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Abstract. Describing the probability densities of multi-object complexes
by describing individual objects and their inter-object relationships leads
to desirable locality without ignoring the context of an object. We de-
scribe a means of decomposing object variations into self effects and
neighbor effects. We describe an approach for estimating the self and
neighbor effect probability densities for each object in the complex using
augmentation and prediction, supported by PGA on m-reps. We apply
this method to the inter-day variation of m-reps of male pelvic organs
within an individual patient.

1 Introduction

Statistical shape models have been proven to be very effective in a number
of applications, including image segmentation [1] and characterization of the
anatomic differences between the classes of normal and diseased patients [2]. In
segmentation, prior shape statistics restrict the deformation of the shape model
within the variations learned from training data in this optimization process. In
characterization of anatomic differences these statistics provide the basis for a
test of a null hypothesis that the probability densities for the two classes are the
same. Obtaining accurate shape statistics is thus essential.

Shape statistics are likely to be more sensitive measures when multiple ob-
jects in a given anatomic region are considered since frequently the intensity
information does not fully provide the boundary of a target object without con-
sidering the neighbors that provide its context.

Following the approach that others have taken, we have calculated both
global statistics on combined shape models of the multiple objects and statistics
on each object separately. We found that the former approach fails to capture
the local variation of an object itself and sometimes gives misleading information
about inter-relation between objects. The latter approach gives too local infor-
mation while ignoring the interaction between objects. The weakness of both
approaches has led us to borrow the idea of the mixed model [3] approach to
handle the inter-object relation. In this work we decompose the shape variation
of each of the objects into three components: the mean of the variation from
some base state, self effects, and neighbor effects. The neighbor effects term are
described as a function of neighbors’ geometric descriptors since shape varia-
tions of an object closely surrounded by other objects are caused not only by
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internal changes within the object but also by its neighboring objects. The self
term describes the variation of the object itself, not affected by its neighboring
objects. We present in this paper an approach to estimate probability densities
on each of these components individually.

We use a single-figure m-rep model [1] for each object as the shape represen-
tation. M-reps consist of sheets of medial atoms. Medial atoms capture not only
local position but also the local orientation and local magnification of a section
of an object. M-reps also provide correspondences across cases of the object de-
rived from the local coordinate system for object interiors that m-rep provides.
Therefore, m-reps are powerful representation to characterize the neighbor re-
lationship, allowing medial atoms in neighboring objects to be understood in
terms of atom transformations of each other.

For both the self and neighbor terms we estimate probability densities on
the nonlinear manifold by a method called principal geodesic analysis (PGA)
developed in our previous work [4]. The approach for the neighbor term is an
extension of our earlier work [5], [13] in which an augmentation and prediction
method is introduced to estimate the relation among multiple objects.

Section 2 describes other approaches in estimating multi-object geometric
statistics and basic ideas of residues, augmentation, and prediction. The dif-
ference and addition operations through which residues are obtained are also
explained in that section. Section 3 presents our new iterative method to esti-
mate self and neighbor effects of multi-objects with mathematical detail. Section
4 explains the process to estimate these probability densities for the male-pelvis
data to which we applied our new method, and it gives the results of the esti-
mation. Section 5 discusses the results as well as the work yet to be done.

2 Background

Multi-object shape statistics in deformable template models has been mostly
dealt with by doing global statistics on all objects taken together. This approach
has been applied on a variety of shape representations: point distribution models
[6], diffeomorphisms from atlases [7], distance functions or their levels sets [8],
and m-reps [1]. This global statistics lacks appropriate locality of the objects.

Other approaches in doing shape statistics have handled locality, addressing
the issue of scale. They compute shape statistics hierarchically from the object
complex to the individual objects [9], [10], and one of these even analyzes residues
from a larger scale [11]. However, few attempts have been made to describe the
inter-object relation statistically. Pohl et al. [12] describes inter-relationships
by representing via the distance function to objects’ boundaries. This approach
however does not explicitly separate out inherent variation of object from the
effects from its neighbor.

In this work we do not consider a global stage since our target problem
appears to have only single object effects and inter-object effects. However, we
do decompose the objects’ variation into self and neighbor effects, which must
sum to the overall difference of the object from its base state. Thus the self
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effect must be the residue describing overall change from the base state after the
neighbor effect is removed, and the neighbor effect must be the residue describing
overall change from the base state after the self effect is removed. This explicit
separation between self and neighbor variation is the main improvement that we
have made on our earlier method [5]. We rely on the difference operation 	 on
m-reps to obtain the residue. The difference operation and its complementary
addition operation are described briefly in the next.

