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Abstract
Correlated shape features involving nearby objects often contain important anatomic information.
However, it is difficult to capture shape information within and between objects for a joint anal-
ysis of multi-object complexes. This paper proposes (1) capturing between-object shape based
on an explicit mathematical model called a linking structure, (2) capturing shape features that
are invariant to rigid transformation using local affine frames and (3) capturing Correlation of
Within- and Between-Object (CoWBO) shape features using a statistical method called NEU-
JIVE. The resulting correlated shape features give comprehensive understanding of multi-object
complexes from various perspectives. First, these features explicitly account for the positional
and geometric relations between objects that can be anatomically important. Second, the local
affine frames give rise to rich interior geometric features that are invariant to global alignment.
Third, the joint analysis of within- and between-object shape yields robust and useful features.
To demonstrate the proposed methods, we classify individuals with autism and controls
using the extracted shape features of two functionally related brain structures, the hip-
pocampus and the caudate. We found that the CoWBO features give the best classi-
fication performance among various choices of shape features. Moreover, the group dif-
ference is statistically significant in the feature space formed by the proposed methods.

Keywords: Joint shape representations, Multi-object shape analysis, Local reference frames, Shape
classification, S-reps.

1 Introduction
Joint shape analysis of multi-object complexes in
the human body can often yield additional insights
relative to single object analysis. Especially inter-
esting is to understand positional and geometric
relations between multiple brain structures (Bossa
& Olmos, 2007) – the positional relations include

relative pose and orientation between the two ob-
jects, while the geometric relations include local
shape captured using geometric properties such as
boundary curvature. In the development of Autism
Spectrum Disorder (ASD), for example, multiple
brain subcortical structures can together have mor-
phological variation due to the disorder. There has
been a number of research projects on the associa-
tion between the development of ASD and single
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objects (e.g., the hippocampus) morphology. Yet,
few of these projects reveals the positional and ge-
ometric relations between the brain structures in
ASD.

The challenges of extracting the positional
and geometric relations between 3D anatomic ob-
jects come from many directions. First, instead
of correlations between global morphological mea-
sures (e.g., volume-to-volume correlations), the
brain structures interrelate in a subtle way and
in local regions (Hazlett et al., 2017). This re-
quires not only sensitive shape representations
that can well capture local shape features but
also good correspondences across samples. Second,
the anatomically important interrelations between
objects are often non-linear. The average of two-
object complexes, for example, is by no means
the concatenation of two averages of single ob-
jects. Third, such interrelations between objects
can hardly be extracted via the analysis of the
concatenated single objects because the concatena-
tion can ignore the interrelations between objects.
Fourth, it is difficult to separate geometric from
positional relations in multi-object complexes due
to the difficulties of alignment (see e.g., Gollmer
et al., 2012).

To address the above difficulties, this paper pro-
poses a geometric model that explicitly captures
within- and between-object shape of two-object
complexes. In such a complex there exist two par-
allel disjoint objects. In this setting within-object
features refer to single object information – includ-
ing position, width, and orientation of an object;
while between-object features refer to the above-
mentioned relations. The features of the model are
examined in a statistical analysis to find significant
correlation that forms the basis of classification
and hypothesis testing.

The geometric model is based on skeletal rep-
resentations (s-reps) of single objects (Liu et al.,
2021). In addition to within-object shape features
provided by each s-rep, we also focus on how two
s-reps link to each other. The link features are de-
signed to capture both positional and geometric
relations between the two objects, as described
below.

To obtain desirable link features, we propose
a modified version of the linking flow given by
Damon and Gasparovic (2017). The key idea is
to create a smooth mapping from skeletons to an
external linking surface that is formed to bisect

the two boundaries. Our linking flow takes in two
s-reps and outputs a link vector field defined on
each s-rep. From a link vector field, we sample dis-
crete link vectors that have good correspondences
across a population. These link vectors provide
between-object link features, including (1) the link
distances (i.e., lengths of link vectors) between a
skeleton and the external linking surface and
(2) the directions of the link vectors. Link lengths
can capture the positional relation between the two
objects, while the link directions can capture the re-
lations of local geometry. This paper explores and
exploits the above link features in statistical anal-
ysis. Different from the Damon-Gasparovic linking
flow, our method yields a smooth non-branching
external linking surface between the objects (the
hippocampus and the caudate) in our dataset. Such
consistent topology allows us to have link vectors in
good correspondences across a population, which is
specially advantageous in 3D anatomic shape anal-
ysis where the between-object shape often varies
dramatically.

Moreover, using local affine frames we capture
geometric features that are invariant to rigid trans-
formations yet are sensitive to local deformations.
Fitting local affine frames allows us to extract
differential geometry of an s-rep. We map s-rep fea-
tures to these local affine frames to obtain shape
features that are invariant to rigid transformations
of the multi-object complex. Not only for within-
object shape features, the affine frames can be also
used in capturing between-object shape features
that are invariant to rigid transformations.

Finally, we jointly analyze within- and between-
object shape features using a statistical method
called NEUJIVE (Liu et al., 2022), yielding Corre-
lation of Within- and Between-Object (CoWBO)
shape features. While between-object shape can
vary much more dramatically than within-object
shape, our method can reveal the correlation re-
gardless of the different variability of the two.

The proposed methods (illustrated in Fig. 1)
show statistical advantages in classifying autism
vs. non-autism with the shape of subcortical struc-
tures including the hippocampus and the caudate.
We found that the CoWBO features made from
(1) s-rep features of the hippocampus and (2) link
features between the hippocampus and the caudate
yield the best classification performance among
various choices of shape features. In addition to
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Figure 1 Illustration of generating CoWBO features in two-object complexes. We extract s-rep features x from fitted s-reps
(Liu et al., 2021). Then we fit a Local Affine Frame (L. A. F.) field on each skeleton (see Section 5). The s-rep features are
mapped to the L. A. F. via linear mapping Ai, where i indexes the sample. Given the neighboring s-reps, we extract link
features from the modified linking flow ψ, as discussed in Section 4. Likewise, these link features are mapped to the L. A.
F., producing between-object features invariant to rigid transformations. Finally, we extract the joint variation from the
transformed within- and between-object features (denoted as X and Y , respectively), forming CoWBO features; see Section 3.

the application, our contributions in methodology
can be summarized as follows.

1. We proposed explicitly capturing positional
and geometric relations between objects with
modified linking structures.

2. We proposed using affine frame fields on s-
reps. These affine frame fields are fitted via a
deformation-based method to better character-
ize the geometry of objects. We map within-
and between-object shape features to the fitted
local affine frames such that the shape features
are invariant to rigid transformations.

