample conditioned on its neighbors, we define nonuniformity as 

a function of the agreement between any sample and the expectation of its neighbors.  The total 

nonuniformity of the model is the sum of such sample agreements.  Since we are producing a 

dissimilarity term, Nonuniform(M) is actually defined as the distance 2d ( , )M M , where M = M 

smoothed by a low-pass filter.  As a side effect, this definition of smoothness also tends to act as an 

ad hoc enforcement for shape legality.  Fig. 5 shows an example of uniform and nonuniform 

organizations of medial samples. 

In particular, in order to define regularity of a sampled medial representation, we use the 

Riemannian distances and means as described in Appendix I.  We define M  as the model such that 

each medial sample m  is the distance-minimizing Fréchet mean of its neighboring samples.  

Practically, using our parameterization, M  is a curvature minimizing medial sheet with regularly 

spaced samples.  Nonuniform(M), the distance between M and its smoothed M , can be reduced and 

rewritten as (1). 

2

Neighbors( )

( ) ~ d ( , )
i j i

i j

m M m m

Nonuniform M m m
∈ ∈

∑ ∑  (1) 

This simple function, which essentially normalizes volume per respective medial sample point is 

suitable to our parameterization because medial representations inherently imply desirable types of 

correlated surface deformation such as bending, twisting, and magnification. 

 

 

2.4.2 Legality 

Correspondence assumptions can also be undermined by illegal shapes.  As we perturb the model 

parameters to find the best fit to a segmented image, the model's surface may fold or develop self-

intersections.  Medial representations have very precise analytic forms for computing shape legality 

on the medial manifold [39].  The largest eigenvalue of the radial shape operator yields a legality 

measure at every sample point with a well defined threshold for identifying folded surfaces [40].  

As we narrow down the shape space during the fitting procedure, we tend to relax Nonuniform() 

and rely more on the legality measure.  Similar smoothness and legality functions can be 

mathematically derived for other shape representations specifying local orientations. 
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The penalty for illegality for any medial sample is set to zero when the largest eigenvalue of the 

radial shape operator is nonnegligibly less than its threshold. Then it rises first slowly and then 

sharply as that eigenvalue passes its threshold. The overall penalty is the sum of the penalties of the 

samples. 

 

 

2.4.3 Reference Model 

Given a space full of possible shapes, we desire to identify the mean shape and expand our shape 

model about it.  Under Gaussian assumptions, given a mean and the variances of the principal 

directions of deformation, this method provides a shape-normalized Mahalanobis distance from any 

particular shape to the mean shape.  Using this as the geometric prior in optimization tends to keep 

the candidate models clustered near the mean where our statistical shape model is most likely to be 

valid. 

However, with limited a priori knowledge, we use our initializing model R0 as a tentative 

reference point for the shape space.  In the early iterations of model fitting we assume an isotropic 

shape probability distribution, i.e., that the difference between two shapes is measured only by a 

weighted Euclidean distance, we can estimate a geometric prior as the Riemannian model-to-model 

distance between a candidate model, M, and R0, with distance defined as in the previous section. 

2Reference( , ) ~ d ( , )
∈

∑
i

i i

m M

M R m r  (2) 

As both of the geometric penalties, Nonuniform() and Reference(), are in the form of a distance, 

they can equally be thought of as log probabilities on Gaussian distributions in the feature space.  

Taken together with the illegality penalty, they comprise the internal geometric energy in our 

optimization metric. 

 

 

2.5 External Image Energies 

 

The external image terms of the energy function measure how well the model’s surface fits the label 

image.  This is measured in two terms, one that computes distances between specific landmark 

points in the model to corresponding landmarks identified in the image, and another that computes a 
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general surface-to-surface distance between the model surface points and the nearest boundary 

voxel in the label image. 

