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Abstract 
 
It is valuable to understand an object in 2-space or 3-space as abstractly being a point in a 
feature space that is a high-dimensional curved manifold.  Thus, statistical operations on 
objects would be expected to be more effective if they recognize that the manifold is 
curved. As a result the common statistical methods applied to objects, which all assume 
Euclidean metrics, would not be fully effective when directly applied.  These methods for 
flat (Euclidean) space include those for Gaussian probability density estimation (e.g., 
mean estimation and principal component analysis), for classification (e.g., support 
vector machine and distance-weighted discrimination), and for hypothesis testing (e.g., t-
test and permutation test).   
 
We present a number of forms of geometric object models: point distribution models, 
spherical harmonic models, normal vectors models, deformation models, and skeletal 
models. For each we show how an object thereby modeled can be understood to live on a 
curved manifold.  
 
Then after summarizing the aforementioned statistical methods in Euclidean spaces, we 
present a variety of methods that use the fact that the manifolds are curved. These include 
methods that work directly on the curved manifold and methods of Euclideanizing the 
features before applying the Euclidean methods, in particular by Composite Principal 
Nested Spheres and Polysphere Principal Component Analysis. We describe how the 
Euclideanization approach allows statistics on change of shape, as well as statistics on 
shape.  We also describe methods for improving correspondence of the primitives in the 
geometric models for the objects in the training or target cases, and as well a method that 
is independent of reparametrization of the boundary.  
 
After describing methods for comparing object model / statistical method combinations, 
we give the results of a number of evaluations. These indicate that for object data those 
statistical methods that recognize that the manifold is curved provide superior results than 
those that assume a Euclidean space and that geometric models that include geometry of 
higher order than positions alone, such as boundary normal directions, provide superior 
results to those that are only based on positions.  
 
 
 
  



1. Objectives of Object Statistics 
We understand an object to be a region of space, typically with a smooth, or at least 
piecewise smooth, boundary (Fig. 1). Examples are an anatomic entity such as the kidney 
or the brain structure called the hippocampus or an everyday object such as a table. While 
objects can have holes, we will concentrate on objects with no holes, i.e., with spherical 
topology in 3D or circular topology in 2D.  
 

 
Figure 1. An example of a smooth object, seen from two points of view (by permission of 
T. Fletcher) 
 
The statistical objectives on training samples from populations of such objects include 
probability distribution estimation, classification, and hypothesis testing. For 
classification we will restrict ourselves to discrimination between two classes. Likewise, 
in hypothesis testing we will restrict ourselves to finding object features that have 
statistically significant differences between two classes. In this chapter we will be 
concerned with not just whether there are differences but with where on the object they 
are and what geometric type they have, e.g., bulging, bending, or twisting. 
 
The standard statistical methods for reaching these objectives assume that the feature 
tuples describing these entities lie in a Euclidean space, i.e., a “flat manifold”: the 
Pythagorean Theorem applies. This is the case for the main method of Gaussian 
probability distribution estimation, Principal Component Analysis (PCA); the main 
methods for classification, including Support Vector Machines (SVM) and Fisher linear 
discriminants; and the main methods for hypothesis testing, including the t-test. 

 
2. Objects live on curved manifolds 
But as explained below, geometric object properties (GOPs) do not lie on an abstract flat 
manifold. Rather, that manifold is best understood as curved, so the standard statistical 
methods do not strictly apply. The following discusses some of the most common GOPs 
and explains why they live in curved spaces. 
  



 
a. Point distribution models 

The simplest GOPs are tuples of locations, most commonly spatially sampling the 
boundary of the object (Fig. 2). These are called “point distribution models (PDMs)” 
[Cootes and Taylor 1993; Cooper, Cootes, Taylor, Graham 1995]. We will call PDMs 0th 
order GOPs. Let z = (x1, x2, … xm) be such a tuple; it has dimension Dm for D-
dimensional objects. They initially appear to have Euclidean properties. However, they 
typically need centering: let us center the tuple by subtracting its center of mass (average 
of the xi) from each location. Then let us compute γ = the square root of the sum of 
squares of the distances of the centered locations to the origin, taking γ as a GOP. Finally, 
let us normalize each centered location by dividing it by γ to produce a GOP formed by 
the tuple of normalized, centered locations:  
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subscript indexes the points and in the second subscript  “1” refers to the x dimension,  
“2” refers to the y dimension, …, and “D” refers to the D th spatial dimension.  This GOP 
satisfies ∑ ∑ �𝑥𝑖𝑖�
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𝑖=1 = 1, which is the equation for a point on a unit sphere of 

dimension Dm-1 (a circle is a sphere of dimension 1). Strictly, this sphere is of dimension 
Dm-D-1: SDm-D-1, since D dimensions have been taken up by the centering. Thus a 
population of that GOP consists of points on a unit sphere, a curved manifold. 

 
Figure 2.  An object boundary in 3D represented by the PDM formed by the vertices of 
the triangular tiles. The inter-vertex connections are strictly not part of the PDM. 
 
Moreover, the scale parameter γ also is not Euclidean because it cannot take on negative 
values. Different scales are related to each other by a multiplicative relation, not an 
additive one. We will produce a “Euclideanized” version of γ by taking its logarithm, and 
then we will statistically center this value log γ, by subtracting its mean over the training 
cases. This yields a Euclideanized GOP �̅� 𝑙𝑙𝑙(𝛾/�̅� ), where �̅� is the geometric mean of 
the training cases’ γs. 
 