3. We proposed joint analysis of within- and
between-object shape features using NEUJIVE.
We found that the resulting correlated shape
features give good performance in classifying
ASD vs. non-ASD.

The remainder of this paper is organized as
follows. In Section 2 we describe geometric and
statistical models that are relevant to this paper.
Section 3 discusses the joint analysis of within- and
between-object shape features, which yields the
CoWBO features. Then in Section 4 we detail the
between-object shape features based on a modified
linking flow. In Section 5 we detail within- and
between-object shape features using local affine
frames. In Section 6 we evaluate our proposed
methods. Section 7 discusses our contributions and
potential future work in this research direction.

2 Background
In this section we first review two geometric mod-
els on which this paper is based. The two models
are (1) s-reps, which are skeletal representations
capturing rich geometric features within single ob-
jects (see Section 2.1) and (2) linking structures
that capture how neighboring objects relate to each
other (see Section 2.2).

Instead of capturing features in a global coordi-
nate system, we extract shape features with respect
to local frames, which allow us among other things
to represent the shape in a way insensitive to rigid
transformations of multi-object complexes. To this
end, Section 2.3 discusses the method of local or-
thonormal frames, which inspires our method of
local affine frames in Section 5.1.

Last, we review a statistical method, called
NEUJIVE, that can jointly analyze multi-object
shape data (see Section 2.4). In this paper, we
use NEUJIVE to extract the correlation of within-
object shape variation and between-object link
variation.

2.1 Skeletal Representations (S-reps)
Interiors of objects provide richer and more robust
features than boundaries, especially in anatomic
shape analysis, where it is difficult to obtain ac-
curate boundaries. Fig. 2 (left) gives an example
caudate boundary whose tail (highlighted with the
red circle) is corrupted. Such a corruption can make
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Figure 2 Left: a caudate with partially corrupted boundary (highlighted by the red circle) from SPHARM-PDM (Styner et
al., 2006). The boundary of the caudate is shown as a translucent triangular mesh. The fitted skeleton of this caudate gives
more robust geometric features, as shown in yellow. Right: The level surfaces of the radial flow of an s-rep of a caudate.
These level surfaces describe the interior geometry of the object.

this sample misleading or even useless in anatomic
shape analysis. In such scenarios we can still obtain
robust shape features by making use of the interior
geometry of the object (see e.g., Fig. 2 right).

To explore and exploit interiors of objects,
Damon (Damon, 2003, 2004) has developed math-
ematics of general skeletal representations, paving
the way for statistical shape analysis with skele-
tal representations. Pizer et al. (Pizer et al., 2020;
Siddiqi & Pizer, 2008) took advantage of those
mathematical conditions and developed “discrete s-
reps” (d-s-reps or s-reps). There, an s-rep consists
of a skeletal sheet and connection vectors (“spokes”)
pointing from the skeletal sheet to the boundary
of an object.

The skeletal sheet can be understood as a
deflated boundary. Strictly, a skeletal sheet is a dis-
crete set that can be stratified into (1) a positive
side that connects with one half of the object,
(2) a negative side that connects with the other half
of the object and (3) an edge curve that bounds
the two sides. Because each side is a smooth open
manifold (i.e., with no boundaries within each stra-
tum), we can differentiate geometric entities (e.g.,
spokes) defined on each side. As such, the skele-
tal points on the two sides are also called smooth
skeletal points.

Using the method of Liu et al. (2021), we can
map the geometry of the skeletal sheet to that of
the boundary with non-crossing spokes. As opposed
to methods based on a “boundary-to-skeleton” map-
ping (Saha et al., 2016; Serra, 1986), Liu’s method
automatically fits s-reps to non-branching objects
(e.g., the hippocampus, the caudate, etc.) so that
the fitted s-reps can provide good correspondence
across a population. The essence of that method

is to fit a skeletal representation with desirable
topology (i.e., non-branching topology) to target
objects. A fitted s-rep gives rise to a smooth map-
ping, so-called radial flow, from the skeleton to
a set of level surfaces of radial flow (see e.g., the
right figure in Fig. 2). The radial distances are
measured as fractions (i.e., τ ∈ [0, 1]) of spokes’
lengths. That radial flow acts as a shape function
describing the shape of an object, including the
interior and the boundary of the object. Those non-
crossing spokes can also be understood as basis
vectors of the shape function, providing rich shape
features of an object.

The rich shape features from spokes with good
correspondence have shown to be useful in previous
research on anatomic shape analysis. Specifically,
s-reps have shown promise in many tasks includ-
ing classification (Hong et al., 2016), segmentation
(Vicory, 2016) and hypothesis testing (Schulz et
al., 2016; Taheri & Schulz, 2022). Moreover, com-
pared to the point distribution model (e.g., Styner
et al., 2006), shape features from s-reps give more
statistically efficient representations of a popula-
tion of anatomic objects, as demonstrated in Tu
et al. (2018) and Pizer et al. (2022).

2.2 Linking Structures
We aim to capture positional and geometric
relations that are anatomically important. For ex-
ample, a pair of abutting objects has close relations
in terms of local geometry on their boundaries
(Krishna, 2021). Additionally, the variation of
each single object should be constrained by the
non-penetration condition. Instead of analyzing
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separate objects, it is useful to explicitly analyze
within- and between-object shape.

Many existing research projects (Akhoundi-Asl
& Soltanian-Zadeh, 2007; Gollmer et al., 2012; Gori
et al., 2017; Schwarz et al., 2010) have obtained
implicit between-object relations through statis-
tical analysis of a population of data. However,
those relations often ignore important and consis-
tent variation patterns due to sampling bias. Also,
there exists research on spatial relations based on
fuzzy sets (Bloch, 2005), convolutional activations
(Qi et al., 2019) and lingusitic variables (e.g., Mota
& Sridharan, 2018). However, such methods cannot
provide good localized correspondence for statis-
tical analysis of a population; see (Liu, 2022) for
more details.

To capture between-object shape features, Da-
mon and Gasparovic (see Damon & Gasparovic,
2017) have proposed linking structures that can be
built upon general skeletal structures and hence
specifically upon s-reps. In essence, the researchers
regard between-object relations as shape features
of the between-object space (i.e., the bounded com-
plementary space of multiple objects). Accordingly,
the linking structures are equivalent to skeletal
representations of the between-object shape. The
computation of an s-rep linking structure involves
multiple neighboring objects, each of which has
a fitted s-rep. First, a target object of interest is
selected. Then, each spoke in the target object is
extended to potentially intersect other extended
candidate spokes. Each intersected pair (including
the target spoke and a candidate spoke) is associ-
ated with an extension. Finally, the linking spoke is
selected among all the candidate spokes for which
the extension is minimum.

