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Abstract. Respiratory motion challenges lung radiation therapy with
uncertainties of the location of important anatomical structures in the
thorax. In order to capture the trajectory of the motion, dense image
matching methods and learning-based motion prediction methods have
been commonly used. However, both methods have limitations. Serious
motion artifacts challenge the intensity-based image matching, and the
motion prediction methods require strong motion consistency between
the training and test data. This paper proposes a prediction-driven mo-
tion atlas framework for motion estimation with artifact-laden images,
using a Fréchet-mean-image matching scheme that is softly constrained
by deformation predictions. In this framework, all the time-stamped im-
ages within a breathing cycle are diffeomorphically deformed to their
Fréchet mean. The iterative optimization is driven by both intensity
matching forces and prediction matching forces trained from patient-
specific planning images. The effectiveness of the framework is demon-
strated with computational phantom and real cone-beam CT images.

1 Introduction

Respiratory motion challenges the standard radiation treatment planning pro-
cedure in thorax. In fact, positional uncertainties caused by the respiratory mo-
tion have been shown to have a large impact on radiation dose [1, 2]. Accurate
respiratory motion estimation is necessary for removing the motion-induced un-
certainties. In 4D image-guided radiation therapy (IGRT) two different imaging
modalities are often used for planning and treatment, respectively. Standard
multi-slice respiration-correlated CT (RC-CT) scans are usually taken for diag-
nosis and planning, for its good contrast and high resolution and large field of
view. Immediately prior to treatment, another set of images is acquired for radi-
ation guidance and dose calculation. Factors such as the speed of the scan, the
imaging dose and the configuration of the treatment devices determines the fea-
sibility of a certain image modality being adopted at treatment time. Implanted



gold markers and megavoltage (MV) portal imaging are commonly used for setup
verification of tumors treated with high-dose, single-fraction radiotherapy.

Cone-beam CT (CBCT) exploits flat panel technology to integrate the imag-
ing system directly into the treatment accelerator, allowing acquisition of a volu-
metric image at each respiratory phase in the treatment position and eliminating
the need for marker implantation [3–5]. However, degradation of image quality
(Fig.1) resulting from the sparse projections for each phase in the filtered back-
projection reconstructions imposes serious limitations on its IGRT applications
[6]. NST technology can provide unprecedented imaging speed and good spatial
resolution in the plane perpendicular to the radiation field. However, the result-
ing images have interfering patterns in comparison to the standard CT scans,
making the soft tissue in low contrast

Fig. 1: Left: An axial slice of a diagnostic CT image at the end-inspiration (EI)
phase taken at the treatment planning time. Right: An axial slice of a five-
minute CBCT scan at EI phase, having significant streak artifacts due to the
FBP reconstruction using sparse and unevenly spaced projections.

Motion reduction techniques can increase the contrast-to-noise-ratio (CNR)
of the image thus help the image guidance procedure. One of the techniques
is to compute an atlas image by averaging all the images after warping onto a
common reference image [5]. If the spatial transformation successfully matches
the geometries of all the images together, the CT intensity of the anatomical
structures will be enhanced in the resulting atlas image. The key is to estimate
the correct deformations from the noisy 4D sequence image.

Two different categories of methods have been used to capture the respiratory
motion trajectory. One is ordinary intensity-based image matching or tracking.
Various non-linear dense image registrations can be used to calculate the spatial
changes of each voxel between images by matching their intensity profiles [7, 8].
However, the image registration could easily get trapped in local minima when
imaging artifacts are present and thus tends to over-fit to those artifacts.

The other category is linear motion modeling with surrogate signals. Rec-
ognizing the hysteresis of respiration, various external and internal surrogate
signals have been used for motion modeling and prediction in lung [9–11]. The
diaphragm position of the lung has been used as a navigator of the image de-
formation and used for motion prediction for CBCT-guided radiation therapy
[12]. Recently, the shape of the lung has been used as an advanced surrogate for
motion prediction, in which the so-called shape-correlated deformation statistics
(SCDS) reveals the maximum linear correlations between the shape surrogates
and the image deformations [13, 14]. The common underlying assumption of all



the surrogate-invovled models is that the correlation between the surrogate de-
formations and the underlying image deformations is strong and invariant over
time (or at least the same between planning time and target time). The assump-
tion simplifies the complicated breathing system and thus enables the estima-
tion by incorporating prior information. However, the correlations between the
surrogate and the spatial deformation are often not exactly the same between
the planning time and the treatment time, especially for cancer patients who
have difficulty in stabilizing their breathing over time. Besides, noise kept in the
SCDS trained from few planning phases tend to result in predictions that are
not consistent with the actual anatomical conformations in some local regions.