We conclude that even PDMs, which initially appear to live on a flat space, can be better 
understood to live on the Cartesian product of a sphere and a 1D flat space, R1, once the 
scale parameter is Euclideanized using the logarithm. 
 

b. Spherical harmonic models 
A PDM on a normalized, centered object with spherical topology can be alternatively 
represented by orthonormal basis functions mapping the unit sphere to the boundary of 
the object (Fig. 3). In 2D these functions are the Fourier (sinusoidal) basis functions, and 
in 3D they are the spherical harmonics [Kazhdan, Funkhouser & Rusinkiewicz 2003]. 
Then a particular object’s boundary is described by a weighted sum of these basis 



functions; that is, it is represented by the (Dm-D-1)-dimensional tuple of the weights: the 
coefficients of the basis functions. One should realize that these mappings vary according 
to the parameterization of the object surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Mapping a sphere to objects via spherical harmonics (by permission of M. 
Styner) 
 
While these coefficient tuples are normally taken to lie in a Euclidean space, Parseval’s 
theorem guarantees that when they are derived from normalized, centered objects, their 
sum of squares is the same as the sum of squares of the PDM-points’ distances to the 
origin, i.e., has the value 1. Thus these coefficient tuples also live on a sphere of 
dimension  Dm-D-1: SDm-D-1. 
 

c. Normals distribution models 
Derivatives of 0th order boundary properties yield a normal vector u at each boundary 
point: 1st order properties. Intuition suggests that the tuple of normal directions  
z = (u1, u2, … um) better captures the shape (by encoding surface information from a 
small neighborhood)  than the positions themselves. 
 
But each normal is a direction vector; it lives on a unit sphere of dimension D-1: SD-1. 
Thus a tuple of normals lives on a Cartesian product of unit D-1–dimensional spheres, a 
curved space. 
 
A view on objects given by Srivastava et al. [Srivastava, Klassen, Joshi, Jermyn 2011]  
also yields a representation by boundary normals. Their objective was to consider every 
object’s boundary as an equivalence class over the spherical parameterizations described 
in section 2d.  They wished to build a distance function between pairs of such 
equivalence classes as a distance between the corresponding objects.  Section 3c 
discusses the use of this non-Euclidean distance function for object statistics. The use of 
this non-Euclidean metric is equivalent to regarding a model as living on a curved 
manifold. 
 
Srivastava et al. first studied such distances modulo parameterization on objects in 2D 
[Klassen, Srivastava, Mio & Joshi 2004], and then they extended the method to objects in 

 



3D [ Kurtek, Srivastava, Klassen & Laga 2013]. In both cases they showed that a natural 
distance measure with these properties could be built upon Euclidean comparisons across 
the boundary if it was represented by a dense sampling of the boundary normal, as 
follows: 
 

�[𝑞1], �[𝑞2]�� = 𝑚𝑚𝑚𝑂∈𝑆𝑂𝑛,𝛾∈Γ  𝑑𝑐�𝑞1,𝑂(𝑞2 ∘ 𝛾)�/��̇� , 
 

where [q] refers to the equivalence class of object representations that are 
reparametrizations of q, γ is a reparametrization of the object boundary, Γ  is the set of all 
reparametrizations, SOn is the set of rotations, and dc is the L2 norm on the boundary 
normals distribution. 
 
Models of higher spatial derivative order than 1, e.g., those based on curvatures, are also 
possible, but they are not common and will not be discussed here. 
  

d. Deformation models 
Another representation of an object is the deformation of Euclidean space from an atlas 
for the object, i.e., a reference object formed by a collection of voxels (pixels in 2D) 
assigned to values 1 if they are interior to the reference object and 0 if they are exterior to 
that object. This deformation is commonly understood as a displacement vector d at each 
voxel, so the object representation consists of an M-tuple of d values, where M is the 
number of voxels. That is, the representation is of dimension DM. Alternatively, the 
deformation of each pixel is represented by a curved path formed by series of short 
“velocity” vectors over pseudo-time divided into m intervals, whereby the object 
representation is of dimension DmM. 
 
Usually these deformation models are understood to live in Euclidean space. 
Theoretically, this is justified by arguing that deformations are geodesics on a curved 
space and geodesics from the reference model can be understood as an initializing 
direction on that curved space, which can be understood as a tangent space, i.e., a flat 
space [Beg 2005]. However, if we look at the component displacement or velocity 
vectors, it is more geometrically intuitive to see each of them as a direction in D 
dimensions and a length. The direction lives on a D-1-dimensional unit sphere: SD-1. Each 
length l, like the aforementioned scale factors γ, requires the application of the logarithm 
to produce 𝑙  ̅𝑙𝑙𝑙�𝑙/𝑙�̅ before it lives in a flat space (𝑙 ̅is the geometric mean of the lengths 
at that voxel). This formulation understands an object as living in a space  
(SD-1)M × RM (after Euclideanization) or of (SD-1)mM × RmM, depending on whether the 
deformation is represented by displacements or velocities. 
 

e. Skeletal models 
An object has an interior, not just a boundary, and the connections from one boundary 
position to the other “opposite” it across the object are intuitively important.  The length 
of these connections captures the notion of local object width. Skeletal models (Fig. 4) 
[Siddiqi and Pizer 2008] capture these relations by having the following two components:  



1) A skeleton: a curve in 2D and a surface in 3D ideally halfway between the 
connected boundary points. This skeleton is a sort of collapsed version of the 
boundary and thus has the same topology as the boundary; the fold curve (points 
in 3D) of that surface divides one side of the boundary from the other. 

2) Non-crossing vectors that we call “spokes” extending from each skeletal point to 
the boundary. The lengths of these spokes capture the object half-widths. The 
mathematics of such models, algorithms for computing them from the object 
boundary, and applications of these are covered at length in [Siddiqi and Pizer 
2008]. 

 

a)             b)    
 

c)  
 
Fig. 4.  a) An object boundary in 2D and its skeletal (here, medial) model; the medial 
model is built from the bitangent circles; b) left: a skeletal surface for a hippocampus 
with selected spokes -- the curve along the exterior of the mesh forms the curve at which 
the skeletal surface is folded;  right: the boundary implied by it. c) An s-rep for an 
ellipsoid in 3D (by permission of J. Vicory). 
 

i. Medial models 
The earliest forms of such skeletal models were called “medial models”. The most 
common form of medial model was due to Blum [1973]. The Blum medial axis consists 
of  a skeleton which is a doubling (two-sided, folded version) of the locus of spheres 
bitangent to the object boundary and interior to the object, together with spokes formed 
by the radii connecting the sphere center to the points of boundary bitangency. These 
spokes are orthogonal to the boundary. The spokes proceeding from the fold curve touch 
the boundary at crest points (a type of curvature extremum [Koenderink 1990]).  
 