 

2.5.1 Landmarks 

The landmarks identified automatically or manually in section 2.1 require an explicit expression in 

the metric in order to prevent them from drifting out of alignment during optimization.  We assume 

that the model coordinate landmarks should be normally distributed about the landmarks identified 

in the image, that is, the model landmarks have the distribution N(LI,ρ
2
), where ρi is the standard 

deviation, i.e., tolerance, for the ith landmark.  Because the log probability of N(LI,ρ
2
) is simply ρ

-2
 

d
2
(LI,LM) with d

2
 the standard Euclidean square distance, we can express the error in landmark 

match as (3). 

21
Landmark( , ) ~ d ( , )

i

i i

lm LM i

LM LI lm li
ρ∈

∑  (3) 

 

2.5.2 Binary Image Match  

 

The image match term is computed as the sum of squared distances between the boundary voxels, 

B, of the label image, found using a six-connected neighbor test, and the continuous boundary 

surface, Ω, implied by a candidate model M (see Appendix I).  This is equivalent to thinking of each 

surface point or boundary voxel as an equally weighted landmark corresponding to its nearest point 

in the other set. 

Ideally we desire to measure two terms, the distance from each member of Ω to the closest 

voxel in B, denoted d
2
(Ω,B), and the distance from each member of B to the closest surface point on 

Ω, denoted d
2
(B,Ω), which are not equivalent.  The distance d

2
(Ω,B) can be computed fairly quickly 

across many candidate models because the label boundary remains static over all the trials.  We 

generate a single space filling lookup table for distance from the label boundary by a modified 

anisotropic version of Danielsson's algorithm [41].  Trilinear interpolation gives a very fast measure 

of the distance at any point in space to the closest boundary point on B.  Discrete samples ω are 

taken arbitrarily densely from each candidate Ω and we then let d(ω,B) be the lookup of the position 

of ω in the distance map. Integrating over all surface samples gives 2 2d ( , ) d ( , )B B
ϖ

ϖ
∈Ω

Ω =∑ . 
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The inverse distance d
2
(B,Ω), however, is computationally exorbitant given the finely sampled 

subdivision surfaces required for accurate matches and the large number of candidate surfaces 

generated for optimization.  However, simply ignoring this part of the term can lead to undesirable 

results in areas of high curvature.  In these areas, the d
2
(B,Ω) distance-minimizing Ω tends to be 

more volume filling than the minimizer of the d
2
(Ω,B) distance.  Our solution is to compute the 

d
2
(B,Ω) distance at only a minimal number of points where we would expect large distance 

asymmetries.  We identify such points on Ω by computing the angle between the gradient of the 

distance map and the surface normal.  If the angle is greater than a threshold, we compute a new 

distance along the surface normal at that point as can be seen in fig. 6.  With θ
2
(x,y) as this modified 

minimum distance function, then our data likelihood term can be expressed as in (4). 

2Image( , ) ~ ( , )
i

iM I B
ω

θ ω
∈Ω

∑  (4) 

  

 

Fig. 6.  A slice from a distance map and a suboptimally fit surface illustrating θ.  The light gray lines show the 

distance map gradient direction; dark gray lines show the surface normal direction. 

 

This modified distance map method is dramatically faster and produces superior results to the 

standard approach of understanding binary images using local edge detectors, such as the derivative 

of Gaussian filter.  While edge detectors are a logical extension of the model-to-image match as it 

would be computed in a grayscale image, they suffer from significant problems with capture range 

and orientation. 

An additional advantage to using a medial parameterization for M is that M and B are strongly 

related according to morphological erosion.  To fit models to images with structures that are only a 
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few voxels in thickness, we can fit an initially dilated model to a dilation of the labeling, and then 

contract the model surface by the same amount by an inverse scaling of the thickness parameter.  As 

seen in fig. 7, this morphologically closed model approximates the thin object much better than is 

possible otherwise. 

