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Abstract. Based on an effective statistical segmentation methodology
using a deformable medial model, a local scale deformation approach is
developed to refine the global scale segmentation results within a multi-
scale framework. In the local scale segmentation, the probabilistic varia-
tions of locally aligned shape residuals from the global scale are learned
from proper training followed by a posterior probability optimization in
local regions. The resulting finer scale deformation improves the accu-
racy of the segmentation results, shown by experimental study on 3D
CT images of the male pelvic area in day-to-day adaptive radiotherapy.

1 Introduction

3D medical image segmentation via deformable objects is challenging; adoption
occurs only if its accuracy is competitive with manual segmentations. Deformable
models with various representations have been proven to be effective in capturing
a population of geometric entities [1]. An off-line learning process can build up
the constrained variation space for deformation [2] [3] [4] [5] [6]. Considering the
various degrees of locality for geometric features, an efficient way of represent-
ing the shape variance is to decompose them into different scales of localities
[6] [7] [8] [9]. In this paper, we describe an approach to produce stable esti-
mates of probability distributions for geometry based on medial representations
and for geometry-relative intensity patterns based on regional intensity quantile
descriptors.

We focus on the local refinement of the segmentation results from a global-
scale deformation as an extension of the methods developed by Pizer et al [10]
[11] [6]. Our methodology is based on the Bayesian segmentation method using a
medial representation called m-reps [2], which explicitly describes both interior
and boundary localities. An m-rep, made up of a grid of medial atom primitives,
gives geometric properties, such as the widening, bending and tapering, with a
locality given according to the grid spacing. The m-rep as a whole gives these
properties in a way reflecting global interrelations of primitives, whereas each



primitive, and its relation to its immediate neighbors, gives more local informa-
tion. Based on the multiscale shape description ability, coarse-to-fine strategy
provides efficient segmentation [6].

We have shown the effectiveness of statistical m-rep segmentation in the
global scale [12], which provides a good starting point for the refinement stage.
Then the more local region-based scale segmentation will guide the model bound-
aries to deform further from the globally segmented result towards the “correct”
locations. Similar to the global segmentation, in the finer scale, we apply a poste-
rior optimization to improve the segmentation results iteration by iteration. But
different from global scale, the shape priors in the local scale are residuals from
global scale, and image match likelihoods are calculated on the local regions.

Section 2 reviews methods using a multiscale framework (§2.1 and §2.2),
and the background for the global scale segmentations using m-reps (§ 2.3).
Methodology for the local segmentation is discussed in §3; §3.1 describes the
Principal Geodesic Analysis (PGA) training of the residual shape prior, and §3.2
describes the posterior probability optimization. Section 4 gives experimental
results on 5 sets of clinical CT image data of the male pelvic area.

2 Background

2.1 Multiscale framework

The multiscale idea has been widely adopted in various segmentation methods
[6] [7] [8] [9] [13]. Several of them apply scales to image intensity features; oth-
ers apply them to model features. A coarse-to-fine multi-resolution protocol on
landmarks is used by Christensen et al [13] for diffeomorphic mapping of brain
anatomy. Krissian et al [7] developed multiscale detection of the vessel centerlines
based on a cylindrical model, with the radius of the cross sections providing the
scaling feature. The Active Shape Model (ASM) developed by Cootes et al [9]
built multi-resolution image profiles around each landmark for boundary refine-
ment. In m-rep segmentation the scales are localities of the model representation,
as shown in Fig. 1, and a template model, which is the geodesic mean calculated
from the training models, deforms in a series coarse-to-fine scales.

2.2 Probabilistic multiscale framework

The multiscale methods, ASM and the global scale of m-rep segmentation, take
advantage of the statistics from learning. In [6] deterministic, geometrical penal-
ties rather than log probability penalties are used at each scale, and the op-
timization is carried out over the whole space of m-rep atom transformations,
including translation of the hub position, rotation of the spokes and scaling for
the spoke length. Thus the optimization is not efficient by explicitly searching
in all dimensions and not robust due to the possibility of being trapped at local
minima. Lu et al [14] first proposed the probabilistic atom scale as one step
of multiscale framework for multi-object segmentation theoretically, based on



Fig. 1. A single figure M-rep model: A medial atom (left) and a figure (right). The
figure is composed of multiple atoms.