The Blum medial model for a typical object is highly branching, with different branching 
patterns for different objects in a population. This makes statistical analysis of these 



models problematic. Pruning the branches to form a representation with a fixed branching 
pattern over a population usually makes the boundary implied by the locus of spoke 
vector ends too far from the true object boundary to be useful. 
 
Two forms of medial model computer representations have been developed: one due to 
Pizer et al. produced by sampling the medial locus and associated spokes, and another 
due to Yushkevich based on parameterizing splines. Both are described in [Pizer ch 8 of 
Siddiqi and Pizer 2008]. While some statistical analysis has been done using each, the s-
reps below have been shown to be more successful for statistical analysis. 
 

ii. S-reps 
S-reps are skeletal models that are designed for statistical analysis by fixing the object 
branching pattern but still having the skeletally implied boundary close to the actual 
object boundary. They do this by still having the structure of a folded surface but relaxing 
the conditions of having the skeletal surface be precisely centered from the boundary and 
of having the spokes precisely orthogonal to the object boundary; instead they fit a 
reference model [Pizer, Jung, Goswami, Vicory, Zhao, Chaudhuri, Damon, Huckemann, 
Marron 2013, Tu, Yang, Vicory, Zhang, Pizer, Styner 2015 according to an objective 
function that rewards fit to the object boundary and penalizes deviations from mediality 
and spoke-to-boundary orthogonality. A computer representation is formed by sampling 
the skeleton and associated spokes (Fig. 2b).  There are spokes on the skeletal manifold 
as well as on the skeletal fold curve; the latter proceed to crest points on the implied 
boundary. Thus this representation consists of a tuple of n spokes, each consisting of a 
skeletal point p, a spoke direction (unit vector) U, and a spoke length r. In 
implementation the skeletal locus is sampled, assuring that spokes on the fold are 
included. Such representations live on the manifold formed by the Cartesian product of 
the PDM manifold of the n skeletal points: S3n-4 × R1 , the n 2-spheres S2 on which the 
spoke directions live, and Rn, containing the Euclideanized spoke length values �̅� 𝑙𝑙𝑙(𝑟/
�̅�), where �̅� is the geometric mean of the lengths of that spoke over the population. 
 
3. Statistical analysis background 
This section reviews the basic statistical methods used in the shape analysis contexts of 
this paper. Section 3.a considers the case of conventional Euclidean data. Section 3.b 
describes fully intrinsic approaches. Tangent plane methods are described in Section 3.c. 
 

a. Statistical analysis in Euclidean space 
Several statistical tasks are routinely addressed in shape analysis, i.e. summarizing and 
modeling populations of shapes, usually based on a sample from that population. The 
first task is understanding centerpoint, which is usually calculated as the sample mean. 
After the center is understood, the next task is to consider the variation about that center. 
Because shape statistics are typically High Dimension, Low Sample Size problems (using 
terminology from [Hall, Marron & Neemon 2005]) in nature, standard quantifications of 
variability such as the covariance matrix are hard to estimate.  Thus it is natural to 
analyze variability using Principal Component Analysis (PCA, Fig. 5)). See [Jolliffe 
2002] for a good introduction and discussion of many important aspects of PCA.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  The mean, best fitting line, and best fitting plane derived by PCA for a set of 
observations in R3. 
 
The third task, useful for many purposes, for example incorporating external information 
such as anatomical structure into an analysis through Bayes-like methods, is probability 
distribution modeling. Gaussian distributions are far and away the most commonly used, 
mostly because many natural distributions are approximately Gaussian due to the Central 
Limit Theorem.  A second reason that Gaussian distributions commonly appear in shape 
analysis is their Bayes conjugacy properties; that is, Gaussian priors and likelihoods lead 
to Gaussian posteriors. This is important as it allows closed form calculations instead of 
the complicated simulation-based approaches used in most modern Bayes analyses.   
 
A fourth task is statistical classification (also called discrimination). For this task training 
data, with known class labels, is given and is used to develop a classification rule for 
assigning new data to one of the classes. For Euclidean data objects, there are many 
methods available; see [Duda, Hart & Stork 2001] for a good overview.  
 
The most common methods for classification are based on Euclidean spaces. Particularly 
widely used these days is the method called support vector machines (SVM); see, for 
example, [Schölkopf & Smola, 2002] for detailed discussion. SVM is based on 
optimizing the gap in feature space between the training cases in the two classes. A more 
statistically efficient method called Distance-Weighted Discrimination (DWD), still in a 
Euclidean feature space was developed by [Marron, Todd & Ahn 2007]; its efficiency 
derives from it using all of the training data, not just those near the gap.  Both SVM and 
DWD yield a direction in feature space that optimally separates the classes (Fig. 6). 
Classification then involves projecting the feature tuple onto the separation direction and 
deriving the class or the class probability from the resulting scalar value. 
 
 



 
 

 
 
Figure 6.  The idea of the separation direction determined from SVM or DWD (each 
method will determine a somewhat different separation direction) 
 
The above tools are useful in situations where the full set of GOPs is available, and they 
are preferable in that case. But in some situations only pairwise distances between the 
data objects, i.e., the distance matrix, are available. Some analysis can still be done in 
that case. For example, a notion of centerpoint that can still be computed is the Fréchet 
mean, proposed by [Fréchet 1948]; which has a number of synonyms including 
barycenter. The Fréchet mean is actually defined, for an arbitrary metric space, as the 
point which minimizes the sum of squared distances to the data objects (or points, since 
the arg minimum may not be unique). There also is an analog of PCA, called multi-
dimensional scaling, see [Torgerson 1952] and [Gower 1966]. The main idea here is to 
solve an optimization problem whose solution is a set of points in Euclidean space whose 
distance matrix best approximates the given one. When the input distance matrix is 
Euclidean, multi-dimensional scaling results in scores that are the same as PC scores.  
Multi-dimensional scaling scores can also provide a surrogate population for further 
analysis, but an important issue that will be central to the following discussion is that for 
non-Euclidean (e.g., manifold-based shapes) data, this represents an approximation. In 
some situations, the approximation is adequate.  Situations where that approximation is 
inadequate and alternate approaches give better results are the focus of Section 4. 
 

