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Abstract

Many organs in the human body are nearly tubular in
shape, i.e., have circular cross-sections. Examples are por-
tions of blood vessels and the colon. The method of seg-
mentation of slab-like organs with the help of statistics on
medial models has been shown to be successful for several
organs. However, the medial surface of a tubular object de-
generates to a curve, and the statistics of even nearly tubu-
lar objects will typically be unstable. Traditional medial
models cannot handle this degeneracy. In this paper, we de-
tail the representation, geometry and means of computing
statistics on tubular medial models. We test our method on
synthetic tubes with shapes sampled from the distribution of
a rectum and CTs on carotid arteries and real rectums.

1. Introduction

Many objects in the human body are roughly in the shape
of a tube. Some of these include sections of rectum, blood
vessels and the bronchial tree. In our work, a tube refers to
an object that has a circular cross-section that may vary in
size and have a possibly bent axis. Segmenting these objects
is an important task in medical image analysis. Most of
these objects can be modeled as a set of small scale local
deviations from a tube. In this paper, we tackle the problem
of finding the larger scale tubular structure.

Segmenting the vascular tree has been a very impor-
tant problem in medical imaging. Most existing work on
segmenting nearly tubular objects uses a tube following
paradigm, where the tube is segmented a piece at a time.
Fridman et. al. [3] use a medial model for a tube. However,
their model is restricted to tubes with cross-sections that do
not vary too quickly. They use a model called ‘the core’,
which is an m-rep extracted as a height ridge of a medial
strength function on medial atoms. The medial atoms are
characterized by a point and a set of equi-length spokes em-
anating from the point in the shape of a cone. They compute
a medialness measure to follow the medial axis of the tube

after the core has been initialized. These methods, however,
are tailored to suit the vascular and the bronchial structures,
which have much better contrast than rectums and are also
much narrower compared to rectums. Rectums on the other
hand can be very variable in shape due to the presence of
gas and other non-tissue material. Also the contrast in the
image is not very good.

The method of segmentation via posterior optimization
of m-reps developed by Pizer et. al. [5] has been very suc-
cessful in dealing with shapes with a lot of variability and
poor contrast. However, the m-reps used to date use a me-
dial surface to represent a bent variable width slab. In the
case of a tube with a perfectly circular cross-section, the
medial surface degenerates to a space curve. For most real
tubes, the medial surface is very narrow. The orientation of
a narrow medial sheet is very sensitive to small changes in
the boundary and will result in very variable statistics. We
develop a new method that draws on the ideas from those
used for slab m-reps but represents a tube-like object with a
discretely sampled medial space curve.

The segmentation method can be divided into two parts:
training and the actual segmentation itself. A rough model
of an m-rep for the object is developed manually. An expert
manually segments at least a dozen training images. The re-
sulting manual segmentations are used to develop the m-rep
model for the object. Optionally, a set of landmarks are also
identified on the object. These correspond to places on the
surface of the object that can be easily located. We then vary
the parameters of the m-rep model inside an optimizer that
minimizes the distance between the m-rep implied bound-
ary and the actual segmentation as well as the distance be-
tween the actual landmarks and the corresponding positions
on the surface of the m-reps. At the same time, we try to
ensure that the m-rep model appears smooth and remains
legal. The precise definitions of legality, smoothness and
distance will be covered in the later sections of this paper.
The resulting set of models are known as trained or fitted
models.

These trained models are then analyzed statistically. The
variation in the shape space of the models is studied using
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Principal Geodesic Analysis (PGA), which is a variation of
Principal Component Analysis (PCA) suited for non-linear
spaces. At the same time, the region around the object is
divided into smaller parts and the distribution of intensities
in each region is studied with the help of local region in-
tensity quantile functions, developed by Broadhurst [1] and
Stough [7]. We then apply PCA on these quantile functions.

When a target image is to be segmented, the mean model
is placed close to the real organ with the help of landmarks
or manually. The model is allowed to deform along its
principal modes of variation under an optimizer that penal-
izes improbable shapes and intensity distributions around
the object. This is known as the method of posterior opti-
mization

Similarly for tubes, we start with a tubular medial model.
The model is trained with the help of manually segmentated
images. Shape and intensity statistics are obtained and then
these probability distributions are used to drive the segmen-
tation.