While the Damon-Gasparovic linking structures
between s-reps provide a means of relating the ge-
ometry of nearby objects, it is challenging to use
these linking structures in statistical analysis of
3D multi-object complexes. Due to relaxation of
the Blum conditions (Liu et al., 2021), spokes in
s-reps may have no candidate links at all, yield-
ing inconsistent empty links across a population
of s-reps. In addition, the self-linking spokes (see
Section 4) that are two linked spokes from the same
object introduce inconsistent branching topology of
between-object shape, which can harm the quality
of correspondences across a population. Such self-
linking spokes often are associated with dents on a

boundary. We, therefore, regard them as inappro-
priate links in analyzing between-object relations.
In Section 4 we develop a modified version of the
Damon-Gasparovic linking structure for statistical
analysis of multi-object complexes.

2.3 Local Orthonormal Reference
Frames

In many traditional research projects, the above
geometric models are established within a global
coordinate system (see e.g., Hong, 2019; Miolane
et al., 2021; Vicory et al., 2018). Those geomet-
ric features are sensitive to rigid transformations
including translation and rotation. Such sensitiv-
ity can hardly be removed in multi-object shape
analysis because of the difficulty of aligning multi-
object complexes. In this regard, local reference
frames show promise of extracting shape features
that are insensitive to rigid transformations in ob-
ject recognition (Guo et al., 2013), shape matching
(Petrelli & Di Stefano, 2011) and registration (Lei
et al., 2017; Malassiotis & Strintzis, 2007; Yang et
al., 2016).

Our team’s previous research (see Pizer et al.,
2022; Taheri & Schulz, 2022) has used local frames
in describing within-object geometry though this
paper shows them also to be of use in describing
between-object geometry. Those local frames are
orthonormal frames defined in the interior of ob-
jects. Specifically, Pizer et al. (2022) parametrized
the interior of an object using coordinates with
respect to the spine, which is the skeleton of the
skeletal sheet. Like a 2D skeleton that dwells in the
quasi-medial place of a closed surface, the spine is
a 1D curve that dwells in the quasi-medial place
of the 2D skeletal sheet. In Pizer’s work, a spine is
parametrized by a cyclic variable θ, radial distance
on the skeleton from the spine is specified by the
parameter τ1, and radial distance from the skele-
ton is specified by the parameter τ2. Accordingly,
an orthonormal local frame consists of
(1) a unit vector ∇̂τ1 (on the skeleton) that points
away from the spine (2) a unit vector ∇̂τ2 that
points away from the skeleton and (3) the cross
product of the two vectors, i.e., ∇̂θ = ∇̂τ2 × ∇̂τ1.
Geometrically, the direction ∇̂θ (on the skeleton)
accounts for circulating the skeletal edge curve in
a counter-clock-wise way.

Moreover, the rotation between those frames
captures differential geometry within and across
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level surfaces of radial flow. Pizer’s local frame field
of a target object can be obtained by deforming a
template object (e.g., an ellipsoid) along with its
local orthonormal frames. Because this deformation
can produce non-orthonormal frames in the target
object, an orthonormalization step is needed. As
a result, the orientations of these orthonormalized
frames are determined by local geometry at the
frames’ origins.

In our work, we realized that the above local
orthonormal frames can not fully capture geomet-
ric differences within and between objects. As
a comparison, non-orthonormal frames resulting
from the aforementioned deformation can give
more expressive geometric features, as discussed
in Section 5.

2.4 Non-Euclidean Joint and
Individual Variation Explained

Because ASD simultaneously affects multiple brain
structures, the correlated shape features between
multiple brain structures should yield important
information of the development of ASD. Also,
because these multiple brain structures can be
differently affected in terms of spatial scales, the
correlated shape features should be effectively ob-
tained via multi-block data analysis (see e.g., Feng
et al., 2018; Hardoon et al., 2004; Lock et al.,
2013), as opposed to the analysis of the concate-
nation of multiple objects. However, many of the
existing methods (e.g., Angle-based Joint and In-
dividual Variation Explained or AJIVE) assume
data in various blocks live in Euclidean space. This
assumption can fail in the analysis of shape data.

Considering the non-Euclidean properties of
shape data, Liu et al. (2022) have proposed a sta-
tistical method, called Non-EUclidean Joint and
Individual Variation Explained or NEUJIVE, for
extracting shape correlation. There, shape descrip-
tors of an object form a block of data (i.e., a data
matrix). NEUJIVE takes in multiple blocks and
outputs (1) joint components that capture the
correlated shape features between objects, (2) indi-
vidual components that capture the shape variation
specific to each object and (3) residual components.
These components together form comprehensive
understanding of multi-object shape variation.

There are two critical steps in NEUJIVE. First,
NEUJIVE converts each (pre-)shape space to a Eu-
clidean space. As a result, each (pre-)shape can be

represented as a vector in Euclidean space. This
step is called Euclideanization. Second, NEUJIVE
uses an existing Euclidean method AJIVE (Feng
et al., 2018) to extract the joint components and
individual components within the multiple Eu-
clidean spaces. The joint components represent
correlated features between objects, living in a low
dimensional Euclidean subspace.

Though NEUJIVE yields statistical correlation
from a population of data, the resulting between-
object geometry is ignored in the analysis. The
statistical analysis does not guarantee the non-
penetration condition between the nearby objects.
An explicit modeling of the geometric relation be-
tween objects is needed because it can not only
give a direct understanding of between-object ge-
ometry, but also can respect the non-penetration
condition.

In this paper, we propose forming the within-
and between-object shape features as two blocks
of data. The joint analysis of these two blocks
via NEUJIVE, yielding CoWBO features, leads to
comprehensive analysis of multi-object complexes,
as discussed below.

3 CoWBO Features:
Correlation of Within- and
Between-Object Features

As noted above, the joint analysis of multi-object
complexes gives comprehensive understanding of
the population. This paper focuses on the joint
analysis of within- and between-object geometry
via NEUJIVE (see Section 2.4). In using NEUJIVE,
we formulate within- and between-object shape
features as two input blocks of data.