b. Fully extrinsic analysis on manifolds 
The challenge of statistical analysis of populations lying on manifolds has been addressed 
in a number of different ways. The diversity of these can be seen already in the simple 
but nontrivial case where the data objects lie on the unit circle. That topic is often called 
directional data and naturally arises in contexts where the data objects are angles such as 
wind or magnetic field directions. As seen in the monographs of [Mardia 2015] and 
[Fisher 1995], there is a large literature on the statistical analysis of directional data. In 
that context, even for the simplest statistical summary of mean or center point of a data 
set, there are divergent reasonable choices, which have been characterized as extrinsic 
and intrinsic (see [Bhattacharya & Patrangenaru 2003, 2005] and [Patrangenaru & 



Ellingson 2015] for an overview of these issues). In general, extrinsic summaries are first 
computed in the ambient space (the Euclidean space in which the manifold is embedded) 
and then projected back to the nearest point on the manifold. Thus the extrinsic mean for 
directional data is the vector average in R2 of the data vectors, which is projected to the 
circle by using the angular part of its polar coordinate representation. Intrinsic summaries 
strive to work more within the manifold. 
 
Extrinsic versions of PCA are not widely used in shape analysis, perhaps because there is 
potential for very strong distortions while projecting the resulting PC scores back to the 
manifold. Hotz [2013] did a detailed comparison of the intrinsic and extrinsic mean for 
data that consists of points in the unit circle. A number of criteria were considered, and 
each form of mean had its relative strengths and weaknesses. 
 

c. Distance-based statistical analysis methods 
For data lying on a manifold, a natural distance is the geodesic distance (the length of the 
shortest path along the manifold). Computing the matrix of pairwise distances between 
the collection of data points leads to approximate analyses as described in Section 3.a. 
This includes the Fréchet mean, which in this case is also called the geodesic mean.  
 
An important example of the non-uniqueness of the Fréchet mean is a data set that is 
distributed widely around the equator of S2, the 2D sphere, where both the north and 
south poles are minimizers of the Fréchet sum of squares.  Neither of these means is close 
to the data in that example. 
 
Another distance-based analysis approach, which is a variation of the Euclideanization 
idea discussed above,  is to represent the data using the multi-dimensional scaling scores 
of each object to each of the objects and then to proceed with standard Euclidean analysis 
methods. 
 

d. Tangent plane statistical analysis methods 
The first generation of intrinsic analogs of PCA for the analysis of manifold data are 
based on the definition of a manifold, which is a surface in the ambient space which is 
smooth in the sense of having an approximating hyperplane (in the sense of shrinking 
neighborhoods) at every point.  In this spirit, [Fletcher, Lu, Pizer, & Joshi 2004] proposed 
Principal Geodesic Analysis (PGA) (Fig. 7). This is based on the plane that is tangent at 
the Fréchet mean. The data on the surface of the manifold are represented as points in the 
tangent plane using the Log map.  PCA is then performed there, and the resulting 
eigenvectors and summarized data are mapped back into the manifold using the 
Exponential map. The corresponding scores give another type of Euclideanization. 
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 Figure 7. Tangent plane statistical analysis (by permission from X. Pennec) 
 
4. Advanced Statistical Methods for Manifold Data 
While much useful shape analysis has been done using the statistical methods described 
in Section 3, for many data sets large gains in statistical efficiency have been realized 
through the development of more sophisticated methods. The S2 example given in 
Section 3.c above, where the data lies very near the equator of a sphere, illustrates an 
important aspect of this challenge. While the data are essentially one dimensional in 
nature (since they just follow a single geodesic), the PGA requires two components 
(where the projections follow a circle) to appropriately describe the variation in the data. 
This type of consideration has motivated a search for more statistically efficient 
approaches to statistical analysis of data lying on a manifold. The first of these is 
Principal Nested Spheres (PNS), motivated and described in Section 4.a. Extension of 
this to more complicated manifolds, such as the polyspheres central to s-rep shape 
representations is given in Section 4.b.  Section 4.c discusses a yet more efficient 
approach to polysphere analysis involving a high-dimensional spherical approximation 
followed by a PNS analysis. 
 

a. Principal Nested Spheres 
In the case of data lying in a high dimensional sphere Sk embedded in Rk+1, a useful 
intrinsic version of PCA is Principal Nested Spheres (PNS), proposed by [Jung et al. 
2012].  The central idea is to iteratively find a nested (through dimension) series of 
subspheres, each of which provides an optimal fit to the data (Fig. 8). In particular, at 
each step the dimension of the approximation is reduced by 1, finding the subsphere 
which best fits the data in the sense of minimum sum of squared residuals, measured 
using arc length along the surface of the sphere. The signed residuals are also saved as 
PNS scores for that component.  The concatenation of these scores, over the dimensions, 
becomes the PNS Euclideanization of each data point. The advantages of this approach 



are tractability, since each lower dimensional manifold is determined by the imposition of 
a single (usually easy to find) constraint, and statistical efficiency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. An optimal small subsphere, geodesic distances (Zd,1) forming scores, and 
projections onto the subsphere (by permission from S. Jung) 
 
One reason that PNS was an important statistical landmark is that it motivated the more 
general idea of Backwards PCA as a general paradigm for finding principal components 
in non-Euclidean data contexts. The full generality of this idea can be found in [Damon & 
Marron 2014]. A key concept is that the general utility of backwards PCA follows from 
thinking of PCA in terms of a nested series of constraints. Backwards tends to be easier 
to work with because from that viewpoint, the constraints can be found sequentially, 
instead of needing to know the full set and then sequentially relaxing them. This idea is 
seen to generate (or have the potential to generate) useful analogs of PCA in a variety of 
other non-Euclidean settings such as Nonnegative Matrix Factorization, Manifold 
Learning, and on other manifolds.   
 