To fully utilize both categories of methods while avoiding their limitations,
our method improves the motion estimation by integrating intensity information
with motion predictions. On the one hand, the motion prediction can help reg-
ularize the intensity matching from over-fitting. On the other hand, meaningful
image features can be utilized to reduce prediction errors.

A respiratory motion atlas formation method driven by a combination of
prediction matching forces and image matching forces is developed in this pa-
per. A respiratory motion atlas contains an atlas image and the dense image
deformations that transform each time-stamped image in the breathing cycle to
the atlas image. Instead of an image at an arbitrary time point, a Fréchet mean
image that takes the minimum total amount of transformations to match all
images is computed and used as the atlas image for increased robustness. The
deformations predicted from a shape-correlated deformation statistics (SCDS)
model are used as a soft constraint during the optimization. The balancing force
between the prediction force and the intensity force can be adjusted via a weight-
ing factor, selected upon the credibility of the training statistics and the quality
of the treatment images.

Section 2 introduces the framework of the proposed prediction-driven defor-
mation atlas formation. Specifically, section 2.1 introduces the the background
of Fréchet mean image formation; Section 2.2 presents the motion prediction
using the SCDS model; Section 2.3 introduces a prediction-driven atlas forma-
tion by integrating the predicted deformations into the image matching scheme.
Experimental results are presented in Section 3.

2 Methodology

2.1 Respiratory Fréchet mean image formation

To quantify the breathing motion from images, non-linear dense image registra-
tions are often used to compute the spatial changes for each voxel in the image.
The breathing motion can be quantified by the non-linear deformations that
match each time-stamped image in the breathing cycle to an atlas image. The
atlas image, together with the deformations, form the respiratory motion atlas
for this patient. There are several aspects to be considered in choosing a proper
atlas image. First of all, due to the large anatomical variations between patients,



it is more practical for the atlas image to be patient-specific. Secondly, to be used
for motion prediction, the conformation of the atlas image should also be stable
over time or at least stable between the planning time and the treatment or tar-
get time; Computationally, a smaller total amount of deformations is preferred
for better image registration accuracy and efficiency.

A Fréchet mean image has the property that it minimizes the sum of squared
distances on the Riemannian manifold of diffeomorphic transformations to a
group of images. It represents an averaged spatial configuration of that group
[15]. Therefore, the Fréchet mean image of the breathing sequence well satisfies
the aforementioned criteria and is used in this paper as the atlas image.

The Fréchet mean formation method based on large deformation diffeomor-
phic image matching has been successfully applied to regression of longitudinal
image data to study non-linear geometric changes and variability of anatomical
structures. Note that the Euclidean mean of all the image intensities is inappro-
priate to represent the geometry of the data that deforms in a non-linear nature.
In the process of iteratively updating the Fréchet mean image, the deformations
that transform all the phases to the Fréchet mean are optimized at the same
time (Fig.2 ).

Fig. 2: Fréchet image mechanism: a) The filled circles represent individual point
pi on the Riemannian manifold M. The Fréchet mean (filled square) is the
point µ on the manifold that minimizes the sum of squared distances to the
observations. Distances are measured along the manifold; b) Iterative Fréchet
mean image construction framework illustrated on images of spheres with varying
radius. The mean image in the middle minimizes the sum of squared deformation
distances required to match all input images.

Given a group of time-stamped images, geometric changes over time are
represented as the action of a group of diffeomorphisms on images. Let DiffV (Ω)
be the group of diffeomorphisms that are isotopic to the identity. Each element
φ : Ω → Ω in DiffV (Ω) deforms an image I to the image I ◦ φ.

In [15] the geodesic distance between a pair of images on the manifold is
defined by diffeomorphic matching:

d2(IF , IM ) = argmin

∫ 1

0

||vt||2V dt+
1

σ2
||IM ◦ φ− IF ||2L2, (1)



subject to φ(x) = x +
∫ 1

0
vtdt. The first term defines a metric on the space

of diffeomorphisms that are generated by integrating velocity fields v. These
diffeomorphisms are used to deform a moving image IM to match a fixed image
IF . The second term penalizes residual image dissimilarity. The parameter σ
controls the relative weight of these terms.