 

 

Fig. 7.  Two candidate model meshes compared to tiled surface of a segmentation of the thin masseter muscle in 

the neck.  The mesh on the right has been fit naïvely; the better fitting mesh on the left has been fit to a dilated 

image and then contracted. 

 

In the Bayesian framework, the image term, P(I|M) is the probability that the surface of the model is 

in alignment with the boundary voxels of the segmentation.  The landmark and binary image match 

energies we describe can be thought of as the log probabilities of a joint distribution and added 

together into the optimization metric. 

 

2.6 Optimization Framework 

 

We now have an initial geometric template, R0, that has been coarsely aligned to the image and a 

well defined non-statistical objective function which has as its minimum a model configuration 

which should be both well fit to the target image and qualitatively similar to other models fit to 

other images of the population.  Our process is then to deformably fit each image in the training 

population about R0.  The mean of the population of the fit models, R1, is computed along with an 

estimate of the principal modes of deformation.  The population is then refit iteratively about R until 

R converges to a suitable mean of the training population when Ri-1 ≈ Ri. 
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Each step of the iteration is a search for the error minimizing M, with error, E, computed via our 

complete dissimilarity metric, that is, the sum of (1-4) and the Legal() term described in 2.4.2, using 

α, β, δ, and γ as relative weighting factors. 

Landmark ImageMatch ReferenceE Nonuniform Legalα β δ γ= + + + +  (5) 

Our optimization engine uses a conjugate gradient descent [42].  Because conjugate gradient search 

performs best given a relatively isotropic global minimum, some experimentation is required to fine 

tune the weighting factors to new shape studies.  These weighting factors are essentially scaling 

between the Euclidean voxel-space distances and the Riemannian sample-space distances. 

 

 

Fig. 8.  A mean bladder (darker upper object) and its first two principal modes of deformation relative to the 

mean prostate (lighter lower object).  These two modes of deformation together cover over 65% of the shape 

variability across the 18 images of this patient. 

 

Before we have modes of shape change, we assume that samples can move about freely in their 

feature space, restricted only implicitly by the distance metrics in the geometric constraints.  After 

the first round of fitting, we can compute intermediate shape statistics by looking at correlations in 

feature relationships across the training samples.  For boundary models with implicitly Gaussian 

distributions, [12] proposes using principal component analysis, which relies on the eigenstructure 

of the feature covariance to describe correlated shape change.  [43] gives a relevant example of 

applying PCA to anatomic shape variability.  M-reps and other representations with explicit 

orientational components cannot use PCA because distances between features that encode 

orientation and scale are not Euclidean.  These representations are governed by a generalized PCA 

known as principal geodesic analysis (PGA) [35].  As with PCA, an observation matrix relating 

measurements of corresponding features across the training population is formed and the covariance 
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of the observation matrix is computed and diagonalized.  However, the non-linear orientation and 

size terms of our feature vectors are first mapped onto a tangent plane fit locally to the Fréchet 

mean of the shape space, R.  The eigenvectors of the system orthogonal basis of correlated feature 

changes which are projected back into the non-linear feature space and imply correlated surface 

deformations such as those shown in fig. 8.  This basis can be truncated according to eigenvalue 

thresholds, which describe the significance of each of direction of shape change.  See Appendix I 

for details of to decompose a set of m-reps according to PGA and how to apply the resulting 

statistics to individual instances. 

As we iterate and gain confidence in our intermediate statistics, we replace our sampled medial 

shape parameterization with a short vector of coefficients of each principal mode of deformation.  

This restricts the shape changes we optimize over and both obviates our smoothness requirement 

and allows us to compute the geometric prior by the correct shape-to-mean Mahalanobis distance.  

This covariance weighted distance is computed directly as the eigenvalue scaled PGA coefficients.  

That is, the Mahalanobis distance squared 2 2/i iα λ=∑ , where αi are the coefficients of M expressed 

in PGA eigenvectors and λi are the corresponding eigenvalues. 