Specifically, in a population of n samples, as-
sume each sample has two non-penetrating objects.
We use X ∈ Rd1×n to denote the feature matrix
from n s-reps of an object; this feature space can
be embedded in a d1-dimensional Euclidean space.
Likewise, we use Y ∈ Rd2×n to denote the between-
object feature matrix from the n samples; this
feature space can be embedded in a d2-dimensional
Euclidean space. Also, we use J(·, ·) to denote the
operation of extracting the correlated features by
NEUJIVE. Altogether, the CoWBO features are
written as

J(X,Y ) ∈ Rr×n, (1)
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where r is the dimension of the joint variation
subspace, in which the correlated features are
extracted. The dimension r is determined by NEU-
JIVE depending on the degree to which X and Y
are correlated. We only choose the within-object
shape features of a target object because in our
target problem the shape features of the other ob-
ject have distracting factors and thus would harm
the performance of statistical tasks.

CoWBO features represent how the within- and
between-object shape jointly vary. These correlated
shape features are often in a rather low dimen-
sional feature space, as compared to the original
feature space of either X or Y . Moreover, CoWBO
features can give robust estimation of the correla-
tion despite that between-object shape can vary
more dramatically than within-object shape.

As we will show in Section 6, we classify two
groups of samples using CoWBO features. Section 4
and Section 5 detail the methods for generating
block Y and X in eq. (1).

4 Modified Linking Flow
Captures Between-Object
Shape Features

At first sight of multi-object complexes humans’
eyes tend to pay more attention to relations be-
tween objects rather than to the details on each
boundary (see Siddiqi & Pizer, 2008, Chapter 1).
Inspired by this psychological study, we propose
in this section a modified version of the Damon-
Gasparovic linking flow, which focuses more on
between-object relations than on boundary details
of individual objects.

We will use a 2D example to illustrate the mod-
ification we propose. As shown in Fig. 3 left, the
Damon-Gasparovic method (Damon, 2019) can
develop self-links that are formed by two spokes
from the same object, as highlighted in the gray
box. Such self-links are found in notable dent re-
gions. Because these self-links are barely relevant
to between-object relations and because they are
inconsistent across a population, we modify such
links to be less sensitive to boundary details (e.g.,
dents), as highlighted on the right of Fig. 3.

In the following, Section 4.1 first gives a formal
definition of our modified linking flow. Then we
describe the method and algorithm of the modified
linking flow. Finally, we discuss the properties of

our linking flow. Section 4.2 discusses between-
object shape features that are extracted from the
modified linking flow.

4.1 Modified Linking Flow
Modified linking flow aims to relate the geometry
from multiple objects, focusing on how the objects
link with each other. The flow leads to an exter-
nal linking surface that is analogous to a skeletal
representation of between-object space.

Definition. Our modified linking flow ψ is de-
fined as a smooth bijective mapping from a skeleton
M to the external linking surface L between two
objects, i.e.,

ψ : M 7→ L. (2)
In our modified linking flow, the resulting external
linking surface is a smooth non-branching surface.
Given a skeletal point p ∈ M, the image ψ(p) ∈ L
of p is called a link point. Accordingly, the vec-
tor pointing from p to ψ(p) is called a link vector,
whose magnitude and direction are called a link
length and a link direction, respectively. The fol-
lowing approach can construct a mapping ψ such
that (1) the mapping ψ is well-defined everywhere
on an s-rep; i.e., ψ(p) ∈ L,∀p ∈ M and (2) the ex-
ternal linking surface contains no self-linking and
is one-to-one.

Approach. Our method for constructing a
desirable mapping ψ for every two-object complex
has 3 steps (illustrated in Fig. 4):

1. Find regularly linked spokes using the method
given by Damon (2019), as described below;

2. Infer the mapping ψ from the regularly linked
spokes;

3. Apply the mapping ψ to the skeleton.

A pair of regularly linked spokes is formed by
two spokes from the s-reps of two objects; the two
spokes link at a place between the two objects.
Specifically, in a complex of two objects Ω1 and
Ω2, let s1 and s2 denote1 two spokes that are in
the objects Ω1 and Ω2, respectively. The directions
of the two spokes are u1 and u2; the end points
of the two spokes are y1 and y2. The two spokes
are candidate linked spokes only if there exists a
non-negative scalar t such that the extensions of
the two spokes lie outside the objects and intersect

1We use bold letters to denote vectors in this paper.
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Proposed LinkingDamon-Gasparovic's Linking

Figure 3 Simulated links between two 2D objects. Compared to the Damon-Gasparovic linking structure (left), our modified
linking structure (right) changes the link properties to avoid self-linking, as shown in the gray boxes.

a) Construct Damon-Gasparovic's linking b) Estimate smooth link flow from regular links c) Modify self links and empty links via link flow 

Figure 4 Illustration of the algorithm for modified linking structures; see Algorithm 1 for more details.

at their endpoints, i.e.,

y1 + tu1 = y2 + tu2, s.t. t ≥ 0, (3)

where t denotes the equal lengths of the extension
of the two spokes.

That intersection point, also called a link point,
y1+tu1 (or equivalently, y2+tu2) is on the external
linking surface. Importantly, there can exist zero or
many candidate spokes in Ω1 and Ω2 that link to
s1, satisfying eq. (3) with different extensions t. A
linking point is the one where the length “t” for the
pair of specific candidate linked spokes is minimal
among all candidate linking points involving either
of the given pair of spokes.

Next, we infer the mapping ψ using the regu-
larly linked spokes found by the above method. Let
S1 denote a set of regularly linked spokes in Ω1.
The skeletal points of S1 give a subset M̂ of the
skeleton M. In addition, the link points of S1 give
a subset L̂ of the external linking surface L. We
use the Thin Plate Spline (TPS) algorithm with
landmarks on M̂ and L̂ to derive a diffeomorphism
ψ : M̂ 7→ L̂, thereby avoiding the many-to-one
links in the Damon-Gasparovic method produced
by self-links; see the middle panel in Fig. 4.

Last, we apply ψ to the complement of M̂ to
form a smooth external linking surface L. By doing
so, we have a link point ψ(p) for every skeletal point
p ∈ M. Algorithm 1 gives the detailed algorithm.

Algorithm 1 Modified linking flow
Require: A pair of s-reps fitted to two nearby

objects.
1: Select one object as the target object.
2: Compute the Damon-Gasparovic linking struc-

ture P (see Damon, 2019, Section 4) for the
target object.

3: Create an empty set S1 = ∅ of pairs of points.
4: for each link l in P do
5: if l regularly links to another object then

Add the two ends of l to S1.
6: end if
7: end for
8: Apply TPS to infer deformation ψ using pairs

of points in S1.
9: Apply ψ to all skeletal points on M of the

target object.
10: return the result of ψ(M).