A medial atom m = (x, r, u,v) is defined as an element of the symmetric
space G = R3 ×R+ × S2 × S2 where the hub position x ∈ R3, the spoke length
r ∈ R+, and the two unit spoke directions u,v ∈ the unit sphere S2. Let Rw

represent the rotation along the geodesics in S2 that moves a point w ∈ S2 to
the north pole p = (0, 0, 1) ∈ S2. For given any two medial atoms m1,m2 ∈ G
where mi = (xi, ri, ui,vi), i = 1, 2, the difference between them can be described
as follows:

m1 	m2 := (x1 − x2,
r1
r2

, Ru2(u1), Rv2(v1)) . (1)

Its corresponding addition operator ⊕ is thus defined as

m⊕∆m := (x + ∆x, r ·∆r, R−1
u (∆u), R−1

v (∆v)) (2)

for a given m = (x, r, u,v) and difference ∆m = (∆x, ∆r, ∆u,∆v). For two
m-reps M1,M2 that consist of medial atoms, the difference M1	M2 relative to
M2 coordinate is thus defined as the collection of the differences of correspond-
ing individual atoms in two m-reps. These operations and their properties are
explained in detail in [13].

We also extend the augmentation and prediction methods described in [5].
We make use of augmentation to deal with a target object’s inter-relation with
other objects. Based on the evidence that atoms in a target object are highly
correlated with abutting atoms in the neighboring objects, we choose a set of
atoms A in the target object that are located near its neighboring objects and a
set of atoms N in neighboring objects that are close to A. We then produce the
augmented set of atoms by putting atoms in N and A together into one set of
atoms U. This augmentation allows us predict the changes brought on a target
object by the change of the neighboring objects, namely as the mean of its A
conditioned on its neighbor atoms N. Then we can statistically analyze variations
from this prediction. This prediction method helps to extract the deterministic
effect from its neighbor on the object and concentrate on the variable part in
the neighbor effects. A major improvement on our earlier method is that we
consider the neighbor relation mutually, allowing each object to have any of the
others as neighbors. This mutual neighbor relation is more realistic and is clearly
suggested in the male-pelvis data to which we apply our new method.

3 Method in detail

Let ∆Mi := Mi 	 Mb where Mb is a base model such as the mean or some
reference model, where i indexes the training cases and M represents an m-rep.
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All figures in Mi are aligned to figures in the base model. {∆Mi} are variations
of m-reps from the base m-rep model. We decompose the variations into two
parts, self and neighbor, as follows:

∆M := ∆Mself ⊕∆Mngbr (3)

where ∆Mself measures self variation and ∆Mngbr measures neighbor effects.
∆Mngbr is further subdivided as the prediction from N Pred(∆Mngbr), and the
neighbor residue, ∆Mngbr 	 Pred(∆Mngbr).

We make two assumptions in our approach. First, within each object, the
self variations {∆Mself} and the residues from the predictions {∆Mngbr 	
Pred(∆Mngbr)} are considered to be statistically uncorrelated. Second, we as-
sume that the effect of the neighboring objects is local. Based on the second
assumption we define the sets N, A, and hence U. We currently choose atoms
in the two sets based on Euclidean distance between atoms in nearby objects.
∆N, ∆A, and ∆U denote the m-rep variations in the sets N, A, and U respec-
tively.

3.1 Iterative steps

In calculating the geometric statistics, we begin with a simple assumption on
the separation of each object’s ∆M into self and neighbor components and then
refine that separation by repeating the following steps over all figures in the
multi-object m-reps.

In the following description of the estimation of the statistics for an object,
the index over the objects and the index over the training cases is skipped.

Self step. We do PGA on ∆M 	 ∆̂M
ngbr

which gives the shape space and

estimate of the self part of each training case ∆̂M
self

. The hat (̂·) indicates the
best estimate of either neighbor or self components up to the previous iteration.

Neighbor step.

1) Augmentation. We first subtract the estimate of the self part from each
training case because we do not want to corrupt the effect from the neighbor
by the effect to other neighboring objects from the object, i.e.,

∆Angbr := ∆A	 ∆̂A
self

. (4)

Then, because we need to predict ∆Angbr based on ∆̂N
self

, we form an
augmented set of differences:

∆U := ∆Angbr ∪ ∆̂N
self

. (5)

We use ∆Nself rather than ∆N because our initial assumption of local effect
leads to ∆Angbr of the object and ∆Nngbr of its neighbors being statistically
independent.
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2) Prediction. (1) Predictor function: We perform PGA on ∆U to find the
shape space of the augmented atoms ∆U. The shape space is used to find
the deterministic effect from the neighbors as follows.