Following an intermediate step of statistical shape optimization, local refinements may still be 

required for individual samples within the model.  These refinements can be computed 

deterministically, by another optimization of our error metric (5) restricted to the parameters of a 

given sample, or they can be probabilistically estimated by PGA over the differences between the 

results of the statistical stage and the deterministic refinement.  Tracking the residual optimization 

work on individual samples still required after an intermediate statistical fitting gives us a 

measurement of when the training is complete. 

Extensions of the statistical model allow us to compute joint statistics of interdependent multiple 

fig. shapes [44] and multiple object shape models, which leads to the multi-scale methods for 

describing both global and local phenomena discussed in our image segmentation paper [12]. 

 

3. Results 

Our method is routinely tested by computing a shape template and modes of deformation for a set of 

procedurally generated binary 3D images of bent, twisted, and tapered ellipsoids such as those in 

fig. 9.  A set of images is generated by randomly sampling values for each of the three parameters, 

analytically generating the corresponding ellipsoid and scan converting it into voxels.  Vertex 
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landmarks are computed for each image.  The medial manifold of a standard ellipsoid is a simple 

primitive in our framework.  This standard ellipsoid is designated R0.  R0 is initially aligned by 

landmarks to each of the training cases, and then the parameters of each medial sample are 

optimized according to the error function described in our method section.  When the best model for 

each image has been found, we compute the final average and maximum voxel distances from each 

model to its corresponding image as shown in fig. 10.  Fig. 11 is a histogram of these distances over 

the standard twenty test cases.  Shape statistics as in fig. 12 are computed and we refit the 

population by optimizing over the principal geodesics of shape change.  Note that PGA has 

substantially reduced the complexity of the optimization.  We input a three parameter distribution 

into the problem, our initial fitting optimizes on the order of one hundred parameters, and using 

PGA we can reconstruct over 90% of the shape variability using only five model parameters.  The 

distance histogram of the statistically fit models is also given in fig. 11.  Another encouraging result 

is that while the two training outliers we see in fig. 11 were thrown out of the statistical analysis, 

they have been adequately covered by the statistical fitting. 

 

 

Fig. 9.  Tiled surfaces from two procedurally generated warped ellipsoid test objects showing bending and 

tapering. 

 

Fig. 10.  Relationship between the boundary voxels of an ellipsoid binary training image (gray) and the fitted 

model’s surface (black) through a transaxial slice. 
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Fig. 11.  Histogram of average and max distances for warped ellipsoid models over 20 training cases.  The two 

outliers were excluded from the first round statistics, but were successfully fit in the next round using the 

recovered statistical modes of deformation. 

 

Fig. 12.  As we would expect, the first two principal modes of deformation trained from 20 bent, twisted, and 

tapered ellipsoids reflect bending and tapering. 

 

The ultimate indication of our methodology's effectiveness is its application to real medical and 

scientific problems, such as modeling shape variability in inter-patient and cross-patient images.  In 

fig. 2, we show a mean bladder being initialized and deformably fit to a patient image, represented 

by a single sagittal slice of the label and corresponding gray image.  In this case, we start with a 

model hand-fit to day 1 of each patient series.  Subsequent daily images are aligned according to the 

position and orientation of the urethral landmarks.  We then proceed with two iterations of the 

training as outlined in our method, first a non-statistical and then a coarse statistical stage. This 

procedure is repeated for the bladder and prostate.  Fig. 13 shows a histogram of average and 

maximum distances over models fit to bladders, prostates, and rectums from sets of inter-fractional 

images of twenty-five different patients.  The average error across all organs is less than a voxel and 

the large maximum distance seen in the rectum training is artifactual of segmentation variability.  
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The bladder is a particularly challenging object to model effectively because it exhibits large shape 

changes from day to day.  The first two PGA modes of shape change for one patient's bladder and 

prostate are shown in fig. 8.  These two modes account for over 65% of the patient's daily shape 

variability in those two organs, and as we would hope, could be seen as roughly accounting for the 

bladder filling and emptying.  The statistical deformable shape models for each patient from such 

training, combined with a suitable CT image match term, allowed us to produce leave-one-out 

segmentations of actual images from four of the patients with mean volume overlaps 

(intersection/average) of 92.5%, 93.7%, 91.6%, and 94.7% respectively using only eight modes of 

deformation [45]. 