The S2 example given above, with data widely distributed around the equator, also 
illustrates a sense in which the Fréchet mean can be a poor choice that is not at all 
representative of the data. The backwards mean is an intrinsic mean that is much more 
representative of the data in that example than the Fréchet mean. Generally this is 
computed by taking one more step in PNS.  In particular, the backward mean is the 
Fréchet mean of the rank 1 circular representation of the data, which can then be viewed 
as the best backwards rank 0 approximation. 
 

b. Composite Principal Nested Spheres 
[Pizer, Jung, Goswami, Vicory, Zhao, Chaudhuri, Damon Huckemann & Marron 2013] 
proposed extending PNS to manifolds that involve products of spheres, such as those for 
various shape representations discussed in Section 2 above, using the idea of Composite 
Principal Nested Spheres (CPNS). The idea here is to first develop the PNS 
representation for each spherical component, and then concatenate these, together with 
Euclidean components, into a large Euclidean representation, followed by PCA on the 
result.  
 



Of importance is the commensuration between the components before the PCA is done. 
In preparation for the comparisons between using original features of PDMs of 
hippocampi and the alternative Euclideanized features in  [Hong, Vicory, Schulz, Styner, 
Marron & Pizer 2016], an experimental paradigm was designed to determine the most 
reasonable commensuration on the Euclideanized features, more precisely, on the scale 
factor and the sphere-resident features derived from the centered, normalized PDMs. 
First, the features were transformed to be in the same units: in our case the log-
transformed version of the scale factor γ (i.e., �̅� 𝑙𝑙𝑙(𝛾/�̅�)) had units of millimeters, and 
the Euclideanized shape features derived by PNS from the high-dimensional unit sphere 
on which the scaled PDM tuple for each case live had units of radians (unitless values 𝜃𝑖 
for each of the dimensions of the unit sphere). Thus we multiplied each PNS-derived 
feature by �̅� to put them into units of distance. The problem then is to determine the 
scalar factor to commensurate the feature capturing scale with the PNS-derived features. 
We determined that scalar factor by creating a new population that would have a non-
varying shape consistent with those in the original population and a scale variation that 
was the same as those in the original population. To do this, we formed the new 
population by applying the measured log-transformed γ values for each case to the 
hippocampus of median scale scaled to have γ=1. By comparing the total variances of the 
original and created populations, respectively, one could determine the correct 
commensuration factor between  �̅� 𝑙𝑙𝑙(𝛾/�̅�)) and the Euclideanized features from PNS, 
namely, 𝛾�𝜃𝑖 . The experiment concluded that the correct commensuration factor was 1.0, 
up to sample variation. This idea of separately treating scale can be used for problems of 
commensuration of other types of variation. 
 

c. Polysphere PCA 
Data spaces that are products of spheres, such as the skeletal model spaces of Section 2.e, 
have been called polyspheres by [Eltzner et al. 2015].  That paper goes on to propose a 
new method, Polyshpere PCA.  This is a potentially large improvement over CPNS 
which allows a more flexible modelling of the dependence between features than is done 
by the Gaussian PCA on the Euclideanized data in CPNS.  This is achieved by 
approximating the polysphere manifold with a higher dimensional tangent ellipsoid, 
projecting the data onto that, then squashing the ellipsoid into a sphere, and using PNS on 
that.  On skeletal shape data, this approach has been shown to give a lower dimensional 
probability distribution representation than is available from CPNS. 
 

 
Figure 9. The ellipsoid tangent to a torus, which is a polysphere S1 × S1 , together with 
the sphere into which the ellipsoid is squashed (by permission of B. Eltzner) 
 
 



d. Barycentric Subspace Analysis 
An important new general view of PCA analogs for manifold data has been provided by 
[Pennec 2016]. A fundamental observation motivating that work is that both the 
backwards methods (e.g., PNS) that were explicitly described in [Marron & Damon 
2014], and forward methods such as PGA and Geodesic PCA [Huckemann, Hotz & 
Munk 2010] rely upon greedy sequential searches (in opposite directions in some sense). 
This new work proposes the appealing idea of a simultaneous search. The goal of such a 
search is an appropriate analog of a properly nested sequence of subspaces that is found 
by a complete (in the sense of simultaneously over subspaces of all ranks) PCA in 
Euclidean space.  This analog is called a flag, which is a sequence of nested (where those 
of lower dimension are contained in the higher dimension members, as in Euclidean 
PCA) sub-manifolds.  Appropriate components for the flag subspaces in manifolds are 
constructed as barycentric subspaces which are affine combinations (a generalization of 
Fréchet, Karcher or exponential weighted averages where negative weights allow 
appropriate extrapolation) of a set of reference points.   Nesting of the manifolds is 
elegantly achieved through an appropriate nesting of the control points. In this 
mechanism geodesics and thus inter-object distances are nicely handled by restriction to 
regions bounded by cut loci associated with each of the reference points and determined 
by the original object’s topology.  The computational implications of this property are 
still a matter of research. 
 

e. Bayes methods for manifold data 
Motivated by the desire to develop Bayes statistical methods on manifolds, Fletcher 
[2013] has noted that the statistical approaches based on Gaussians in Euclidean spaces 
follow three criteria:  

1) that the probability is shift-equivariant (this is the mathematical term; engineers 
call this “shift-invariant”).  That is, for all vectors v,   
p(x | µ, σ) = p(x+v | µ+v , σ). 

2) that the probability distribution is scale-equivariant (for engineers: “scale-
invariant”). That is, for all scale factors s, p(x | µ, σ) = (1/sd) p(sx | sµ , sσ), where 
d is the dimension of the space. 

3) that the Fréchet mean is the mode of the probability distribution.  That is,  
 
arg𝑚𝑚𝑚
𝜇 ∈ ℜ𝑑 ∑ �𝑥𝑖 − 𝜇�

2
𝑁
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arg𝑚𝑚𝑥
𝜇 ∈ ℜ𝑑 ∏ 𝑝 �𝑥𝑖|𝜇, Σ�𝑁

𝑖=1 , where d is the dimension of 

the variables x and N is the number of points. 
 