Proj(∆Angbr) = expµ

(∑
l=1

〈logµ(∆̂N
self

), vl〉 · vl

)
, (6)

Pred(∆Angbr) := Proj(∆Angbr) (7)

where {vl}l=1 are principal directions in the tangent space of ∆U at its mean

µ. Note that ∆̂N
self

means µ|A∪∆̂N
self

implicitly when logµ(·) is applied.1

(2) Updated augmented set: We now form a newly updated augmented
set after removing the prediction from the residue from the self estimate.

∆Armdr = ∆Angbr 	 Pred(∆Angbr), (8)

∆U′ := ∆Armdr ∪ ∆̂N
self

. (9)

We then do PGA on the new augmented set ∆U′ to obtain the shape space

and the estimate ∆̂A
ngbr

of the neighbor part of each training case. As a
result, the estimate of the neighbor part comprises the two components:
prediction and the estimate of the variation from the prediction.

∆̂A
ngbr

= Pred(∆Angbr)⊕ expµ

(∑
k=1

〈logµ(∆Armdr), vk〉 · vk

)
. (10)

3.2 Joint probability of interaction among objects

Using the joint probability on this decomposition of self and neighbor effects
of multiple objects, we can interpret the prediction as the conditional mean
assuming a Gaussian probability distribution. This interpretation is valid as long
as we can show that the following conditions hold: the self effect and neighbor
effect within each object, neighbor effects among objects, and self effects among
objects are independent.

To show this, we decompose the joint probability of multiple objects using
conditional probability:

p({Mk}) = p(Mk | {Mj |j 6= k}) p({Mj |j 6= k}), (11)

where k goes over the number of objects. Moreover,

p(Mk | {Mj |j 6= k}) = p(Mself
k ,Mngbr

k | {Mself
j ,Mngbr

j |j 6= k}). (12)

1 Refer to [4] for detailed explanation of the log map and the exponential map.
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Since we have assumed the locality of the effect of the neighboring objects and
we choose N as a set of medial atoms in neighboring objects that has influence
on the variation of the shape of an object, we can replace the set of atoms in
{Mself

j ,Mngbr
j |j 6= k} with N. If the independence conditions stated above hold,

then we can further simplify the joint probability distribution as follows:

p(Mself
k ,Mngbr

k | Nself
k ) = p(Mself

k ) p(Mngbr
k | Nself

k ). (13)

4 Application on male-pelvis model and results

4.1 Materials

The training models were obtained from male-pelvis CT images of real patients
taken over a series of days who underwent radiotherapy treatment. Three organs,
namely the bladder, prostate, and a section of the rectum that is adjacent to the
prostate are modelled. Both ends of the rectum model are arbitrary. A clinician
contoured each organ slice by slice to generate binary images for all three organs.
A single-figure m-rep was then fit to bladder, prostate, and rectum separately in
binary images: 5×6 grids of medial atoms for the bladder, 7×4 grids of medial
atoms for the prostate, and 15×3 grids of medial atoms for the rectum are
used. We have software developed to fit a single figure m-rep to binary image
that prevents penetration among fitted m-reps, prevents folding of the interior
of the object represented, and maintains regularity of grid across the cases for
correspondence of medial atoms [14]. We aligned the fitted three m-reps for
bladder, prostate, and rectum of each patient by a similarity transformation that
is computed from two landmarks, at the apex and base of the prostate landmark.
Then those aligned m-reps for bladder, prostate, and rectum are combined into
one ensemble m-rep. The total number of medial atoms are 103, and the number
of parameters in the ensemble m-rep is 927.

4.2 Application of probability density estimation to male-pelvis
model

We have applied our approach to male-pelvis models of five patients m-rep fits of
which were obtained as described in the previous section. Patients are numbered
as 3101, 3106, 3108, 3109, and B163. We have 14 m-rep fits for 3101, 17 for 3106,
18 for 3108, 18 for 3109, and 15 for B163. Models fitted to the first treatment
image are used as the reference model from which the variation of the rest of
models are taken.

In the first iteration, since we know that the self part of the bladder and
rectum changes dominate the neighbor parts, we assume that the neighbor parts
in variations of the bladder and rectum are zero. Similarly, we set the self part
in the prostate to zero, for the shape of prostate changes little except as affected
by the bladder and rectum.

Starting with ∆Mb, ∆Ub, ∆Mp, ∆Up, ∆Mr, ∆Ur where subscript b, p,
r represent bladder, prostate, and rectum respectively, the order we compute
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total variation per object

patient bladder bladder rectum rectum prostate prostate
no. self neighbor self neighbor neighbor self

3101 0.379383 0.014782 0.360542 0.004983 0.179949 0.006880
3106 0.082828 0.002576 0.102897 0.001188 0.031047 0.003648
3108 0.391689 0.010346 0.181145 0.012492 0.135748 0.009021
3109 0.080293 0.006388 0.132851 0.003501 0.043438 0.005439
B163 0.067945 0.002470 0.137690 0.002819 0.053831 0.003205

Table 1. Total variations of two effects, self, and neighbor per organ that are estimated
after 2nd iteration

the estimate of neighbor and self effect in each organ in the first iteration is as
follows.