 

Fig. 13.  Histogram of average and max distances for fit bladder models over 67 training cases pooled from 4 sets 

of same patient inter-fractional images. 

 

We also applied out method to a set of 50 cross-patient kidney images.  In this case, the SDSM must 

account for actual anatomic variability across patients, a much broader kind of shape change than 

that usually seen in sets of within-patient images.  The eigvenvalues of the recovered principal 

modes of deformation show that we now need fifteen modes of variance cover 95% of the anatomic 

variability.  Our training resulted in 95.3% volume overlaps (int/ave) of the models to the 

segmentations.  The trained 15 parameter SDSM applied to leave one out segmentation of the actual 

patient images resulted in models with volume overlaps only slightly lower, on average, 91.1%.  For 

details of our kidney segmentation results, see [46,47,48]. 

Our method has also been applied to several other target areas.  Head and neck models 

suitable for radiotherapy planning are shown in fig. 14, left.  The deep brain structures shown fig. 

14, right, were taken from an autism shape study where the researcher used the SDSM based shape-

to-shape metric to discriminate autism by shape characteristics [11].  We have also modeled 
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hippocampi for a large statistical shape study.  Temporal extensions to the method have enabled 

studies of heart motion [49], which has obvious extensions to lung motion and 4D-ART.  [50] uses 

an SDSM trained with our method to establish feature correspondences in dog hip joints for a 

longitudinal study characterizing canine hip dysplasia. 

 

Fig. 14.  Multi-object shape models.  (Left) A fifteen object complex of structures from the head and neck.  

(Right) Deep brain structures from an autism study, left and right hippocampus, amygdala, putamen, caudate, 

and globus pallidus. 

 

All the results discussed were produced using a C++ implementation of the algorithm.  Using our 

implementation on a modern 2GHz desktop, a model can be fit to an image in less than two 

minutes.  Batch fitting is trivially parallelizable onto any number of machines up to the number of 

images in the training population.  Using such a parallel computing framework and given a set of 

segmented images and landmarks, a completely trained SDSM can be produced in less than an hour. 

 

4. Discussion  

Shape training is a key step in the application of deformable shape models to such problems as 

image registration required for IGRT or ART, shape classification, and longitudinal shape studies.  

Our methodology for training statistical deformable shape models is a special case of image 

segmentation, using estimates based on desiderata of our shape space and successive refinement to 

derive a principled statistical model.  The internal geometric terms we use guarantee training shapes 

that are regularly sampled, legal, and compact about a mean, which together cause credible shapes 

to be reflected in the statistics.  The method described is fast and routinely gives good meshes.  The 

framework has been described in the context of the discrete medial representation, but should 
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extend to b-reps with orientation or other representations where measures for sampling regularity 

and non-self-interpenetration can be analytically computed. 
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Appendix I – The Discrete Medial Representation 

Medial geometry [51] describes 3d objects in terms of a skeletal surface, a 2d curved sheet lying 

midway between opposing surfaces of the object, and a set of spokes extending to the object 

boundary from both sides of the skeletal surface.  The medial manifold, M, of a three dimensional 

object has eight parameters at each point (u,v): M(u,v) = {position (3), spoke length (1), and two 

spoke directions (2x2)}.  Some additional complexity is introduced along the crests at the edges. 

 

 

Fig. 15.  Discrete medial representations.  (Left) A medial sample with two equal length spokes that touch 

opposing surface patches.  (Mid Left) A sampled skeletal sheet for a kidney with neighbor relations marked.  