Our modification makes use of regularly linked
spokes to modify both the self-linking and unlinked
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spokes such that two-object complexes consis-
tently yield non-branching smooth external linking
surfaces. This consistency allows us to extract
between-object shape features with good correspon-
dences. Also, because the modified linking flow is
derived from regularly linked spokes of two objects,
the mapping ψ can capture positional and geomet-
ric relations between objects. In order to represent
these relations for statistical analysis, we discretize
the link vector field and extract corresponding link
features from the discrete link vectors, as described
below.

4.2 Link Vectors and
Between-Object Shape Features

Like spokes in an s-rep (see Section 2.1), link vec-
tors can be understood as a discretized vector field
defined on a smooth manifold (i.e., the skeleton M).
To facilitate statistical analysis, these link vectors
should be sampled to have good correspondences
across a population.

To this end, we sample link vectors at each
skeletal point in a discrete s-rep. These link vectors
have good correspondence because the base man-
ifold is sampled with good correspondence. Each
s-rep is deformed from an s-rep of a similar ellip-
soid. The skeletal points are sampled with respect
to the relative positions within the ellipsoid. Such
consistent discretization of skeletons gives good
correspondences across samples.

As we apply TPS to produce link vectors (see
Algorithm 1 steps 8 and 9), the interpolated link
vectors can have directions different from the
spokes associated at the skeletal points. Never-
theless, the link directions we used include the
interpolated ones. In addition to the link directions,
we also extract the magnitudes of the link vectors
that represent distances between a skeleton and
the external linking surface.

In order to obtain statistical correlation with
within-object shape, it is useful to Euclideanize
between-object shape features in NEUJIVE. The
Euclideanization of between-object shape features
should consider both Euclidean variables (i.e., log
link lengths) and non-Euclidean directional data
(i.e., link directions). For the link lengths, we
convert these non-negative scalar values to Eu-
clidean variables distributed in R with the log map
(Tu et al., 2018). For the directional data that
live on a unit 2-sphere, we use Principal Nested

Spheres (Jung et al., 2012) to convert the data into
Euclidean coordinates.

A subtlety of these features is their sensitiv-
ity to positions and orientations of objects. To
overcome this problem, we capture between-object
shape features in local affine frames to achieve
invariance properties, as described below.

5 Local Affine Frames on
Skeletal Representations

It is often challenging to align objects for analy-
sis of geometric features, especially when there are
multiple objects in every sample. For a population
of multi-object complexes, aligning individual ob-
jects can sacrifice between-object relations, while
aligning the combination of multiple objects can
bias the analysis of individual objects.

To address the above dilemma, this section de-
scribes geometric features that are with respect
to local affine frames, as described in Section 5.1.
These features, including within- and between-
object shape features (see Section 5.2), are insensi-
tive to rigid transformations. Importantly, because
the local affine frames for each instance of an object
are fitted using a consistent deformation from an
ellipsoid, they also capture local geometry which
is useful in distinguishing the shape.

5.1 Local Affine Frames
In this paper, a local affine frame refers to a general
frame centered at a point on a 2D surface. Such
a frame consists of 3 basis vectors that are not
necessarily orthogonal to each other. Moreover, the
3 frame vectors are not necessarily of unit lengths.

Specifically, at each skeletal point, we have an
affine frame that allows us to map features at the
skeletal point to this local frame. Let x ∈ R3 be
a unit directional vector (e.g., a spoke’s direction)
associated with a skeletal point p; assume x is rep-
resented in global coordinates. An affine frame at
p can be represented as a matrix A ∈ R3×3. In a
special case where this frame is an orthonormal
frame, the matrix A is an orthogonal matrix of de-
terminant 1. Generally, we can map the directional
feature x into the local affine frame via

x′ = Ax, (4)
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where x′ ∈ R3 is a feature vector that is insensitive
to rigid transformations.

To better capture geometry of objects, we
take into account the following objectives in
constructing local affine frames on s-reps:

1. the origins of these local frames should have
good correspondences across samples;

2. the basis vectors of local frames within a sample
should reflect within-object geometry;

3. the basis vectors of local frames across samples
should capture geometric difference.

As skeletal points in s-reps provide good corre-
spondence across a population, the first objective
can be satisfied by fitting a local frame at each
skeletal point in an s-rep. The second and third
objectives are achieved by fitting local frames via
a deformation-based method as follows. We choose
an ellipsoid as a template shape which is deformed
into an object. Then we construct orthonormal lo-
cal frames (see Section 2.3) on the ellipsoidal s-rep.
We construct a diffeomorphism via TPS to de-
form this template s-rep to the s-rep of each target
object, mapping skeletal points on the ellipsoidal
s-rep to corresponding skeletal points on the tar-
get s-rep. Such a deformation stretches and rotates
the orthonormal frame vectors of every local frame,
resulting in basis vectors of a local affine frame.

In a single 3D object like a hippocampus (see
Fig. 5), the transformation between our affine
frames is achieved by a linear operator that com-
bines the rotation and the stretching of basis
vectors. In Section 6.4 we demonstrate that the
local geometry captured by local affine frames is
useful in classifying the ASD and non-ASD groups.

An affine frame field is promising in multi-
object shape analysis not only because it captures
geometric features within objects invariant to
rigid transformations, but also because it enriches
between-object shape features, as detailed in the
following.

5.2 Within- and Between-Object
Shape Features in Local Affine
Frames

Due to the above methods, there are 3 geometric
entities associated with each skeletal point in an
s-rep: a spoke, a link vector and an affine frame.
To obtain geometric features that are invariant
to rigid transformations, we map vectors at each

Figure 5 Fitted local affine frames on the skeleton of a
hippocampus. The skeleton is shown as the orange surface.
At each skeletal point, there is an affine frame consisting of
a τ1, θ and normal vector (see the zoomed picture above).
The vectors of τ1 and θ are not necessarily orthonormal
vectors.

skeletal point into the respective local affine frame
using the linear transformation eq. (4).

Within-object shape features from spokes in-
clude the skeletal points, the spokes’ lengths and
directions. To make the coordinates of skeletal
points independent of the coordinate system, we
convert the global coordinates of skeletal points
into the coordinates relative to the skeletal center’s
local frame. Moreover, we map the spoke direc-
tion unit vectors to the local frames at the tails of
the associated spokes. In order to retain the unit
length of the projected directional vector, we nor-
malize the three coordinates of x′. Likewise, we
map the link features from the link vectors to the
local affine frames at the tails of the associated
link vectors.

The resulting within- and between-object shape
features are sent to X and Y , respectively, in
eq. (1) for the joint analysis. In NEUJIVE, the Eu-
clideanization of within-object shape features is the
same with the Euclideanization of between-object
shape features, as discussed in Section 4.2.

