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1 Model fitting and statistics

1.1 Limitation of a 3× 8 grid of skeletal positions

A hippocampus example with bumps which are not tightly described by a (3 × 8) grid is visualized in
Figure 1. An s-rep model with a larger number of skeletal positions, i.e., with a finer grid could solve such
problems. The example depicts a limitation only in specific cases since the shape of the hippocampus differs
from person to person. Furthermore, we do not look at individual s-reps that may not be perfectly correct
but rather at differences between groups which are not biased versus the other.

1.2 Discussion of CPNS analysis across populations

In Section 4 in the main article, we have pointed out the difference between CPNS and CPNG. CPNG uses
only great subsphere fittings, whereas the best fitting subspheres can be small or great in CPNS. We have
observed an increased variance of the CPNS means across several populations, e.g., for a large number of
permutation sets as used in the proposed hypothesis test. Jung et al. [2] pointed out a potential overfitting
of the data because PNS tends to find smaller spheres than great spheres. Therefore, a sequential test was
proposed in [2, Section 3]. This section will propose a modification of the test in [2] and refers to the paper
for detailed descriptions. The sequential test procedure consists of a likelihood ratio test and a parametric
bootstrap test in order to test the significance of a “small” subsphere fitting as explained in the following.

1. Test H0a : r = π/2 versus H1a : r < π/2 by the likelihood ratio test where r = π/2 indicates a great
sphere and r < π/2 a small sphere. If H0a is accepted, then fit a great sphere with r = π/2 and proceed
to the next layer.

2. IfH0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test with H0b : FX

is an isotropic distribution with a single mode, versusH0b : not H0b (i.e., anisotropic) given a distribution
function FX , X ∈ Sd. If H0b is accepted, then use great spheres for all further subsphere fittings.

In calculation of CPNS statistics for several populations, the sequential test will be carried out independently
for each population leading to potential different decompositions. Thus, the test must be modified, because
the analysis of CPNS means across populations requires commensurate coordinate systems. Suppose we
have two populations G1 and G2 with samples on Sd and P permutations of the set union G1

⋃
G2. Each

J. Schulz
Department of Mathematics and Statistics, UiT The Arctic University of Norway, Norway Tel.: +47 45696867
E-mail: jorn.schulz@uit.no

F. Godtliebsen
Department of Mathematics and Statistics, UiT The Arctic University of Norway, Norway, E-mail: fred.godtliebsen@uit.no

Stephen M. Pizer
Department of Computer Science, University of North Carolina at Chapel Hill (UNC), USA, E-mail: smp@cs.unc.edu

J.S. Marron
Department of Statistics & Operations Research, UNC, USA, E-mail: marron@unc.edu



S2 Jörn Schulz et al.

(a) (b)

(c) (d)

Fig. 1: Final fit of a hippocampus with bumps that are not tightly described by an s-rep based on a (3× 8)
grid. (a) Entire 3D view to the s-rep with corresponding coordinate system. (b) Bump on the side located
between two highlighted hub positions. (c-d) Bump on the top located between four highlighted hub positions.

permuted set union can be split into two subgroups G1l and G2l with the same number of elements as G1

and G2, l = 1, . . . , P . In order to analyze mean difference, the CPNS mean must be calculated for each
permutation group Gil, i = 1, 2. We propose a modified sequential test by the following procedure.

1. Test H0a :
⋂

i

⋂
l H

i,l
0a versus H1a :

⋃
i

⋃
l H

i,l
1a by the likelihood ratio test with i = 1, 2 and l = 1, . . . , P ,

whereas Hi,l
0a is the sub-hypothesis for the lth permutation of group i. If H0a is accepted, then fit a great

sphere with r = π/2 and proceed to the next layer.
2. If H0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test. If H0b :⋂

i

⋂
l H

i,l
0b is accepted, then use great spheres for all further subsphere fittings.

The implementation of such a test is left for future work. In this article we have used CPNG to analyze
populations of s-reps.