(Middle) Spokes at each medial sample describe the orientation of the implied surface at that hub.  (Mid Right) 

A densely sampled surface can be interpolated from the medial samples.  (Right) A prostate model with sub-

figures defined for the left and right seminal vesicles. 

 

The discrete medial representation, m-reps, samples the continuous manifold on a grid, yielding a 

set of 8- dimensional medial samples which taken together act as control points for the object's 
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volume, as shown in fig. 15.  Additional medial points can be interpolated according to [52], which 

in turn imply a denser surface sampling.  Alternatively, additional surface points can be 

approximated directly using a modified Catmull-Clark subdivision algorithm [53] with additional 

normal constraints.  M also implies a volume filling hexahedral mesh useful for computing 

mechanical deformations according to finite element methods [54].  An object made from a single 

grid of medial samples is called a figure.  A single column grid  implies a tube figure; a multi-

column grid implies a slab figure.  Indentations and protrusions are handled as attached subfigures 

[44].  A figure along with any associated sub-figures is called a model, shown in fig. 15 (right). 

The discrete medial representation is well suited to Bayesian segmentation because it provides 

1) a volumetric coordinate system in which to gather image intensity statistics, 2) a low dimensional 

parametric shape space amenable to numerical optimization, and 3) an analytic description of 

legality.  Each figure can be examined sample-by-sample where we need only eight parameters to 

represent complex object-based deformations such as bending, twisting, and magnification.  

Parameter changes can be constrained to imply only legal models by computing a radial shape 

operator similar to the surface shape operator described in [55], but dependent both on local shape 

and on local orientation.  Measuring the largest eigenvector of the spoke length radial shape 

operator at each grid position [39,40] gives an immediate indication of local self-interpenetration in 

the volume. 

 

Distances and Means of Samples and Models 

Every medial sample can be understood as a translation, magnification, and rotation of any other.  

Thus, we can define Riemannian distances between them for computing means and variabilities.  

The spoke directions describe a rotation, which along with the radius, are multiplicative terms 

which must be logarithmically mapped so that sample-to-sample distances can be computed in a 

Euclidean space [35].  The Fréchet mean, m , of a set of samples {mi} can be computed as the point 

in the parameter space that minimizes its distance to every member of {mi}.  Samples on the grid 

are also given neighbor relationships, which along allows for Markov fashion predictions (see 

section 2.4.1).  Sample-to-sample distances can be extended to a distance between two models, M 

and O with samples {m1,...,mn} and {o1,...,on} respectively, by taking the sum of the Riemannian 

distances between corresponding samples as 2 2d ( , ) d ( , )
i

i im M
M O m o

∈
=∑ .  Distances taken from 

object-to-object and then refined sample-by-sample provide the basis for multi-scale shape analysis. 
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Using these definitions for distance, a typical shape and descriptions of shape variability can be 

computed from a set of models according to a generalizing of principal component analysis called 

principal geodesic analysis [35]. The mean for each atom over a training population is computed by 

the Fréchet approach of minimizing the sum of squared geodesic distances to the result point. The 

atoms in each training m-rep is projected (mathematically called the Log map) to a tangent space at 

the computed mean, where PCA is done on the collection of atoms.  Mapping the resulting principal 

direction vectors back into an m-rep increment from the mean creates modes of global variability 

that encode not only position but orientation and width.  The relative weight of the associated 

eigenvalues give a reciprocal standard deviation weighting to this space of deformations and 

provide the basis for a shape-to-shape Mahalanobis distance.  The Mahalanobis distance from the 

mean gives the log likelihood of the shape, except for a linear multiplier and an additive constant,. 

and thus it serves as the basis for methods for Bayesian segmentation or statistical shape analysis. 

See [12,48] for additional details of the discrete medial shape representation and its applications 

to medical image analysis. 
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