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Abstract— A statistical issue of clinical importance is intra-
patient variation from day to day. We use these probability den-
sities for segmentation of daily images by posterior optimization
of deformable models. However, the information on intra-patient
variation is only available after the multiple days of imaging; yet
the densities are needed for segmentation on each day. Still, each
patient’s anatomy and image properties are distinct. We describe
an approach of using sample means over the days so far to
describe a Fŕechet mean of the patient. We assume intra-patient
variation is stationary across patients, so one can pool training
statistics on residues from the mean of the respective patient.
The approach is applied both to principal geodesic analysis of
m-rep residues describing anatomic variation and to PCA of
intensity quantile residues from model-relative regions. In trials
to date, application of these statistics in segmentations of male
pelvic organs from CT in adaptive radiotherapy yields results
competitive with human segmentations and with segmentations
based fully on intra-patient statistics.

Index Terms— segmentation, adaptive radiotherapy, de-
formable model

I. I NTRODUCTION

Patients vary from day to day. In radiotherapy, which
frequently takes place over tens of days, it is desirable to
follow the changes in the target volume and in the organs
to spare, so as to accommodate the treatment beams to these
changes. In our methods the success of automatic segmentation
of these organs on a treatment day depends on knowing both
the patient’s own anatomy and the variations in it from day
to day, as well as that patient’s image intensities in and near
that organ and the variations in them from day to day. Clearly,
the multi-day average of the geometric anatomy of a patient
is specific to that patient, and the multi-day average of the
images of that patient relative to the anatomy is specific to
the physical properties of the tissues of that patient and also
to the particular parameters of the imaging device used for that
patient. These can be reasonably estimated from the images
of a patient on the days so far (see [6] for one approach).
However, satisfactory estimations of probability distributions
on the inter-day variations of a target patient can be done only
after most of the days of treatment. Instead we investigate the
effectiveness of segmentation where these estimations assume
stationarity across patients. This paper therefore covers ways
of 1) producing sample means of the target patient’s anatomy
and image intensity information as the days pass and daily
images are acquired and analyzed, 2) statistically analyzing
the variation of changes from the respective patient mean in
collections of other patients, and 3) applying these statistics in
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segmentation by posterior optimization of deformable models
using the combination of within-patient sample means and
other-patient statistics of variations.

Section 2 summarizes work by others on estimating inter-
patient probability densities both on anatomic geometry and
on intensities. It then describes our work on estimating
these densities by Principal Geodesic Analysis (PGA) on
m-rep geometric models and by PCA on regional intensity
quantile functions (RIQFs), respectively. Section 3 describes
the method for estimating intra-patient probability densities.
Section 4 describes the application of these densities in the
segmentation of intra-patient male pelvic organs from CT
and gives results that show that segmentation by posterior
optimization based on these probability densities gives results
that are not only good but also as good as those given when
the probability densities are estimated from all days of the
particular patient.

II. BACKGROUND

An atlas with variability can be understood as a probability
densitypanat on anatomyz together with a probability density
pimg(I|z) on image intensities relative to anatomy. Many have
estimatedpanat using principal component analysis (PCA) on
z = landmarks ([7], [1]), onz = boundary points ([8], [3],
etc.), onz = atlas diffeomorphisms [10], or onz = implicit
function representations ([15], [14]). We use a generalization
of PCA called principal geodesic analysis (PGA) on an object
representation called m-reps (Fig. 1) [12]. The most important
properties of m-reps are that they represent the object interior
and do so in terms that include local twisting, bending, and
magnification and as such allow a rich description of the rela-
tions among parts of objects and among objects. Segmentation
via probabilistic atlases has often been done by maximizing the
likelihood [3], computingarg maxz(pimg(I|z)). Instead, we
do posterior optimization, computingarg maxz(pimg(z|I)) =
arg maxz[log panat(z) + log pimg(I|z)] [13]. Thus we de-
pend on good estimation of the functionslog panat(z) and
log pimg(I|z).

M-reps of simple objects (Fig. 1) consist of a sheet of
medial atoms, with each atom consisting of a hub, given by
its coordinatesp and two equal-length spokes, given by their
common lengthr and their respective directions (θ1, φ1) and
(θ2, φ2), and with crest atoms having an extra bisecting spoke
with its own length. We represent the sheet discretely by a
grid (tuple) of these atoms [12]. In trainingpanat for an
object z, m-reps are fit to binary images [9]. Since medial
atoms and thus tuples of them form a feature space that
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Fig. 1. A medial atom, a grid of medial atoms forming a discrete m-rep,
and the implied boundary for a bladder.
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Fig. 2. Prostate image regions interior (blue) and exterior (yellow) to the
boundary (mesh); their RIQFs on various days.

is curved, estimating probability densities of m-reps must
use distances on this curved space. PGA [4] does this by
estimating means by the Fréchet mean approach and writing
residues (variation)∆z from the mean as geodesic paths that
become line segments with unchanged length when projected
onto a tangent (flat) space at the Fréchet mean. PCA on
these tangent-plane-projected residues is then applied, yielding
−2 log panat(z)) =

∑
i a2

i /σ2
i + a constant, whereai are∆z’s

coefficients of the chosen principal vectors, andσ2
i are the

corresponding principal variances.