In section 2 we describe the respresentation, geometry
and methods for computing shape statistics on tubes. Fi-
nally, in section 3 we present some results on the segmenta-
tion of rectums.

2. Medial Models for Tubes

A first order tube m-rep is a continuous space curve with
a cone placed at every point along the curve. The axis of
the cone is tangential to the space curve at its tip. Sweeping
the edges of the base of these cones defines the boundary
of the modeled object. The cones may have a half cone
angle greater than π/2 but less than π. They are not al-
lowed to intersect each other. Damon has developed a Shape
penalty measure for slab m-reps that penalizes such inter-
secting cones. We have similarly developed a shape penalty
measure for tubular m-reps.

In practice, we represent the medial model of a tube by
discretely sampling the space curve of cones. Each sample
is called an atom and is shown in Fig. 1. Associated with
each sample is its position in space, P = (x, y, z), and a
cone with its tip positioned on the sample. The cone in turn
is represented by its bisector, Û0 = (U0,1, U0,2), the half
cone angle, θ, and the length of its inclined surface, r. The
bisector of the cone co-incides with the tangent to the me-
dial curve. To keep the discrete samples from clustering or
moving away, we impose a regularity penalty on the object
that penalizes if an atom moves away from the average de-
fined by its neighbors.

The atoms at the two end of the chain have an additional
parameter describing the curvature of the cap at that end.
These atoms are called end-atoms.

The continuous medial curve γ(u) is interpolated from
these atom positions and cone bisector vectors with the help

Figure 1. Representation of a tube atom

Figure 2. A mean model of a rectum from one of our studies show-
ing the medially implied surface as a wireframe.

of piecewise cubic Hermite splines. The cone bisector vec-
tor is scaled by the mean of the distance between the posi-
tion of the atom and its two neighbors.

Further, to resolve the rotational symmetry, we have a
parameter φ that rotationally orients the entire tube along
its length. One of the atoms in the tube is designated as
a base atom. Usually this atom is close to a feature in the
organ that can fix the rotational orientation. Whenever the
cone for this atom is rotated around its bisector, all the other
cones are sympathetically rotated.

The circle at the base of the cone is discretely sampled.
The set of surface points generated from the cones of all the
atoms are interpolated to produce a fine and smooth mesh
resulting in a medially implied surface. The medially im-
plied surface for a tube model of a rectum is shown in Fig. 2.
Each position on the surface of the tube is uniquely repre-
sented by a set of co-ordinates and this co-ordinate system
provides correspondence between deformed versions of the
tube.

2.1. Shape Penalty: rSrad

We wish a penalty against locally self-intersecting
shapes. Ideally this penalty should be computed over the
entire space curve, but this would be computationally very
expensive. Thus we compute the shape penalties only over
the atom positions. Since this could still allow the model to
become illegal, we impose a penalty on the curviness of the



space curve, as described later.

The penalty against local self-intersection is based on
a one-dimensional shape operator for tube medial models.
This operator is an adaptation of the shape operator for or-
dinary medial models developed by Damon et. al. [2]. Han
et. al. [4] have used Damon’s operator to detect shape ille-
galities in ordinary medial models.

Consider the medial atom cone to be composed of a set
of spokes U extending from the tip to the base. We can
parameterize these spokes by the arc angle ω on the cir-
cumference of the base made with respect to a zero point on
the circumference. It has a range of [0, 2π). Then the radial
shape operator is defined as

Srad(ω) = − projU

(
∂U(ω)

∂u

)
, (1)

where projU is projection along the spoke vector U , U is
the corresponding unit spoke vector and u is an arc-length
parameterization of the medial curve. The derivative may
be written in the form

∂U(ω)
∂u

= a · U − κrad · γ′(u), (2)

where κrad is the principal radial curvature. Thus
Srad(ω) = κrad(ω).

Surfaces will be illegal and fold onto themselves if any of
these spokes cross. Damon shows that spokes will not cross
each other if r×κrad < 1. Unlike Damon’s shape operator,
our shape operator is a function of the angle ω. However, we
need not evaluate this for every spoke. A simple heuristic
based on vector mathematics can be used to find out the
direction of the maximum bending, and we need evaluate
Srad for only this angle.