He gives requirements for the same properties to be followed for probability distributions 
on a curved manifold. When these requirements are satisfied, operations such as 
probability distribution estimation, regression, classification, and hypothesis testing can 
be accomplished by means very similar to those used in Euclidean spaces. 
 

f. Manifold techniques based on Brownian motion 
 
[Sommer 2015] understands Gaussian distributions as formed by Brownian motion, with 
a covariance that is stationary in space. He derives a curved-manifold counterpart to 



Brownian motion in Euclidean space by augmenting the positions on the surface with a 
fitted frame (coordinate system) that is transported from the origin of the motion along a 
curve on the surface by parallel transport. This allows the definition of stationary 
covariance that is dependent on the curve, and this in turn allows the definition of a 
Brownian-produced probability that is dependent on the curve. Based on this careful 
mathematics, an implementation calculating the most probable curve from the origin to 
any other point on the manifold, given the covariance matrix, has been completed (Fig. 
10), and an implementation calculating the regression curve to a set of data points, given 
the covariance matrix, is in progress. 
 

 
Figure 10. Most probable paths on a sphere with different Brownian covariances. In each 
subfigure the curve without arrows is the geodesic path between the points. (by 
permission of S. Sommer) 
 

e. Manifold Classification 
Use of DWD with object data is often done by Euclideanizing the object features and 
then applying DWD to the result. As shown in [Hong, Vicory, Schulz, Styner, Marron, 
Pizer 2016], this can improve classification accuracy over using the object features 
directly in DWD.   
 
A large open research problem is the development of intrinsic classification methods on 
manifolds. A first attempt, using SVM ideas, can be found in [Sen, Foskey, Marron & 
Styner 2008] (Fig. 11). Given the major improvements in PCA from using intrinsic ideas 
discussed in Sections 4a-c, we believe that large gains in classification error rates can be 
made by creative work in this direction. 

 
Figure 11. Classification on the manifold by optimizing two control points, shown as “×”, 
such that the separation direction is the geodesic between the control points [Sen, Foskey, 
Marron & Styner 2008] 
  



 
5. Correspondence 
Statistics on objects depend on a good correspondence between the primitives on each 
object in the training or target set with the others. For example, it would not do to have 
the position or normal direction at a fingertip on one hand object in the set be considered 
the corresponding GOP to that at the knuckle in another hand object in the set. Putting 
things in correspondence can be understood as a reparametrization of the object 
representation. But how can this correspondence be determined? Roughly, it can be done 
in a geometric way or a statistical way. 
 
The geometric way of producing correspondence works by finding the reparametrization 
on objects that brings them closest to each other in ambient space. This requires a metric 
between a pair of objects. For example, this could be the L2 norm of the GOP differences 
between corresponding positions, with the integration across the object (e.g., its boundary 
or its skeletal surface). This metric is best if it recognizes that the objects lie on a curved 
manifold. With such a metric, one can find the correspondence between two objects by 
reparametrizing the second to minimize the metric between the two. This approach can be 
applied between all pairs of objects in the training set, or it can be applied between a 
reference object and each of the objects in the training set. Such a method is discussed in 
section a below. 
 
The statistical means of producing correspondence is based on properties of the whole set 
of training objects, in particular on the probability distribution estimated from those 
objects. The concept is that miscorrespondence widens that distribution, so 
correspondence optimization should involve reparameterizing each object in the set so as 
to optimally narrow the distribution, while each object’s GOP is still a good descriptor of 
the whole object (Fig. 12). Such methods are discussed in section b below. 
 

  
 
Figure 12. Correspondence:  good (low geometric entropy ) vs. bad (high geometric 
entropy); irregular sampling (low regularity entropy) vs. regular sampling (high 
regularity entropy) 
 

a. Correspondence via reparametrization-insensitive metrics 
As discussed earlier in section 1.c,  [Klassen, Srivastava, Mio & Joshi 2004] produced a 
method for objects in 2D that allowed a metric between equivalence classes of objects 
over reparametrizations. The mathematics required that the comparison be over 
derivatives of the object boundary. It follows that Kurtek’s [Kurtek, Srivastava, Klassen 



& Laga 2013] generalization to 3D had to be over normal directions on the boundary. 
These metrics are seen to be invariant with respect to reparametrization, which allows 
them to be easily adapted to the quotient space under reparametrizations,  That gives a 
notion of shape as orbits, i.e, equivalence classes with respect to reparametrization.  
 
The method for computing the metric of the difference between two objects described in 
section 1.c involves picking a particular parametrization of one of the objects and finding 
the parametrization of the other yielding the closest field of surface normals (together 
with a global rotation). It thereby yields a correspondence between the locations on the 
surfaces of the object pair. 
 
Finding the Fréchet mean equivalence class, and a central representer of the class gives a 
template mean representative. Their method allows a distance to be calculated between a 
reference object, e.g., the template mean, and each object in the training set. As just 
described, it allows a distance to be calculated between objects, so the multidimensional 
scaling approach can be used.   
 

b. Correspondence via entropy minimization 
The tightness of a probability distribution can be measured in many ways, but the ones 
that have turned out to be the most effective are based on information theory. Taylor and 
his team [Davies 2003] pioneered a form based on minimum description length (MDL), 
and an almost equivalent form was based on entropy, as developed in Whitaker’s 
laboratory [Cates 2007]. The basic idea is to fit the population of GOPs by a Gaussian 
and minimize its entropy over all object reparameterizations. 
 
The entropy of an n-dimensional Gaussian is given by   
n [½ ln(2π+1) + the mean of the principal variances]. The difficulty is that when the idea 
is applied to a probability distribution estimated from data by a PCA or PCA-like 
method, the successive sorted principal variances get successively smaller and eventually 
are dominated by noise in the data, and each negative logarithm of these small principal 
variances is very large, so these noise-induced principal variances dominate the 
population principal variances in the entropy calculation.  Cates et al. [2007] dealt with 
this problem by adding a small constant to each principal variance. [Tu, Styner, Vicory, 
Paniagua, Prieto, Yang, Pizer 2015] dealt with it by cutting off the series when the ratio 
of the principal variance to the total variance fell below a certain threshold.  
 