By analogy to the above, we need a form of image intensity
estimates to which we can both apply PCA and take residues
from a mean. [2] has described an RIQF (Fig. 2) summarizing
the intensities in an image region by sorting them, associating
each intensity with a weight that monotonically decreases
with distance from the m-rep boundary, dividing the list
into quantiles (we use 200) with equal total weight, and
representing the list by the 200-tupleI of quantile means.
Because the set of affine changes of intensities produces a
2D subspace in the 200D feature space of these RIQFs, it is
appropriate to do subtractions of RIQFs, take ordinary means
of RIQFs, and do PCA on these RIQFs. Thus for each image
region k we decompose the RIQF residue∆Ik ≡ Ik− its
meanI

k
into the chosen principal directions. UsingK regions

that have independent intensity distributions, e.g., a region
interior to the object and a region exterior to that object,
yields −2 log pimg(I |z) =

∑K
k=1

∑
i bk

i
2
/τk

i
2+ a constant,

where bk
i are the ∆Ik ’s projections onto thekth region’s

chosen principal modes and their residue space (the region
depends on the vectora), and τk

i
2
are the corresponding

principal variances. (Per [2] bowel gas and bone intensities
are handled separately.) Posterior maximization thus amounts
to minimizing

∑
i a2

i /σ2
i +

∑K
k=1

∑
i bk

i
2
/τk

i
2

over a.

III. M ETHOD

Patient mean. On day j we need a target patient mean
over days 1 throughj − 1. For anatomy this must be the
Fréchet meanzj of those days’ m-reps, appropriately aligned.
Similarly, a patient mean of the object-relative intensity data

is computed as the collection, overk, I
kj

of mean regional
quantile tuples over the firstj − 1 days. For training patients,
all days are available, so the means are taken over all days for
each respective patient.

Estimating residue probability distributions . We model
aligned residues from a patient mean,∆z and∆I for any re-
gion, as probabilistically stationary. Thus we pool the residues
of each type, over all days and patients. The respective proba-
bility densities can be estimated by PGA and PCA respectively

on pooled residues. Thuszj , the I
kj

, and the collection of
probability densities from the pooled residues form the patient-
specific atlas.

A target patient is described as the mean over the patient
days to date + a residue. The sample mean and residue
are independent random variables. If the pooled covariance
matrices of the residues∆z and the∆Ik are Σ∆z and ΣI k ,
respectively, the covariance matrix of the sample mean =
1/(j − 1) times the respectiveΣ. Therefore, the covariance
for the target patient description isj/(j − 1)× the respective
Σ. Since this holds for both the−2 log panat(z) term and the
−2 log pimg(I |z) term in the−2 log posterior being optimized,
the log posterior need not be adjusted forj.

IV. SEGMENTATION EXPERIMENTS AND RESULTS

We did two experiments on segmenting prostates and blad-
ders from male pelvis CTs in 6 patients (86 images). To study
the effectiveness of our pooling method, we successively left
each patient out, trained on 5 remaining patients pooled, and
segmented the left-out patient as described above. To provide
a baseline for the effectiveness of this method, we trained each
patient independently on a leave-one-day-out basis.

Fig. 3 shows the RIQF mean and first principal mode of
variation for a target patient from both intra-patient training
and other patient training. The first two principal modes
for other patient training cover 95.2% (interior) and 90.0%
(exterior) of the variability of the target patient. This can
be compared to the first two principal modes of intra-patient
training on the target patient, which cover 96.7% (interior) and
97.4% (exterior) of the variability of that patient.

For the majority of cases, the segmented results for both the
bladder and prostate were judged qualitatively good. Typical
cases from two patients are displayed in 3D in Figs. 4
and 5. Typical cases from all six patients against sagittal
slices in the middle of the prostate and bladder are displayed
in Fig. 7. These segmentations were done organ by organ,
allowing prostate-bladder overlaps, but other methods from our
laboratory reflect inter-organ relations in the segmentation [5].
Sorted statistics over all 86 images for both experiments are
given in Fig. 6. For comparison, m-rep fits to humans average
∼93%, and the average agreement between two humans’
segmentations of 16 prostates is 81% volume overlap, 1.9mm
average closest point surface separation.
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(a) A single patient’s Bladder RIQFs
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(b) Intra-patient training
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(c) Other patient training

Fig. 3. Comparison of intra-patient and other patient training of bladder
RIQFs. (a) a patient’s interior and exterior daily bladder RIQFs (left) and
their histogram representation (right). (b) the mean and±2 std. devs. along
the first principal component both learned from all of the images of this
patient. (c) the mean learned from this patient and±2 std. devs. along the
first principal component learned from the other 5 patients.

Fig. 4. Bladder (blue) and prostate (red) 3D segmentations from two patients
shown from a sagittal perspective.

The measures given in Fig. 6 suggest that performance in
the pooled approach is comparable with the baseline approach
and is competitive with human segmentations. The latter
conclusion is limited by the fact that this experiment was
done by optimizing the tuple of m-rep atoms for the organ
in question only as a whole. The second stage of our full
algorithm, optimizing each atom individually, has not yet been
applied here. Thus in certain high-contrast regions our present
results are noticeably a voxel or two off. We expect tight

Fig. 5. Two bladder segmentations shown with the corresponding human
segmentations in light blue.

agreement there when we apply the atom optimization stage.
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Fig. 6. Sorted measures comparing human segmentations to m-rep segmentations and m-rep fits into the human’s, over 86 images. Averages are in parentheses.

Fig. 7. Typical automatic segmentations for each patient. Bladder (blue) and prostate (red) contours, shown on a central sagittal slice on the CT image (left)
and the corresponding manual segmentation (right).