6 Experiments
This section demonstrates our proposed methods
using a database of infants’ MRI brain images,
consisting of two groups of infants. Section 6.1
describes the images from these two groups. In
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Section 6.2, we show the between-object link
features in two-object complexes, including the hip-
pocampus and the caudate. We collect such link
features and within-object s-rep features, pooling
the two groups. These pooled features form two
data blocks, as discussed in Section 3. Then we
apply NEUJIVE to the two blocks. Section 6.3
shows (1) the generalizability of a linear classifier
learned on our proposed features and (2) the sta-
tistical significance of the group difference found
in our feature space. To demonstrate the benefit
from local affine frames, Section 6.4 describes the
features from local affine frames and shows the
classification results using these features. Finally,
Section 6.5 lays out an extensive comparison of
classification performance using various features of
multi-object complexes.

6.1 Data
We test our proposed methods using MR images
from the Infant Brain Imaging Study (IBIS) net-
work (St John et al., 2016). The data we are using
involve 176 6-months-old infants. Among these
infants, there are 34 of the children who were diag-
nosed as autistic later and 142 of these who were
shown not to have developed autism.

Among various subcortical structures, the left
hippocampus and the left caudate nucleus were
segmented. Then these segmented surfaces were fit-
ted with triangular meshes using SPHARM-PDM
(Styner et al., 2006). As described in Liu et al.
(2021), we fit an s-rep to every triangular mesh.
In the resulting s-rep, we have 72 smooth skeletal
points and 24 skeletal edge points. A smooth skele-
tal point is associated with two spokes pointing
toward two sides of an object, while an edge point
is associated with a fold spoke pointing away along
the tangent direction of the skeleton.

6.2 Visualization of Between-Object
Shape Features from Modified
Linking Structures

Between-object shape features from modified link-
ing structures are link features defined on objects’
skeletons. Each skeletal point is associated with a
spoke length, a spoke direction, a link length and a
link direction. To discount the object widths in the
links, we show the extensions of spokes (i.e., the val-
ues of t’s in eq. (3)), subtracting the spoke length

from the link length at a skeletal point. Though the
extensions are distances from the boundary to the
external linking surface, we can map such scalar
features onto the corresponding skeletal points, as
shown in Fig. 6.

In Fig. 6 the top row shows the extensions as
heat maps on skeletons of the hippocampus (bot-
tom) and of the caudate (top) in 5 autistic cases.
These heat maps share similar patterns: (1) because
the caudate bends away from the hippocampus,
the links in the head and the tail have smaller
extensions than the links in the body, and (2) be-
cause the caudate and the hippocampus are not
perfectly parallel to each other – one side of the
caudate is farther from the hippocampus than the
other side, the extensions gradually vary from the
near side to the far side of the caudate skeletons.
The bottom row shows the link directions in the
same 5 autistic cases. While these directions can
be slightly different from spokes’ directions, the re-
sults suggest that the link vectors smoothly swing
along the skeletons.

6.3 Classify Autism vs. Non-autism
with Two-object Complexes

In this section, we show the results from classi-
fying ASD vs. non-ASD using the shape of the
hippocampus and of the caudate. Specifically, we
intend to investigate the generalizability of a lin-
ear classifier trained in our proposed feature space.
To this end, we train the classifier with varying
training data size and evaluate the corresponding
test performance. Moreover, we investigate the sta-
tistical significance of the group difference using
our proposed features. We perform hypothesis test-
ing with a large number (1000) of permutations to
avoid bias of sampling.

We start our methods from SPHARM-PDM
models of objects. Each sample in the dataset con-
tains a triangular mesh of a left hippocampus and
that of a left caudate. We fit s-reps to these surface
meshes, extracting the within-object shape features
xi ∈ Rd1×1 for the ith sample (see Section 5.2).
Then we develop the modified linking structure of
each sample, extracting the between-object shape
features yi ∈ Rd2×1 (see Sections 4.2 and 5.2). In
developing the modified linking structure, we in-
terpolate the s-reps using the method in Liu et
al. (2021) to have a moderate number (about 51)
of regular links in every sample. This operation is
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Figure 6 Linking features of 5 caudate-hippocampus pairs: (a)-(e). The transparent surfaces are the caudate (above) and
the hippocampus (below). Top row: spoke extensions (in mm) from a boundary to the external linking surface. The heat
maps on the skeletons show the values of spoke extensions. Bottom row: link directions of link vectors at discrete skeletal
points, shown as the arrows in magenta. The skeletons are shown as blue surfaces.

similar to smoothing the external linking surface
because an even finer interpolation tends to “over-
fit” the shape of individual objects. Finally, we
apply NEUJIVE to extract the correlated shape
features of X = {xi} and Y = {yi} (see Section 3),
where i = 1, · · · , 176. We set the initial ranks
for both X and Y in NEUJIVE as 10, resulting
in the joint shape feature matrix. Following the
post-feature-selection idea (Liu et al., 2022), we
perform classification and hypothesis testing using
that feature matrix as follows.

Classification. We train and test a linear
classifier called Distance Weighted Discrimination
(DWD) (Marron et al., 2007) within our proposed
feature space. We randomly select k samples from
34 autistic samples and k samples from 142 non-
autistic samples to form the training dataset. The
remaining are used as the test data. To avoid the
bias introduced by the partitioning of training
and test data, we perform 1000 random partitions
and classifications for each k. From these 1000 ex-
periments, we obtain an average test Area Under
Curve2 (AUC).

To evaluate the generalizability of the classifier.
We vary k from k = 6 (20% of the total autism sam-
ples) to k = 27 (80% of the total autism samples).
The resulting average test AUCs of the various
k’s are shown in the rightmost panel of Fig. 7. In

2Here, the Curve refers to the Receiver Operating Charac-
teristic curve.

this figure the outperforming (top) curve results
from the CoWBO features. The other two features
are obtained similarly to the above process but us-
ing different blocks in NEUJIVE. Specifically, for
NEUJIVE-Sreps we use the correlated features of
(1) the s-reps features of the hippocampus and
(2) the s-reps features of the caudate. For
NEUJIVE-PDMs we use the correlated features of
(1) the SPHARM-PDMs of the hippocampus and
(2) the SPHARM-PDMs of the caudate.

As we vary the training size, we note (1) that
our features can learn useful patterns of the ASD
vs. the non-ASD even in a small data size, e.g.,
when the training sample size is 20% and (2) that
the increase of the test performance is monotonic
with the increase of training data size, which is
superior to the classification using NEUJIVE-Sreps
and NEUJIVE-PDMs features that are solely from
within-object shape features.