1. Self effect on bladder, and rectum differences ∆Mb, ∆Mr, assuming ∆Mngbr
b ,

∆Mngbr
r are zero

2. Neighbor effect on prostate differences ∆Up, assuming ∆Aself
p are zero. Note

that we use for prediction the estimate of the self variations of bladder and
rectum from step 1.

3. Self effect on prostate residue from the estimate of the neighbor effect. The

residue is ∆Mself
p := ∆Mp 	 ∆̂M

ngbr

p .
4. Neighbor effect on bladder and rectum residue from the estimate of the self

effect ∆Ub, ∆Ur where ∆Ab := ∆Ab	∆̂A
self

b and ∆Ar := ∆Ar	∆̂A
self

r .

We again use the estimate of the self part of the prostate ∆̂M
self

p from step
3 to compute the prediction of bladder and rectum from change of their
neighboring object prostate.

For the later iterations, we repeat the steps described in section 3.1 with the
updated estimates of self and neighbor effects from the previous iteration.

4.3 Result

Table 1 compares the estimates of total variations of the two effects for each organ
after the 2nd iteration. They are the sum of eigenvalues that are estimated in
each step described in the previous section. Figure 1 shows the primary mode
of self variation of the bladder and the associated prediction of the deformation
of the prostate in the patient B163. We can see a dent formed in the bladder in
which the prostate fits as the bladder fills.

5 Discussion and conclusion

The results are consistent with what we know about the anatomy and see in the
data. The self terms for the bladder and rectum dominate the neighbor terms,
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Fig. 1. These 4 figures show the prediction of the deformation on the prostate brought
by the change of the patient B163. The two objects in the left 2 panels are the bladder
(cyan) and the prostate (green) in wire frame and the right 2 panels show separately
the bladder of the left 2 panels in solid. The bladder in the right 2 panels is in 2
standard deviations from the mean for a principal modes of the self effect estimated
in the bladder. The left 2 panels show the predicted prostate corresponding to the two
positions of the bladder shown in the right 2 panels.

reflecting the fact that these organs’ variations are principally due to changes in
their contents. On the other hand, the neighbor term for the prostate dominates
the self term, reflecting the fact that the prostate is a rather hard organ that is
pushed upon by the rectum and bladder.

Moreover, the predictions of the prostate from the bladder and the rectum
seem realistic. Also, the prostate changes from its prediction are smaller than
the self changes in the bladder and rectum, which are known to be larger.

The bladder self changes include modes corresponding to lengthening, widen-
ing, and lapping around the prostate, all anatomically observed processes. Also
encouraging is that the prostate predictions of the bladder self modes have the
prostate following the change in the indentations of the bladder while keeping the
prostate almost entirely nonintersecting. Furthermore, the prostate self modes
also make consistent predictions on the bladder indentation.

While this experiment is limited, it suggests that our new approach to sep-
arate out inherent variation of an object itself and effects from its neighboring
objects is fruitful.

We still need to do further analysis to verify that our estimates truly reflects
the self and neighbor effects of multi-objects. We plan to determine what are self
and neighbor effects by simulating the obvious neighbor effects and self effects
independent from neighbor effects on an ensemble of multiple ellipsoids m-reps
and apply our approach on the the simulated ensembles.

We will also incorporate the new geometric statistics of the male pelvic organs
as the prior within our segmentation method’s posterior objective function and
evaluate this prior by the effectiveness of the segmentation of these organs.

An open issue is how to choose augmented atoms. Clearly, that choice affects
our estimate of self and neighbor effects. We believe that we should choose the
most highly correlated atoms with those in the target object. In separate research
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we are measuring this correlation, and the results of that research will provide
us a firmer basis for our choice than the distance criterion presently used.

In the nonlinear manifold on which m-reps are situated, addition opera-
tions is not commutative. The separation of ∆M into ∆Mself ⊕ ∆Mngbr is
thus not equivalent to ∆Mngbr ⊕ ∆Mself . In our iterative algorithm, this non-
commutativity is ignored and ∆Mself , ∆Mngbr are treated as if they are in-
terchangeable. We must test whether the effect of our method’s assumption of
commutativity is significant.

We also need to test the four conditions stated in 3.2 to show our interpre-
tation on joint probability holds.
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