In practice, the derivatives are computed by taking finite
differences of geodesically interpolated atoms. Interpola-
tion of medial atoms is briefly described in the next sec-
tion. Also this Srad operator is evaluated for several posi-
tions along the medial axis and not just at the atoms. The
norm of all of the Srad values obtained is reported as the
shape penalty. The ordinary 2-norm has been experimen-
tally shown to produce good results.

2.2. Geometric Penalty - Curviness

To penalize medial axis curviness, we define a curviness
measure, C := the p-norm of the total curvature sampled at
several places on the medial axis, γ(u). The total curvature
is related to the curvature κ and the torsion τ of the medial

axis, as follows.

T =
√

κ2 + τ2 (3)

κ =
|γ′(u) × γ′′(u)|

|γ′(u)|3
(4)

τ =
[γ′(u) γ′′(u) γ′′′(u)]

|γ′(u) × γ′′(u)|2
(5)

C =

 n−1∫
0

T pdt

1/p

, (6)

where n is the number of atoms in the tube. Recall that
γ(u) is obtained by Hermite interpolation. This relation for
curviness may not have an analytical form, so we evaluate
it with the help of numerical methods. Also, the value of p
is usually chosen as 2. However, if one wishes to penalize
the existence of any sharp bend or kink, it may be increased.
Beyond a value of 6, the penalty becomes too sensitive for
any meaningful use.

2.3. Shape Space and Statistics

Before computing statistics in the shape space of tubular
m-reps, the somewhat arbitrary ends of a tube model need to
be normalized. This action eliminates the possibility of this
random cut-off from becoming a dominant mode of vari-
ation in the shape statistics. After this normalization, the
surface of the tube is parameterized and divided into differ-
ent regions for the purpose of computing RIQFs.

A tube atom m can be represented by the tuple
〈P, Û0, θ, r〉. A tube consisting of n atoms can be rep-
resented by n such tuples concatenated together. Here P
belongs to the Lie group R3, Û0 is a point on the two di-
mensional sphere S2, θ ranges from 0 to π, and r belongs to
R+. Except for R3, all the other groups mentioned belong
to non-Euclidean spaces. We need to define a distance met-
ric in this space and also be able to project back and forth
between this shape space and a tangent plane.

The path with the shortest distance between two points
in a non-Euclidean manifold is known as the geodesic be-
tween them. The length of this path is called the geodesic
distance. To be able to compute the geodesic distance, we
need to define the mappings between the shape space and
the tangent space. The map that takes us from the shape
space to the tangent space is called as the Logarithmic map
and the reverse map is known as the Exponential map. The
maps of the individual components are given by the follow-
ing equations. The map for the atom is simply the drect



Figure 3. The figure in the center shows the mean model of a rec-
tum of a patient obtained by training over 17 days. The top and
bottom figures show the same rectum deformed by ±1.5 standard
deviations along the first mode of variation.

product of these maps.

Log(x) = x,

Log(φ) =
(
y1

α

sinα
, y2

α

sinα

)
,

where α = cos−1(y3),

Log(θ) = tan
(
θ − π

2

)
, and

Log(r) = log(r). (7)
Exp(x) = x,

Exp(φ) =
(

u1
sin|u|
|u|

, u2
sin|u|
|u|

, cos|u|
)

,

where |u| =
√

u2
1 + u2

2,

Exp(θ) = tan−1(θ) +
π

2
, and

Exp(r) = exp(r). (8)

Here, 〈y1, y2, y3〉 represents a point on the unit sphere

and 〈u1, u2〉 is its projection on the tangent plane. Note that
the exponential and logarithmic maps for φ preserves dis-
tances from the point (1, 0, 0) on S2. To make the units of
all the components commensurate in the logarithmic map,
we multiply the unitless quantities with the mean radius
taken over all the corresponding atoms in the population.
The geodesic distance is then defined as the norm of the
difference of these normalized atoms.