Markov Random Field (MRF)assumptions. To obtain both mathematical cor-
rectness and tight, thus stably trainable probability distributions, we provide
the atom scale with a local alignment of the shape residuals.

Since the m-rep and thus the shape residual lives in a curved space (cf. §3.1),
the alignment issue becomes crucial. In this paper, in order to focus on the fine
scale optimization, we only discuss single object cases.

2.3 Global scale segmentation

In m-rep models a figure is a sheet of medial atoms represented by a quadrilateral
mesh. Here we call the global segmentation the figure stage, followed by an atom
stage, which is at a local scale. In the figure stage the entire sheet of medial
atoms deform together, restricted by the variations learned from the multiple
sheets of atoms of the training samples. PGA [15] is the method for learning. We
compute a mean model from the training m-rep models and use the first several
principal modes, which are able to cover more than 90% total variations of the
training samples, as the deformation modes during optimization. PGA largely
reduces the dimension of the variation space from nearly three hundred to just
8 dimensions or less. While deforming in the constrained space, an image match
measurement computed by Regional Intensity Quantile Functions (RIQFs) on
the tuple of subregions forming the region near the implied boundary of the m-
rep [16] evaluates how well the model fits into the grayscale image, which leads
the optimization process into convergence. Together, the figure stage deforms
the model into a global fitness with the image. However, not all of the small
variance modes are noise; some of them surely contribute to small deviations
from the ideal segmentation in specific regions. The overall quality of the figure
stage can be seen from Fig. 2 and Fig. 4. To improve the segmentation results
as the needs of clinical application, more local deformations should be enabled
in the next finer scale.



3 Method

In the atom stage each medial atom deforms individually within a residual vari-
ance space learned from training that is individual for each atom. The residual
here is the atom change needed to improve the figure stage result to the ground
truth. Similar to the figure stage, after alignment appropriate to the relevant
scale we use PGA to describe the residual shape space. RIQFs are used for
the image match measurement, but locally on regions about the spokes of the
individual atoms.

3.1 Training for Atom Stage Prior

The trained residual deformation space for an atom and the prior is captured
by PGA at each atom from its shape residuals from the figure stage. The atom
resides in the symmetric space G = R3×R+×S2×S2. Given two medial atoms
Ai, A′

i∈ G, ∆Ai, the residual from A′
i to Ai, is calculated by the subtraction

operator .

ª : G×G → G,∆Ai
.= Ai ªA′

i
.= (pi − p′i, ri/r′i,Ru′i(ui),Rv′i(vi)). (1)

where Ai = (pi, ri,ui,vi) with the hub position pi ∈ R3, the spoke length
Ri ∈ R+ , and two unit spoke directions u,v ∈ S2. Rw represents the rotation
along the geodesics in S2 that moves a point w ∈ S2 to the North Pole (0, 0, 1)
∈ S2. The addition operator is correspondingly defined as

⊕ : G×G → G,A′
i ⊕∆Ai

.= (p′i + ∆pi, r′i ·∆ri,R−1
u′i

(∆ui),R−1
v′i

(∆vi)). (2)