Hypothesis testing. To verify if the above
group difference is statistically significant, we test
the (null) hypothesis that the two groups have the
same mean value in the proposed feature space.
We use a method called Direction-Projection-
Permutation (DiProPerm) (Wei et al., 2016) to
perform the hypothesis test for a large number of
permutations.

We let DiProPerm generate 1000 permutations
of the class labels. The resulting test statistics
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Figure 7 Left: Hypothesis testing using the correlated shape features of SPHARM-PDMs of the hippocampus and caudate.
Middle: Hypothesis testing using the correlated shape features of the hippocampal s-rep features and the link features. Right:
Average test AUCs over varying training data size. The error bar at each point shows the standard error of the mean.

(mean differences) are shown in the left two pan-
els of Fig. 7 as the green dots. Specifically, the
middle panel results from the hypothesis test us-
ing the CoWBO features. The observed statistic
is shown as the vertical dashed line, which has
p-value < 0.001 and z-score 10.074. The p-value
and z-score together suggest that the group differ-
ence is statistically significant in the feature space
formed by our geometric and statistical methods.

As a comparison, the left panel of Fig. 7 results
from another feature space that contains the corre-
lated SPHARM-PDM features of the hippocampus
and the caudate. Both the p-value (0.018) and z-
score (2.425) suggest the group difference there is
less statistically significant.

6.4 Local Affine Frames Capture
Differentiating Local Geometry

This section demonstrates the benefit from local
affine frames in the classification problem. Because
ASD affects multiple local regions of a brain struc-
ture, geometric features across various local regions
should have different importance in classifying ASD
and non-ASD. Typically, a classifier assigns differ-
ent weights to local features to best classify the
two groups in a dataset. In our research, the projec-
tion to local affine frames (see eq. (4)) is analogous
to weighting local geometric features for a better
classification because the fitted local frames can
capture important local geometry between groups.

Specifically, we fit every local affine frame in an
object by deforming a local orthonormal frame in
the template ellipsoid3. To demonstrate the local

3We choose the Procrustes Mean ellipsoid as a template shape
for each object. We use the General Procrustes Analysis method

geometry captured by the frames in the object, we
focus on the deformation captured along ∇̂τ1 and
∇̂θ directions on the skeleton (see Section 2.3). As
a result of the deformation, the unit vectors ∇̂τ1
and ∇̂θ in the template ellipsoid become general
vectors ∇τ1 and ∇θ in the object. The vectors
∇τ1 and ∇θ together capture local deformation
of the skeleton. We compute the cross product
n = ∇τ1 ×∇θ at every skeletal point. The length
of n gives the area of the parallelogram defined by
∇τ1 and ∇θ.

We have extracted the feature magnitude ∥n∥
at each skeletal point, and we have used them both
alone and in combination with skeletal points’ co-
ordinates to classify ASD and non-ASD. These
coordinates are centered by subtracting the coordi-
nates of the skeletal center. The results are shown
in Table 1.

Table 1 Test AUCs from using affine frames.

Object ∥n∥ ∥n∥⊕ skeletal
point

Hippocampus 0.589 (0.004) 0.634 (0.003)
Caudate 0.518 (0.003) 0.527 (0.003)

* The numbers outside the parentheses are mean AUCs,
while the numbers inside the parentheses are standard
errors of the mean.

Table 1 reports test AUCs over 1000 random
holdouts, each of which randomly takes 80% of
data as training data and the remaining as test
data. In the table header, ∥n∥ denotes using the

to obtain this Procrustes Mean of the ellipsoids resulting from
Mean Curvature Flow on each object (Dryden & Mardia, 2016).
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lengths as classifying features. The symbol “⊕”
denotes the concatenation of features. The last
column shows test AUCs from the classification
using the concatenation of the lengths of n’s and
the coordinates of the skeletal points as features.

These results suggest that the cross-products
of basis vectors ∇τ1 and ∇θ already have some
discriminatory power (average AUC > 0.5). More-
over, this discriminatory power is slightly boosted
by adding the skeletal points at which those local
affine frames are centered.

6.5 Comparing with Various Feature
Spaces

In order to investigate the difference between using
within-object and between-object shape features in
classification, we conducted extensive experiments
using various sets of features, as listed in Table 2.

In the column of Global Coordinate System
(Global C.S.) in Table 2, the points and vec-
tors are expressed with global coordinates after
Procrustes alignment, whereas the Local Affine
Frames (L.A.F.) columns use the invariant features
described in Section 5.

The rows in the table compare test AUCs over
1000 random holdouts involving various sets of
features. Fig. 8 illustrates some of these features.
In particular, we categorize these features into 5
groups shown in the leftmost column. The first
two groups (“Hippocampus” and “Caudate”, respec-
tively) use various choices of within-object shape
features of the hippocampus and the caudate, re-
spectively. Each choice is indexed with a circled
number. Here, the PDMs of skeletons consist of 3
points sampled at every local affine frame position;
they are the origin and two other points that are
ϵ-distance away from the origin along the ∇θ and
∇τ1 axes.

The third group uses shape features from two-
object complexes. Specifically, the row “ 1○ & 4○
PDMs” concatenates coordinates of SPHARM-
PDMs of the hippocampus and the caudate; the
row “ 2○ & 5○ Spokes” concatenates spokes’ fea-
tures of the two objects; the row “ 3○ & 6○ PDMs
of skeletons” concatenates the skeletal PDMs.

The fourth group uses the resulting two-object
joint components from NEUJIVE. We tuned the
initial ranks of NEUJIVE (see Section 3) for each
row in this group, as described in Liu et al. (2022).
The PDMs’ joint features (“ 1○ & 4○ PDMs’ joint

features”) refer to the NEUJIVE joint components
taking the SPHARM-PDMs of the hippocampus
and the caudate as two input blocks.

Our major proposal is shown in the last group.
The row “ 7○ Between-object linking features” con-
tains the hippocampal skeletal points and the link
features sampled at these skeletal points. The last
row results from the CoWBO features, as discussed
in Section 3. From this table, we have some key
observations as follows.

1. The CoWBO features give notably the
best classification performance. Compar-
ing to the result from the spokes features of the
hippocampus (0.624) and the result from the
between-object link features (0.68), the average
test AUC from the CoWBO features (0.698)
increases by about 12% and 3%, respectively.
Moreover, because of the removal of the individ-
ual and residual components (see Section 3), the
AUCs of using CoWBO features have smaller
Standard Errors of the Mean (SEM) compared
to those in the top 3 groups.