Interpolation between two atoms is performed by inter-
polating in the tangent space and then projecting back to
the manifold space. In this case, we must be careful that the
logarithmic and exponential maps for one of the atoms is
taken centered on the first atom.

Once we have a distance metric and these maps, we can
define the Fréchet mean µ of a set of atoms as the one that
minimizes the sum of squared geodesic distances from all
the corresponding atoms from the population.

µ = argmin
µ

∑
i

|mi − µ|2. (9)

We then take the logarithmic map of all these atoms and
project them on the tangent plane centered on the mean.
We do PCA on these projected atoms and keep the first few
modes that describe more than 90% of the variation. Fig. 3
shows the shape variation along the first mode of variation
of the rectum from our study. It also shows the percentage
of the variation explained by each of the eigenmodes. In
this case we needed the first 8 eigenmodes.

2.4. End Atom Normalization

Organs in the shape of tubes in the human body are usu-
ally quite long in length. However, in applications such as
radiotherapy, surgery and treatment planning, one is inter-
ested in a small section. During the step of manual seg-
mentation for generating training images for the model, the
cut-off may be somewhat arbitrary. If we compute shape
statistics on models trained on these images, then the vari-
able position of the ends may be a dominant mode of varia-
tion after PGA.

We compute the mean of the length of the medial curve
between the first and the second atoms across all the training
models. We then interpolate or extrapolate the first atom of
each model so that it is at the mean distance from the second
atom along the medial curve. This is also repeated for the
other end. If m0,i and m1,i are the first and second atoms
from the ith model, then the new first atom, m′

0,i is given



by the following relation.

li =

1∫
0

γi(u)dt,

mean length l =
∑

i

li
s

m′
0,i = Exp

m1,i

(
l

li
Log
m1,i

(m0,i)

)
, (10)

where s is the number of samples.

2.5. Regional Intensity Quantile Functions

Broadhurst [1] and Stough [7] developed the method of
regional image intensity quantile functions. In this method,
the surface is divided into small regions centered around
each spoke. Image intensity quantile functions Qx,k are
recorded for each region x in each training image k. A
quantile function is the inverse of the cumulative density
function on intensity. Because the space of such quantile
functions typically forms a low-dimensional linear space,
PCA yields a mean µx and a few modes of variation
{λx,i,vx,i}. The local image match function measures sta-
tistical distance between the observed quantile function Q̂x

in a region of the target image and the µx computed. The
local image match is thus

fx(m, I) =
n∑
i

((Qx − µx) · vx,i)
2

λx,i
+

|r|2

λr
. (11)

The first term is the Mahalanobis distance between the mean
and the observed quantiles with only the first n modes of
variation used. The second term accounts for the residue r
outside this PCA space.

3. Applications and Results
Adaptive radiotherapy is one of the common solutions to

treat prostate cancer, which is a growing medical problem.
Radiotherapy requires the precise delineation, also known
as segmentation, of the organ that is being irradiated. The
neighboring organs also need to be segmented so that the
radiation beams can be configured to avoid any sensitive
surrounding tissue and at the same time deliver the required
dose to the organ being treated.

The prostate is abutted by the bladder on one side and the
rectum on the other. Its shape and position are influenced
by both these organs. There has been success reported in
segmenting the bladder-prostate complex in Pizer et. al. [6].
The rectum is an object that is like a tube in shape, so it is
not well segmented via an m-rep slab.

We trained some models on real rectum data and ob-
tained a mean model with shape statistics from these trained

models. These statistics were then sampled to produce
99 synthetic rectum models, which were truely tubular.
Grayscale images for these models with additive Gaussian
noise were generated to train the intensity statistics on. We
first trained tubular medial models on each of the 99 cases
and computed shape statistics on these in a leave-one-out
manner. Corresponding image statistics were also com-
puted in a leave-one-out fashion. Landmarks corresponding
to the two ends of the rectum and the point closest to the
prostate were also automatically generated and used for the
initialization during the segmentation.

Some of these results are shown in Fig. 4. In Fig. 6, we
graph the performance of our method over all the samples.
The green line shows how far away the trained models are
from the ground truth using the average distance measure.
The red line shows the result of the segmentation. Note that
the size of a voxel in the simulated data is 2mm3. Thus on
the average, all the results are less than half a voxel away
from the ground truth.