We want to describe p(∆Ai|∆AM{i}), where AM{i}contains all the other
atoms in the medial sheet. We make an assumption here that the large-range
dependency among all the atoms on the medial sheet has been explicitly covered
by the figure stage, so that after alignment relative to neighbor atoms, the atom
stage deformations are localized and can be expressed by the following MRF
model [14]

p(∆Ai|∆AM{i}) = p(∆Ai|∆AN{i}), i ∈ M. (3)

where AN{i} contains the neighbor atoms for atom i, M is the collection of all
atoms within the object. We simplify this conditional probability by decompos-
ing it into two parts: the probability of self driven deformation p(∆Ai), and the
neighbor driven deformation p(∆Angbr

i ). Further, p(∆Angbr
i ) can be approxi-

mated by the residual of the interpolated atom, which is the geodesic mean of
its neighbor atoms. In our male pelvic organ segmentations, the residuals of the
interpolated atom is shown small enough to be ignored. Then the final residual
probability becomes p(∆Ai), as shown in (4)

p(∆Ai|∆AN{i}) ≈ p(∆Ai ⊕∆Angbr
i ) ≈ p(∆Ai). (4)



For the residual term ∆Ai, atom Ai is in the m-rep model fitted to the hand-
segmented image, and atom A′

i is in the figure stage resulting model, after both
have been locally aligned according to its neighbors’ configurations. We use PGA
to train the shape prior p(∆Ai) for each atom from the sampling of ground truth
models and their corresponding figure stage results. For each atom, our feature
space has 8 dimensions, only the first several 2-5 principal modes which cover
the most variance are used in the atom stage deformation.

It is important to align the residuals across cases by their neighbors before
we do PGA on them, in order to guarantee mathematical correctness and the
tightness of the statistics. To align the residuals, the subtrahend and minuend
atom sets should be aligned first. One possibility is to align both the operands
into an atlas model before the subtraction in symmetric space. The alternative
is to align the operands to each other. And for each segmentation iteration, the
current target atom needs to be aligned to the same model you used for its
training. Either possibility would use a Procrustes alignment based on geodesic
distances between m-reps. In this High Dimensional Low Sample Size (HDLSS)
situation, we found that alignments at multiple times introduce noise into the
prior, and considering the sensitivity of the residual statistics to alignments,
we align the atom in ground truth model to corresponding figure stage model
and then do the subtraction to get ∆Ai. Therefore, in each iteration during the
segmentation, we need also align our resulting atom to the figure stage model
via its neighbors to be able to use the PGA statistics.

3.2 Atom stage posterior optimization

In the Bayesian optimization process of the atom stage deformation, we compute
arg max∆Ai(log p((Ai⊕∆Ai)|Ii) = arg max∆Ai [log p(Ii|Ai⊕∆Ai)+log p(∆Ai)],
where Ii is the intensity distribution in the local region around the atom and the
target model is updated by “adding” up shape residuals. The first term, image
likelihood term, is evaluated by RIQF principal mode coefficients on geometric
local regions corresponding to the spoke ends of the atom, which probabilistically
represents the appearance of a region in an image. The details of the image sta-
tistical method can be found in [16]. Given the figure stage results, we randomly
loop over all the atoms and update each atom by adding the residual deformation
which gives the best log posterior probability value. To be consistent with our
training, before each addition with the residuals from the residual PGA space,
we locally align the atom to the figure stage result by the configuration of its
neighbors. Instead of transforming the current atom first by alignment and then
inverse alignment, we apply the inverse alignment transformation to the residual
primitive and directly add it to the current atom. Usually it takes 1-4 iterations
for the optimization to converge. In each iteration, if one atom gets updated, all
its neighbors will be updated later due to the new neighbor relationship.



Fig. 2. Comparison of figure stage result (left) and the atom stage result (right): Ren-
dered surfaces of a particular bladder case. Notice the local surface variations of the
atom stage results with the smoothness property kept.

Fig. 3. Comparison of figure stage result (black) and the atom stage result (white):
Sagittal(left), Axial (Middle) and Coronal (Right) slices through bladder CT data set.
Notice the improvements on the higher contrast regions.

