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Abstract—A statistical issue of clinical importance is intra- segmentation by posterior optimization of deformable models
patient variation from day to day. We use these probability den- ysing the combination of within-patient sample means and
sities for segmentation of daily images by posterior optimization other-patient statistics of variations.

of deformable models. However, the information on intra-patient . . kb h . . .
variation is only available after the multiple days of imaging; yet ~ S€Cction 2 summarizes work by others on estimating inter-

the densities are needed for segmentation on each day. Still, eachpatient probability densities both on anatomic geometry and
patient's anatomy and image properties are distinct. We describe on intensities. It then describes our work on estimating

an approach of using sample means over the days so far tothese densities by Principal Geodesic Analysis (PGA) on
describe a Fiechet mean of the patient. We assume intra-patient m-rep geometric models and by PCA on regional intensity

variation is stationary across patients, so one can pool training . . . : .
statistics on residues from the mean of the respective patient. duantile functions (RIQFs), respectively. Section 3 describes

The approach is applied both to principal geodesic analysis of the method for estimating intra-patient probability densities.
m-rep residues describing anatomic variation and to PCA of Section 4 describes the application of these densities in the
intensity quantile residues from model-relative regions. In trials segmentation of intra-patient male pelvic organs from CT
to date, application of these statistics in segmentations of male 54 gives results that show that segmentation by posterior
pelvic organs from CT in adaptive radiotherapy yields results LS . . :
competitive with human segmentations and with segmentations optimization based on these probability densities gives results
based fully on intra-patient statistics. that are not only good but also as good as those given when

Index Terms—segmentation, adaptive radiotherapy, de- the probability densities are estimated from all days of the
formable model ' ' particular patient.

I. INTRODUCTION Il. BACKGROUND

Patients vary from day to day. In radiotherapy, which ap atlas with variability can be understood as a probability
frequently takes pla_ce over tens of days, it is desirable &nsitypanat on anatomyz together with a probability density
follow the changes in the target volume and in the organs  (Ijz) on image intensities relative to anatomy. Many have
to spare, so as to accommodate the treatment beams to ﬂé%‘?ﬁnatedoamt using principal component analysis (PCA) on
changes. In our methods the success of automatic segmentafion |andmarks ([7], [1]), onz = boundary points ([8], [3],
of thesg organs on a treatment day deper_lds on knowing bgf@l), onz = atlas diffeomorphisms [10], or om = implicit
the patient's own anatomy and the variations in it from dayinction representations ([15], [14]). We use a generalization
to day, as well as thaF p.at|en.t’s image intensities in and nespcA called principal geodesic analysis (PGA) on an object
that organ and the variations in them from day to day. Clearhapresentation called m-reps (Fig. 1) [12]. The most important
the multi-day average of the geometric anatomy of a patiggfoperties of m-reps are that they represent the object interior
is specific to that patient, and the multi-day average of th@d do so in terms that include local twisting, bending, and
images of that patient relative to the anatomy is specific fagnification and as such allow a rich description of the rela-
the physical properties of the tissues of that patient and alggns among parts of objects and among objects. Segmentation
to the particular parameters of the imaging device used for tha4 probabilistic atlases has often been done by maximizing the
patient. These can be reasonably estimated from the imaggsiinood [3], computingarg mazz(pimg(1|z)). Instead, we
of a patient on the days so far (see [6] for one approachy, posterior optimization, computing-g mazz(pim,(z|1)) =
However, satisfactory estimations of probability distributionérg mazz[108 Panat(2) + 108 Pimg(12)] [13]. Thus we de-

on the inter-day variations of a target patient can be done om¥nd on good estimation of the functiohss pana:(z) and
after most of the days of treatment. Instead we investigate the Pimg(1]2).

effectiveness of segmentation where these estimations assuM@.reps of simple objects (Fig. 1) consist of a sheet of

stationarity across patients. This paper therefore covers waysdial atoms, with each atom consisting of a hub, given by
of 1)_produc_ing sa_mp_le means of the target patient’s anatory coordinate and two equal-length spokes, given by their
and image intensity information as the days pass and dailynmon length- and their respective direction§,( ¢;) and
images are acquired and analyzed, 2) statistically analym@g, #-), and with crest atoms having an extra bisecting spoke
the variation of changes from the respective patient mean\jixn its own length. We represent the sheet discretely by a
collections of other patients, and 3) applying these statisticsdﬂd (tuple) of these atoms [12]. In trainingu,.: for an

Corresponding author: Stephen M. Pizer, email: pizer@cs.unc.edu. 'I%QjeCt z, m-reps are fit to binary images [9]. Since medial
work reported here was done under the support of NIH grant P01 EBO27z80ms and thus tuples of them form a feature space that
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is computed as the collection, over ™ of mean regional
guantile tuples over the firgt— 1 days. For training patients,
Fig. 1. A medial atom, a grid of medial atoms forming a discrete m-re@ll days are available, so the means are taken over all days for
and the implied boundary for a bladder. each respective patient.