The Fréchet mean Î is the image that requires the least amount of deforma-
tion to map onto the group of input images:

Î = argmin
I∈J

N∑
i=1

d(I, Ii)2. (2)

Combined with geodesic distance definition (1), the optimization problem can
be summarized as

Î , φ̂i = argmin
I,φ̂i∈I×DiffV (Ω)N

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
||I − Ii ◦ φi||2L2

]
,

subject to φi0 = Id, φi(x) = x+

∫ 1

0

vit(φ
i
t(x))dt. (3)

2.2 Deformation prediction using the SCDS model

The SCDS model has been shown to effectively reveal the patient-specific linear
correlations between the shape surrogates and the image deformations [13, 14].
In this method, the shape of the lung is used as an internal surrogate signal
to navigate the dense image deformation by linear regression. The SCDS model
trained from the planning images is used to predict the motion of the target
images via extracted shape surrogates. We adopt the SCDS model to calculate
the deformation prediction that is going to be used as a soft constraint in the
overall optimization framework described in the next section.

In order to apply this method to CBCT images, robustly extracting the lung
boundaries against the streak intensity artifacts is important. We developed a
posterior probability optimization scheme to calculate the models that fit into
the target images while staying in the trained shape space. The optimization is
described in

log p(qi|J i) = argmax
qi

[log p(J i|qi) + log p(qi)], (4)

where qi is the lung shape (to distinguish the shapes pi in training) of the
CBCT image J i (to distinguish the training image Ii). The image match term
or the likelihood term is the summation of a second-order gradient magnitude
measured on the surface of the model (see Fig.3), indicating how well the model
fits to the boundries. The prior term is measured by Mahalanobis distance of
the model in the trained shape space.

In summary, three major steps are carried out to estimate the deformation
represented by the dense deformation field ui for CBCT image J i at phase i:



Fig. 3: The second order gradient magnitude image is computed as ||∇(||∇(G ◦
I)||)||, where G is the gaussian smoothing operator. A coronal slice of an CBCT
phase image is shown on the left, with its result shown on the right.

1. The dense image deformations in the planning CTs are obtained by the
intensity-based Fréchet mean formation method introduced in the last sec-
tion. The surface models of the lung are extracted from each CT phase
images. Calculated the linear correlation C that maps a shape surrogate pi

to its corresponding image deformation ui, such that u = C · p + ε, where ε
is the regression error.

2. Segment the lung shape qi from the CBCT images J i using the posterior
probability optimizaiton scheme.

3. Deformations of each time-point of the CBCT sequence ui are calculated by
ui = C · qi.

After the motion prediction, an atlas image can be calculated by averaging
all the intensity images after warping them using the predicted deformations.

2.3 Prediction-driven respiratory motion atlas formation

As mentioned in the introduction, when using the proposed SCDS prediction,
the correlation between surrogate deformations and underlying image deforma-
tions among the training data is assumed to be the same as among the target
data. The consistency assumption provides the prerequisite for directly applying
the statistics trained from the planning data to the target data. However, the
assumption does not hold for lung cancer patients who themselves have difficul-
ties to strictly regularize their breathing patterns. Besides, the linear correlation
regression results contain noises due to the small number of sample size.

To increase the prediction robustness of the method, image intensity features
can be used to adapt to the motion variations between the training and the
testing data. Despite the CBCT artifacts, there are many intensity features useful
for guiding the image registration, such as the bony rib cage, and the bronchial
structures inside the lung.

A prediction-driven deformation atlas formation method, driven by the com-
bination of prediction constraints and image matching forces is presented here
to weaken the consistency assumption and improve the motion estimation ac-
curacy. The deformation predictions are used as soft constraints in the iterative



Fréchet mean image optimization, as follows:

Ĵ , ϕ̂i = argmin
J,ϕ̂i∈I×DiffV (Ω)N

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
1

||J − J i ◦ ϕi||2L2 +
1

σ2
2

dR(ϕi, φi(qi))