Cates et al. [2007] showed that entropy minimization for GOPs that were a boundary 
PDM could yield improvements in hypothesis testing significances. In their work 
boundary points were slid along the boundary to minimize entropy. [Tu, Styner, Vicory, 
Paniagua, Prieto, Yang, Pizer 2015] developed the same idea for s-reps, whereby the 
skeletal spokes were slid along the skeletal surface to minimize entropy. They showed 
(Fig. 13) the surprising result that, according to the measures described in section 6c on a 
training set of hippocampi, when the s-rep-based correspondence method was applied, 
the boundary points at the ends of the spokes had superior statistical properties 
(specificity and generalization, see section 6.c) than those produced by the Cates 
boundary point shifting method. 



 

 
Figure 13. Generalization and specificity improvements due to s-rep-based and PDM-
based correspondence optimization 

 
6. How to compare representations and statistical methods 
Given all of the different shape representations discussed in Section 2, and the analytic 
approaches discussed in Sections 3 and 4, an important issue is comparison of them. One 
basis for this is knowledge of how they work, which can lead to sensible choices in the 
wide variety of shape problems that one may encounter. But it is also interesting to 
consider quantitative bases for comparison, which is done in this section. 
 

a. Classification accuracy 
When a data set is naturally grouped into 2 (or perhaps more) subsets, e.g., pathology vs. 
normal controls, various methods can be compared on the basis of classification 
accuracy. The classification problem starts with a group of labeled data called the 
training set, and the goal is to develop a rule for classifying new observations. 
Classification accuracy is simply the rate of correct classifications, either for an 
independent test set, or using some variation of the cross-validation idea.  See [Duda, 
Hart & Stork 2012] for access to the large literature on classification. 
 

b. Hypothesis testing power 
A related approach to comparing shape methodologies, again based on two well labeled 
subgroups in the data, is to construct a formal hypothesis test for the difference between 
the groups. Quantification of the difference then follows from the level of statistical 
significance, allowing a different type of comparison of the relative merits of various 
approaches to the analysis. This was done to good effect in [Schulz, Pizer, Marron & 
Godtliebsen 2016]. 
 

c. Specificity, generalization, compactness 
In object statistics work in medicine two common measures of a probability distribution 
derived from data via its eigenmodes are specificity and generalization [Davies 2003]. 
Specificity is a measure of how well the estimated probability distribution represents only 



valid instances of the object.  It is computed as the average distance between random 
samples in the computed shape space with their nearest members of the data. 
Generalization is a measure of how close new instances of the object are to the 
probability distribution estimated from the training cases. It is calculated by computing a 
shape space, spanned by the eigenmodes, on all but one of the training cases and 
computing the distance between the last shape and its projection onto this shape space. 
Thus both specificity and generalization are measured in units of GOP differences, e.g., 
positional differences when the GOP is a position tuple or normal direction differences 
when the GOP is a normal direction.  
 
Compactness is a measure of the tightness of a probability distribution.  The entropy of 
the distribution or the determinant of its covariance matrix (total variance) are often used. 
 

d. Compression into few modes of variation 
The Euclidean PCA decomposition of data into modes of variation is also usefully 
understood from a signal processing viewpoint. In the case of a low dimensional signal, 
in the presence of noise (which is high dimensional by its definition of spreading energy 
across the spectrum). PCA provides a data driven basis (in the sense of linear algebra) 
that puts as much of the low dimensional signal as possible into a few basis elements with 
largest variance.  Many of the gains in statistical efficiency, such as those discussed in 
Section 4, can be understood in terms providing better signal compression in these terms.   
However, this analogy fails in the presence of even moderate noise in Euclidean data, and 
the problem appears even more strongly in non-Euclidean contexts such as shape 
analysis. In particular, the standard Euclidean assumption of all of the signal being 
present on in the first few eigenvalues is usually misleading because both nonlinear shape 
signals and noise typically spread some signal power among many eigenvalues. The 
result is that very noisy data can be measured to require fewer eigenmodes to achieve a 
given fraction of total variance than less noisy data. Hence standard dimension reduction 
approaches, based on “total signal power” or “percent of variation explained”, are usually 
inappropriate. 
 
Yet there is still a natural desire to think in terms of effective dimensionality, i.e., the 
concept that the true underlying signal has much less variation than is present in noisy 
data.  Ideas based in random matrix theory are promising avenues for research in this 
direction.  See [Yao, Bai & Zheng 2015] for good discussion of using this powerful 
theory in the context of Euclidean PCA.  A first important part of this theory is the 
asymptotic probability distribution of the full collection of eigenvalues under a pure noise 
model, called the Marčenko-Partur distribution [Marčenko & Pastur 1967]. Second is the 
corresponding limiting distribution of the largest eigenvalue, called the Tracey Widom 
distribution [Tracy & Widom 1994]. 
 

e. Quality in application, esp. segmentation 
One more approach to comparing shape analysis methods is to study their impact when 
used for various applications. An important application has been to the segmentation 
problem in medical image analysis, where the goal is to find the region of an image 
occupied by an object such as a particular organ. A series of successive improvements in 



shape analysis resulting in improved image segmentation can be found in Pizer et al. 
[1999, 2001], Fletcher et al. [2004], Rao et al. [2005], Gorczowski et al. [2007], Pizer et 
al. [2013] and Vicory et al. [2014, 2016]. 
 
7. Results of classification, hypothesis testing, and probability distribution 

estimation 
This section reviews some recent work, with a number of specific applications of the 
above ideas. 
 

a. Generalized rotations 
[Schulz, Jung, Huckemann, Pierrynowski, Marron & Pizer 2015 ] studied statistics on 
generalized rotations as characterized by boundary normal directions at a small number 
of boundary locations. The generalized rotations they considered were global rotation, 
bending, and twisting. They showed that given a collection of cases with one of these 
rotations but with statistically varying angles of rotation about a fixed axis, they could 
derive the axis as well as variance of the rotation angle. The axis derivation was based on 
the realization that the data fell on coaxial small circles on the sphere of directions (Fig. 
14). Next, they studied compositions of two of these types of generalized rotations, each 
about its own axis. Finally, they developed hypothesis tests for establishing statistical 
significance of variation in these directions and used it for new scientific insights into 
human knee movement. 
 