Estimating residue probability distributions. We model
aligned residues from a patient meaxgz and Al for any re-
gion, as probabilistically stationary. Thus we pool the residues

. & of each type, over all days and patients. The respective proba-
2 bility densities can be estimated by PGA and PCA respectively
0 . , - .
i on pooled residues. Thug, the ij, and the collection of
© — Interior probability densities from the pooled residues form the patient-
1 — Exterior specific atlas.

p(X < X) A target patient is described as the mean over the patient
days to date + a residue. The sample mean and residue
Eig- fj- PVOS‘?‘G_ i??gglrego”s interior (g'“e) and exterior (yellow) to thera independent random variables. If the pooled covariance
oundary (mesh); their RIQFs on various days. matrices of the residuedz and theAl* are Yaz and DTS
respectively, the covariance matrix of the sample mean =
1/(j — 1) times the respectiv&. Therefore, the covariance

. . . . . for the target patient description j§(j — 1) x the respective
is curved, estimating probability densities of m-reps mu gsp ption 5 (j — 1) P

. > . 3. Since this holds for both the 2 log p,..:(2z) term and the
use dlgtances on this curved space. PGA [4] does th!s 1)) log pimg(l|2) term in the—2log posterior being optimized,
estimating means by the &het mean approach and writin he log posterior need not be adjusted for
residues (variationAz from the mean as geodesic paths that
become line segments with unchanged length when projected |\, SroMENTATION EXPERIMENTS AND RESULTS
onto a tangent (flat) space at theéEhet mean. PCA on
these tangent-plane-projected residues is then applied, yield(qu
—210g panat(2)) = >, @ /o2+ a constant, where; are Az's €
coefficients of the chosen principal vectors, antl are the
corresponding principal variances.

e did two experiments on segmenting prostates and blad-
s from male pelvis CTs in 6 patients (86 images). To study
the effectiveness of our pooling method, we successively left
each patient out, trained on 5 remaining patients pooled, and
i . segmented the left-out patient as described above. To provide

By analogy to the above, we need a form of image intensifypaseline for the effectiveness of this method, we trained each
estimates to which we can both apply PCA and take re&du&aient independently on a leave-one-day-out basis.
from a mean. [2] has described an RIQF (Fig. 2) summarizinggig 3 shows the RIQF mean and first principal mode of
the intensities in an image region by sorting them, associatipgriation for a target patient from both intra-patient training
each intensity with a weight that monotonically decreasgg,q other patient training. The first two principal modes
with distance from the m-rep boundary, dividing the lisfs; other patient training cover 95.2% (interior) and 90.0%
into quantiles (we use 200) with equal total weight, angyterior) of the variability of the target patient. This can
representing the list by the 200-tupleof quantile means. pe compared to the first two principal modes of intra-patient
Because the set of affine changes of intensities producegfining on the target patient, which cover 96.7% (interior) and
2D subspace in the 200D feature space of these RIQFs, igis 404 (exterior) of the variability of that patient.
appropriate to do subtractions of RIQFs, take ordinary meanszq the majority of cases, the segmented results for both the
of RIQFs, and do PCA on these RIQFs. Th“,f for iaCh_ IMagdder and prostate were judged qualitatively good. Typical
reglorlkk we decompose the RIQF residuel™ = 1"~ its 4565 from two patients are displayed in 3D in Figs. 4
meanl" into the chosen principal directions. Usi#gregions and 5. Typical cases from all six patients against sagittal
that have independent intensity distributions, e.g., a regigfices in the middle of the prostate and bladder are displayed
interior to the object and a region e2xteri20r to that objecin Fig. 7. These segmentations were done organ by organ,
yields —2log pimg(12) = Sp, 3, b6 /7F°+ a constant, allowing prostate-bladder overlaps, but other methods from our
where b¥ are the Al™'s projections onto thek™ region’s aboratory reflect inter-organ relations in the segmentation [5].
chosen principal modes and their residue space (the reg@srted statistics over all 86 images for both experiments are
depends on the vectoa), and 7-2-’“2are the corresponding given in Fig. 6. For comparison, m-rep fits to humans average
principal variances. (Per [2] bowel gas and bone intensitie®3%, and the average agreement between two humans’
are handled separately.) Posterior maximization thus amouségmentations of 16 prostates is 81% volume overlap, 1.9mm
to minimizing >°, a2 /o7 + Zszl > be/TfQ over a. average closest point surface separation.
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Fig. 5. Two bladder segmentations shown with the corresponding human
segmentations in light blue.

agreement there when we apply the atom optimization stage.
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Fig. 6. Sorted measures comparing human segmentations to m-rep segmentations and m-rep fits into the human'’s, over 86 images. Averages are in parenthe

Fig. 7. Typical automatic segmentations for each patient. Bladder (blue) and prostate (red) contours, shown on a central sagittal slice on the CT image (lef
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and the corresponding manual segmentation (right).
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