]
,

subject to ϕi = x+

∫ 1

0

vitdt, (5)

where J i denotes the CBCT image at phase i, Ĵ is the atlas image and ϕi refers to
the image deformation that matches the individual CBCT phase image J i to the
atlas image Ĵ , and qi is the lung shape segmented from J i using the deformable
segmentation method introduced in Section 2.2. The difference/distance between
the varying deformation ϕ and the prediction φ(qi) is measured via the Rieman-
nian manifold metric R, which is defined by

dR(ψ1, ψ2) = inf
γ:[0,1]−>M,γ(0)=ψ1,γ(1)=ψ2

∫ 1

0

√
< ˙γ(t), ˙γ(t) >V dt, (6)

where the Riemannian distance between two points ψ1 and ψ2 on M is defined
as the infimum of this integral over all piecewise smooth curves γ that connect
ψ1 and ψ2. This distance can be alternatively computed by dR(ψ1 ◦ ψ−1

2 , id),
where id is the identity transformation.

In order to reduce the computational time and storage, an Euclidean ap-
proximation of the Riemannian distance is given by : dR(ϕi, φi(qi)) ≈ ||uϕi −
uφ(qi)||2L2 , where uψ denotes the dense displacement vector field resulting from
the diffeomorphic transformation ψ, and the SCDS-predicted deformation uφi(qi)
is computed by linear mapping uφi(qi) = C · qi (refer to Section 2.2). When
deformations are not very large, the linear approximation is sufficient.

The balancing force between the prediction and the noisy intensity profile can
be adjusted via the weighting factors σ1 and σ2, selected upon the credibility of
the training statistics and the quality of the treatment images. In general, the
weighting factors should make the two forces have the same order of magnitude.
Built on top of the original intensity-based atlas formation method (Section.2.1),
the new energy term of the prediction is treated as an extra feature channel.
Computationally, this extra channel itself is a three-dimensional-vector channel
and takes three times the storage as the image intensity.

3 Experimental results

3.1 Breathing spheres

We started with some simulation data to test the prediction-driven atlas forma-
tion method. A sequence of sphere images with varying radius were designed to
mimic the breathing scenario. The radii follow a sinusoidal curve to simulate the
breathing pattern of a volume enlarging process followed by a volume shrinking.
The surface points of the sphere are used as the shape surrogate to carry out the



SCDS motion prediction. With the same date set, Gaussian noise is added to
create the test data. The Euclidean mean image for the training and test data
are shown in Figure 4a and Figure 4a respectively.

(a) (b) (c) (d) (e)

Fig. 4: Breathing spheres test: a) The Euclidean mean of the original sequence
image; b) The Euclidean mean of the noisy test sequence image.CDS motion
prediction on noisy breathing spheres; c) The Fréchet mean image of the training
data; d)The Fréchet mean image of the test data using the intensity-based atlas
formation method; e) The resulting atlas image of the test data using the SCDS
motion prediction.

Using the breathing spheres, we first compare the effectiveness of the SCDS
motion prediction method (Section 2.2) to the intensity-based atlas method (Sec-
tion 2.1). The underlying correlation between the surrogate, the surface point set
sampling on the spheres with groupwise correspondence, and the image deforma-
tion are the same for the training and the testing data, since the only difference
between the two datasets is the added Gaussian noise. It is shown that the
intensity-based atlas formation method (Figure 4d ) tends to over-fit the noise,
while the SCDS prediction (Figure 4e) is only determined by the training data.

To simulate the changes or statistical modeling errors in the correlations be-
tween the training set and the test set, the correlation coefficients were perturbed
randomly by 0.15 at maximum. The results of three methods are shown in Figure
5. The SCDS prediction is influenced by artificial perturbation and produces er-
rors mostly visible at the edge of the atlas sphere. On the other hand, it is shown
that the prediction-driven deformation is able to balance between the intensity
force and the prediction force thus getting the best result. Errors and intensity
energies are shown at each iteration step in Figure 6 for a detailed investigation.