 

             
(a) Random twists             (b) Random directions                  (c) Estimated axis 

 
Figure 14. Random twists applied to two normals, those normal on the 2-sphere, and the 
twist axis estimated from the co-axial circles.  
 

b. Classification of schizophrenia via hippocampus s-reps 
[Hong, Vicory, Schulz, Styner, Marron & Pizer 2016], compared PDMs vs. s-reps and 
Euclideanization vs. direct Euclidean analysis of the ambient space coordinate values in 
classifying a hippocampus as to whether it was from a typical individual or from a first-
episode schizophrenic. They showed that, according to areas under the Receiver 
Operating Characteristic curve (ROC) [Hanley & McNeil 1982], Euclideanizing 
boundary PDMs produced better classification than without Euclideanization and that 
Euclideanized s-reps produced better classification than either of the boundary-based 
analyses (Fig 15). They also showed the usefulness of displaying the variation of the 



object along the vector in the Euclideanized feature space passing through the pooled 
mean and in the separation direction of the classes (Fig. 16). 
 

 
Figure15. ROCs for classifying hippocampi as to schizophrenia vs. normal using s-reps 
and PDMs, each with original features and their Euclideanized counterparts. 
 
 

 

 
Fig. 16. Boundaries implied by s-reps of hippocampi at (top) 2 standard deviations from 
the pooled mean in one direction and (bottom) at 2 standard deviations from the pooled 
mean in the other direction, for classification between first episode schizophrenics and 
controls. 
 

c. Hypothesis testing via s-reps 
[Schulz, Pizer, Marron & Godtliebsen 2016] demonstrated the ability to test hypotheses 
on shape variation between two objects using s-rep features. They showed how to do not 
only global hypothesis tests but also GOP-by-GOP and location-by-location tests. The 
method involved permutation tests that recognize that means benefit from being 
backward means and that GOP differences need to use a metric appropriate for curved 
manifolds. This work reported a new method for compensating for the correlations of 
these GOPs. With this approach they were able to analyze which locations on hippocampi 
of first-episodes schizophrenics had statistically significant GOP differences from 
controls, and which GOPs had those statistically significant differences. Thus they found 
important shape differences between the classes. 



 
d. Shape change statistics 

[Vicory 2016] studied statistics on the change of object shape between two stages. 
Realizing that statistics on change requires transporting each object pair such that the 
starting object was at a fixed place on the manifold of objects, he proposed solving this 
problem by pooling all 2n objects in the n shape pairs in the training set, producing a 
polar system by PNS on the pool of GOP tuples, Euclideanizing each object according to 
that polar system, and then producing Euclidean (ordinary) differences between the 
Euclideanized features of each pair. 
 
Vicory studied this method in two applications. The first was on ellipsoids that were 
randomly bent and/or twisted. The GOPs in this study were the boundary point 
coordinates provided by spherical harmonic analysis. He found that when the simulated 
data was produced from random samples from a single transformation type, analysis 
either with or without Euclideanization yielded a single correct eigenmode, but the 
analysis with Euclideanization allowed more accurate estimation of an object’s bending 
or twisting angle and, when the mode of variation was visualized, the object moved more 
naturally than using PCA alone. He also found that when the simulated data came from 
random bending cascaded with twisting, both types of analysis yielded two modes of 
variation but Euclideanization allowed a more correct estimate of the relative variances 
and mean deformations closer to the expected deformations than their PCA-alone 
counterparts. 
 
Vicory’s second test was on prostates segmented from MRI and the same prostate within 
3D transrectal ultrasound; the latter was deformed by the ultrasound transducer. The 
shape change eigenmodes were used as a shape space in which to segment the prostate 
from the ultrasound image, given the prostate shape of the patient derived from his MRI. 
The GOPs he used were the skeletal points, spoke lengths, and spoke directions from 
fitted s-reps.  He found that using the shape change space resulting from Euclideanization 
followed by subtraction yielded more accurate segmentations than when a shape space 
was formed by s-rep feature differences applied to a mean of the prostates in the training 
MRIss and then CPNS was applied to the resulting objects. For a target segmentation 
using that second method, the feature difference in prostate from the patient’s MRI  from 
the MRI-based training mean was applied to the ultrasound mean, which became the 
starting point for the segmentation within the scale space. 
 
Recently Hong is applying this shape change Euclideanization approach to two classes of 
pairs of shapes, at two different ages. Pooling all 4 of his hippocampus objects to yield a 
Euclideanization is yielding informative shape differences between children at high risk 
for autism who do not develop autistic symptoms and those at high risk who do develop 
such symptoms. 
 

e. Tu correspondence evaluation 
[Tu, Styner, Vicory, Paniagua, Prieto, Yang, Pizer 2015] compared analysis approaches 
through focusing simultaneously on specificity, generalization and compactness. 
Measuring according to specificity and generalization, they compared probability 



distributions derived from boundary PDMs on hippocampi in multiple ways. Briefly, they 
showed notable improvements in specificity and generalization (Fig. 13) when improving 
PDMs’ correspondence derived via spherical harmonics by Cates’ entropy minimization 
method and, as compared to the results of correspondence improvements via PDMs, 
notable improvements in specificity with little change in generalization when improving 
s-reps fitted from a common reference s-rep. 
 
Conclusions 
We have shown that object shapes can be considered to reside on curved manifolds and 
have presented a number of methods for representing the objects and calculating statistics 
that recognize that curvature. We have presented methods for comparing these 
representations and statistical methods and have given evidence that doing the statistics 
recognizing the manifold curvature frequently provides more effective analysis. We have 
also showed improvements when the object representation captures aspects of boundary 
normal directions and object widths. The study of how to do statistics on curved 
manifolds is an active area of research, and we anticipate numerous advances in the next 
few years.  
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