4 Experimental Results and Discussion

We tested the multiscale methodology on five patient image sets, each of on-
average 16 daily CT scans of the male pelvic area taken during the radiotherapy.
Each image has an in-plane resolution of 512×512 with voxel dimension of 0.98
mm × 0.98 mm and an inter-slice distance of 3 mm. Expert manual segmenta-
tion was provided. For each patient dataset, we carried out a leave-one-day-out
study; namely, we had training done on all other days (approximately 15) when
segmenting the target day. As the evaluation metric we use volume overlap,
which is the intersection over average with the hand segmented binary image,
and average surface distance, which is the average distance between two surfaces.

An example of typical bladder segmentation results are shown to demonstrate
how the atom stage performs. Fig. 2 shows the 3D surface of the m-rep models of
the figure stage result (left) and the atom stage result (right), and Fig. 3 shows
the three orthogonal planes through the models with the corresponding slices of
gray scale CT image as the background. In this case the average surface distance
is reduced from 1.54 mm at the figure stage to 1.15 mm after the atom stage,
and volume overlap is increased from 91.3% to 93.8%.

Fig. 4 depicts the bladder segmentation results of 80 images from 5 different
patients. We pool all the cases together by sorting the evaluation metrics to show
the trend of the improvement regardless of its specificity of a certain patient or
day, without strict correspondence of the figure stage and the atom stage for the
same case. As we can see from the figure, the overall curve is improved towards
a better fit. Even for some unsatisfying figure stage results, with volume overlap
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Fig. 4. Bladder segmentation results for the 80 pooled CT images, measured by av-
erage surface distance and volume overlap. The curves give the trend of the overall
performance. The curve labeled training measures the fit of the training m-rep to the
binary image given the “correct” answer and thus provides the best possible segmenta-
tion that could be achieved by a m-rep. Notice the improvement from the figure stage
to the atom stage.

under 90% and average surface distance above 2 mm, the atom stage is able to
make some improvements.

There are several cases where the atom stage gives no improvements, partly
because the figure stage has already done a good job, with volume overlap larger
than 94% and average surface distance less than 1 mm, leaving little room for
the refinement. When part of the figure stage result is some cm from correct,
typically due to a poor initialization, the atom stage makes the results little
better and sometimes even a little worse, with volume overlap under 85% and
average surface distance above 2.5 mm. We are working to improve these results
by developing better initialization methods.

The improvements in bladder segmentation are most noticeable at parts of
the boundary where the contrast is high. Here the atom stage has moved the
segmentation from rather good to completely acceptable for clinical use.

Our preliminary atom stage segmentations on the prostate did not show
improvements from the figure stage. There are several reasons. First, almost all
around the prostate boundary the contrast is low. Second, the atom alignment
in the prostate model is less accurate than the bladder because its medial sheet
is typically heavily bent. Additionally, the figure stage results are in many cases
more satisfying than for the bladder, leaving little room for the refinement.



Further study on more accurate alignments will be carried out to increase the
accuracy of the atom stage prostate segmentations.

5 Conclusion

We have provided a method to refine segmentations after the global scale in a
probabilistic multiscale framework. Priors generated via local alignments on the
shape residuals and image likelihoods computed from local RIQFs are applied
to a posterior probability optimization for the local scale segmentation. Experi-
ments on 80 CT images have demonstrated that more accurate fits to the objects
are achieved by the small scale deformations.

Our preliminary results suggest that the residual statistics are effective to
drive the local primitives to deform towards better posterior estimates. A robust
figure stage is desired to produce stable statistics for the atom stage, especially
for the HDLSS problem in our radiotherapy datasets. Also, accurate alignment
is important to obtain correct and tight residual statistics for segmentation.

From the point of view of clinical use on our adaptive radiotherapy target
problem, our multiscale method for inter-day segmentation within a patient must
be tested with variability training from inter-day variations on other patients,
a strategy that has been shown to work at the figure stage [17]. Also, a more
reliable alignment method should lead to better local scale segmentation. Finally,
the refinement method has only been tested on intra-patient datasets. It will be
interesting to try it on inter-patient data sets as well. Larger training samples
will produce more robust statistics but these will be needed to handle the larger
inter-patient variations.
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