3.2 NCAT data

4D Nurbs-based Cardiac-Torso (NCAT) phantom thorax CTs were produced [16]
at 10 phases sampled in one breathing cycle. A corresponding CBCT sequence
was simulated from the NCAT CTs using the protocol of a gantry-mounted KV
on-board imaging system (Varian Medical Systems) [4] that is used in patient
radiation therapy guidance. An example image pair is given in Fig. After a bi-
nary segmentation of the lung region, point distribution models (PDMs) were
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Fig. 5: Test on noisy spheres with slight correlation perturbations (from left to
right): 1) The resulting perturbation on the predicted deformations measured
in terms of the first principal component coefficients in its training deformation
space; 2) The intensity-based atlas image; 3) The atlas image from the SCDS-
predicted deformations; 4) The prediction-driven atlas image.
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Fig. 6: Comparison results of the deformation estimation on the noisy data. Left:
Average displacement vector field error at each iteration, with the ground truth
deformations calculated from the training images. Right: Average image intensity
force at each iteration. The intensity-based matching method is shown to over-fit
the noise.

created using a point-based method that optimizes the group-wise correspon-
dence while sampling on the surface [17]. Meshes were then interpolated from
the corresponding surface points, see Figure 7.

In order to test the prediction-driven atlas formation method, variations in
the breathing patterns between the training data and the test data were sim-
ulated in two experiments. In the first test, we simulate the variation by using
different physical parameters for the two NCAT data sets. The parameters that
we used for the training set had a maximum of 1.5 cm diaphragm motion and
1.5 cm anterior-posterior motion. The testing data had a maximum of 2.0 cm di-
aphragm motion and 0.5 cm anterior-posterior motion. All other parameters for
the phantom were the same. In the second test, we added random perturbation
the correlation coefficients to generate noisy prediction results.

The intensity-based atlas formation results, the SCDS motion prediction re-
sults and the prediction-driven atlas formation results are compared in terms of
the center of gravity (COG) location errors of the tumor region, shown in Figure
8. The intensity-based atlas method is able to closely capture the tumor location
changes. In fact, despite the global streak artifacts, the tumor region after the



CBCT reconstruction still has a quite strong contrast respect to its surrounding
tissue. In the real patient CBCT images, less contrast on the tumors is expected.

Fig. 7: NCAT simulation: Left) An axial slice of a NCAT CT image at EE phase
and its corresponding CBCT image; Right)The surface mesh representation of
the shape of lungs extracted from NCAT CTs. The color shows the magnitude
of the spatial variation of each point during the breathing cycle.
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Fig. 8: Three methods are compared in two tests in terms of the tumor COG
estimation errors, with the static measurement indicating the mobility of the
tumor. The fourth phase is used as the base phase to propagate the tumor
contour to other phases. Left: Training and test data sets have different physical
motion paramters. The average errors for the four methods in order are 6.79 mm,
2.76 mm, 3.64 mm and 2.38 mm respectively. Right: Test data has correlation
pertubations. The average errors for the four methods in order are 6.78 mm ,
2.76mm, 3.61mm and 2.0mm respectively.

3.3 Patient data

Respiration-correlated CT (RC-CT) data sets are provided by a 4-slice scan-
ner (lightSpeed GX/i, GE Medical System), acquiring repeat CT images for a
complete respiratory cycle at each couch position while recording patient respi-
ration (Real-time Position Management System, Varian Medical Systems). The



CT images are retrospectively sorted (GE Advantage 4D) to produce a series of
3D images at different respiratory time points. The CBCT scans are five-minute
scans acquired using a gantry-mounted KV on-board imaging system (Varian
Medical Systems).

Motion estimation results are evaluated on a mock tumor region as shown
in Figure 9. Manual segmentations are provided for each CBCT image for error
measurements. The manual tumor contour of the fourth phase image (the end-
expiration phase) is propagated to all the other phases. The three methods are
compared in terms of the COG location errors, see Figure 9. The average COG
errors of the 5 phases for the three approaches are 3.5 mm, 2.3 mm and 1.7
mm respectively. The prediction-driven atlas method outperforms the other two
approaches in this patient.
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Fig. 9: Three methods are compared in terms of the COG estimation errors, with
the static measurement indicating the mobility of the tumor. Left: Axial slices
of the estimated tumor contours at the fifth phase from the three methods, with
the same colors tagged in the bar figure on the right. The manual segmentation
of the tumor contours is shown in white. Right: The COG errors for the four
methods. The fourth phase is used as the base phase.

4 Conclusion

The prediction-driven atlas formation framework is shown to be more robust
for modeling and estimating sophisticated respiratory motion in lung than the
intensity-based Fréchet mean method and the learning-based SCDS motion pre-
diction method, with our preliminary studies on both simulated phantom data
and cone-beam CT data. More comprehensive validations on patient data are
needed to quantify the robustness of the method.
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