2. The hippocampal shape features give notably
stronger discriminatory power than caudate
features, as seen by comparing the correspond-
ing rows in the “Hippocampus” group with the
“Caudate” group. Due to this observation, we
neglected within-object shape features of the
caudate in forming CoWBO features.

3. Using the hippocampal skeletal features is
slightly better than using the hippocampal
boundary features. However, this is not the case
for classification using the caudate shape.

4. Using concatenated shape features from two
objects is not very much different from using the
hippocampal shape features alone (comparing
the corresponding rows in the “Hippocampus”
group with the “Two objects” group). This is
because the increased classification power that
might come from adding the weakly classifying
the caudate features can not compensate the
loss due to increasing feature dimensions.

5. The between-object shape features (i.e., 7○)
contain critical discriminatory information. Par-
ticularly, we used the modified linking structures
of the hippocampus that capture the geometric
relations with its neighboring caudate, yielding
notably better classification performance than
the concatenated shape features in the “Two
objects” group.
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Table 2 Test AUCs with features from two-object complexes

Features Global C.S.* L.A.F.*

Mean SEM* Mean SEM*

Hippocampus
1○ SPHARM-PDM 0.591 0.097 - -

2○ Spokes 0.596 0.103 0.624 0.01
3○ PDMs of skeletons 0.598 0.102 0.627 0.096

Caudate
4○ SPHARM-PDM 0.54 0.088 - -

5○ Spokes 0.514 0.088 0.552 0.01
6○ PDMs of skeletons 0.502 0.089 0.521 0.102

Two objects
1○ & 4○ PDMs 0.588 0.089 - -
2○ & 5○ Spokes 0.594 0.094 0.591 0.008

3○ & 6○ PDMs of skeletons 0.593 0.095 0.586 0.01

NEUJIVE 1○ & 4○ PDMs’ joint features 0.563 0.009 - -
2○ & 5○ Spokes joint features 0.552 0.01 0.631 0.007

Ours 7○ Between-object linking features 0.679 0.009 0.68 0.009
2○ & 7○ CoWBO features 0.668 0.009 0.698 0.008

*C.S. stands for Coordinate System
*L.A.F. stands for Local Affine Frames
*SEM stands for Standard Error of the Mean

6. The global coordinates give inferior classifi-
cation results compared to coordinates with
respect to local affine frames, at least when
within-object shape features are included. Be-
cause the template ellipsoids are deformed to
each target object separately, the between-
object relations are ignored in fitting local affine
frames. The lack of those relations can explain
the very limited advantages of using local affine
frames (L.A.F. column) over using global coordi-
nates (Global C.S. column) in the rows labeled
“Two objects”.

7 Conclusions and Discussion
In this paper, we proposed a combination of
geometric and statistical models to analyze
multi-object shape. The proposed methods have
been implemented in https://github.com/ZhiyLiu/
shanapy.

7.1 Geometric Models
The geometric models including modified linking
structures and local affine frames are benefi-
cial in classifying ASD and non-ASD. Especially,

the classification using link features between the
hippocampus and caudate outperforms the classifi-
cation using single-object shape features by a large
margin. Our modified linking structures capture
between-object relations in multi-object complexes.
The improved classification performance suggests
that the geometric relations between the hippocam-
pus and caudate are important in the development
of ASD. Additionally, the good correspondence
across our linking structures allows for effective
analysis of multi-object complexes.

Moreover, in the classification using single-
object shape features, we found that the fitted local
affine frames notably boost the performance. Such
a boost is due to two reasons: first, the angles and
lengths of basis vectors characterize local geome-
try; second, the projection of both within-object
shape features and link features into local affine
frames yields shape features that are irrespective
of poses and positions of objects.

7.2 Statistical Analysis
The joint analysis of within-object s-rep features
and between-object link features further improved

https://github.com/ZhiyLiu/shanapy
https://github.com/ZhiyLiu/shanapy
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Figure 8 Various shape features of a two-object complex consisting of a caudate (top row) and a hippocampus (bottom
row). The left column shows boundary landmarks from SPHARM-PDM (Styner et al., 2006). The middle column shows
spoke features from (Liu et al., 2021) – including coordinates of skeletal points, unit directions of spokes and lengths of
spokes. The right column shows deformation field from an ellipsoidal skeleton to the skeleton of a target object (the caudate
or the hippocampus). The arrows τ1 and θ indicate the deformation in two directions.

the classification performance. Considering the dif-
ferent variability of within- and between-object
shape features, we use NEUJIVE to obtain their
correlated shape features. To produce robust and
generalizable correlations, NEUJIVE makes use
of joint variation of the geometry of the complex
data spaces in both within- and between-object
features. The resulting shape features showed su-
perior statistical power in hypothesis testing and
classification.

A limitation of NEUJIVE is that the test data
and training data have to be pooled to construct
the joint variation subspace. This requirement
slows the inference process. However, this problem
is negligible in the field of medical image analysis
where data sizes tend to be small.

7.3 Future Work
There exist many possible directions for future
work. First, we intend to apply our methods to an-
alyze multi-object shape variation in other diseases
(e.g., Alzheimer’s Disease).

Second, while we tested our methods in two-
object complexes in which the two objects are
almost parallel to each other, we intend to apply
our methods in analyzing other types of between-
object relations.

Third, though this paper focuses on two-object
complexes, the methods can be applied to multi-
object complexes, each of which contains more
than two objects. In multi-object complexes, it is
desired to capture within-object shape of an an-
chor object that is of importance in the domain
(e.g., the hippocampus in classifying ASD). Also,
the relations between the anchor object and its
neighboring objects can be captured by the mod-
ified linking structure. The CoWBO features of
the anchor object provide a comprehensive under-
standing about the anchor object. We leave this
research to our future work.

Fourth, the modified linking structure can also
be generalized to analyzing geometric relations be-
tween different parts of an object. Take a U-shaped
object as an example, the object can be separated
into two bar-shaped parts. The within-object shape
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features can only extract the geometric features
within each part. However, the links between the
two parts of the object can reveal additional infor-
mation than the analysis of within-object shape.
For example, it can be useful to obtain the variation
of relative positions between the two parts.

Fifth, in addition to the above statistical analy-
sis, our modified linking structures can also be used
in other applications. In robotics, for example, the
paths of robots should be deliberately planned so
that the movement of robots will not collide with
critical objects in the environment (see e.g., He et
al., 2020). To this end, it is promising to model the
objects with s-reps and the between-object space
with our linking structures. By doing so, the path
planning for robots can be efficient and robust.
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