Having performed very well on synthetic data, we then
tested our method on real data that is only approximately
tubular. The first data chosen for the test comprises of 17
images of the male pelvis of the same patient over differ-
ent days. We try to model and segment a small section of
the rectum and perform a leave-one-day-out analysis on this
data set. Four of the results are shown in Fig. 5. A series
of 2D slices from the segmentation shown in the left of this
figure are shown in Fig. 8. Initialization was done with the
help of four landmarks. On the left are two good segmenta-
tions. On the right are two bad segmentations. We note that
our segmentation method fails in capturing the ends prop-
erly, but then it is designed to ignore the ends as they are
arbitrary. Also the segmentation fails on an image of one of
the days where the patient has a bloated rectum. This pa-
tient does not have such a bloated rectum on any other day;
thus, we can consider this case as an outlier. From Fig. 7,
we can see that on the average our segmentation method
performs reasonably well.

Next, we tried our method on a small set of six common
carotid arteries from different patients. Common carotid
arteries are a challenging in that they are very small and
sit right next to the internal jugular vein that has about the
same contrast. Further, head and neck CT images are usu-
ally plagues with metal streak artifacts. In our experiment,
we only model the section of the common carotid artery
that sits near the sternocleidomastoid muscle. Initialization
during segmentation was done with the help of three man-
ually added landmarks. Some of these results are shown
in Fig. 9. The method performs reasonably well on three
of these images. In one of the cases where the method does
not work, the carotid artery gets attracted into the nearby in-
ternal jugular vein. In another case, the artery is much bent
compared with others and is thus a statistical outlier. These



Figure 4. Set of segmentation results in decreasing order of performance on synthetic rectum images: The segmented rectum is shown in a
gray color and the ground truth is shown by a transluscent blue color. The average distances between the two in clockwise order from the
top left in units of mm are: 0.40, 0.47, 0.55, 0.64, 1.52, 0.98, 0.87 and 0.84.

Figure 5. Set of segmentation results in decreasing order of performance on real rectum images: Again, the segmented rectum is shown in
a gray color and the ground truth is shown by a transluscent blue color. The average distances between the two from left to right in units of
mm are: 0.9, 1.2, 1.4 and 4.0.

Figure 6. The red line shows the average distance our segmentation
results were from the ground truth on synthetic rectum data. The
green line shows the same for the trained models. Note that the
size of a voxel is 2mm.

are shown in Fig. 10. We hope to resolve these problems
with more training and better initialization.

Figure 7. The red line shows the average distance our segmentation
results were from the ground truth on synthetic rectum data, the
green line shows the same for the trained models, and the blue line
represents the initialization used for segmentation.

4. Conclusion

The method performs really well on synthetic rectum
data. We are just beginning to apply this method to real
world data, and the results on real world data are satisfac-



Figure 8. Set of 2D slices from a segmentation of a rectum: The red line shows our segmentation. Notice the really poor contrast in the last
few slices.

Figure 9. The top three common carotid segmentations look rea-
sonable, whereas the one at the bottom is not so good.

tory. Real world data poses more challenges in the form of
poor contrast and the fact that organs in the body are not
exactly tubular.

We have developed a new medial method for segmenta-
tion of tubular structures from 3D images and tested it on
the data set of rectums for one patient. The method per-

Figure 10. While segmenting the common carotid in the top image,
it gets attracted to the nearby jugular vein. In the bottom case, the
artery is too bent compared with others and the method fails to get
any reasonable segmentation.

forms quite well on most of the data failing badly only in
one case that represents a bloated rectum. Most importantly,
the portion of the rectum that is close to the prostate is iden-
tified quite accruately. These segmentations can be further
improved with the help of a smaller scale stage that would
model the deviations of the rectum from a tube. In the case
of head and neck images, we have just started our analysis
and the results look satisfactory.

From the point of view of the medical problem, in the fu-
ture, we might incorporate the knowledge gained from these
segmentations to locate and segment the prostate. Also, we
intend to test this method for the segmentation of other tubu-
lar structures in the body. Methodologically, we intend to
support branching tube models.
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