1.3 An alternative unsigned difference measure d1

This section introduce an alternative difference measure d1 in addition to d2 as described in Section 6.2.4
in the main article. The measure d2 is defined by signed differences, whereas the measure d1 is defined by
unsigned differences which turning each GOP into a single non-negative value. Suppose we have two s-reps

ti = (τi, pi1, . . . , pina
, ri1, . . . , rins

, ui1, . . . , uins
)′,
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i = 1, 2 with the skeletal positions pij ,∈ R
3 and the scale factors log(τi), log(rij) ∈ R as Euclidean GOPs

and the spoke directions uij ∈ S2 as non-Euclidean GOPs. The vector d1 of differences is defined by

d1(t1, t2) := (d1(τ1, τ2), d2(p11, p21), . . . , d2(p1na
, p2na

), d3(r11, r21), . . . , d3(r1ns
, r2ns

),

d4(u11, u21), . . . , d4(u1ns
, u2ns

))′ (1)

with appropriate partial difference measures: d1 for the scaling factors τi, d2 for the positions pik, d3 for the
spoke lengths rij and d4 for the spoke directions uij with i = 1, 2, k = 1, . . . , na and j = 1, . . . , ns by

d1(τ1, τ2) = | log(τ2)− log(τ1)|,

d2(p1k, p2k) =

(
3∑

m=1

(p2km − p1km)2

)1/2

,

d3(r1j , r2j) = | log(r2j)− log(r1j)|,

d4(u1j , u2j) = dg(u1j , u2j) = arccos(u′

1ju2j).

The geodesic distance function dg : S2 × S2 → [0, π] is defined by the arc length of the shortest great circle
segment joining u1j, u2j ∈ S2 and is invariant to rotation. The Euclidean metric d2 : R3 × R

3 → R+ is
invariant to translation and d1, d3 : R+ × R+ → R+ are invariant to scale. All GOP differences of

d1 : (R3na × R
ns+1

+ × S2ns)× (R3na × R
ns+1

+ × S2ns) −→ R
na+ns+1

+ × [0, π]ns

are single non-negative values. Therewith, the hypothesis test of identical statistical distributions of two
s-rep populations is given by an one-sided test,

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2}. (2)

Given d1, we can calculate the p-values Ck(Tlk) as described in Section 6.2.5 in the main article. In the
case of a one-sided test by using difference measure d1, we map the p-values Ck(Tlk) to the positive half of
a standard Gaussian CDF by

Ũlk = Φ−1

(
0.5 + 0.5C̃k(Tlk)

)
, (3)

where Φ−1 is the inverse standard Gaussian CDF,

C̃k(Tlk) =
sc− 2

sc
Ck(Tlk) +

1

sc

and sc = 10000, k = 1, . . . ,K, l = 1, . . . , P similar to Section 6.2.5 in the main article.
An open problem is a sensitive mapping of Ũlk to a full multivariate distribution that preserve the

correlation structure of the variables. Given an appropriate mapping, the global and feature-by-feature test
can be applied as described in Section 6.2.6 and 6.2.7 of the main article.

The results presented in Section 2.5 below use random signs τlk ∈ {−1, 1} that are generated for each

permutation and GOP in order to map C̃k(Tlk) to a full multivariate distribution by Ulk = τlkŨlk with
standard normal marginals. Thereby, we do not preserve the correlation structure between the GOPs, which
results in a conservative test.

An alternative to the mapping of Ũlk to a full multivariate distribution is the calculation of a cor-
rected threshold for the p-values Ck(Tlk) using Copulas. A Copula is a multivariate distribution function
C : [0, 1]K → [0, 1] with uniform marginals in [0, 1]. The implementation of such a procedure is left for the
future.

1.4 Preliminary fitting stage of s-reps to hippocampi

The hippocampus data set consists of binary images of 221 first-episode schizophrenia cases and 56 control
cases as described in Section 2 in the main article. Antialiased distance images were generated from the
binary images according to [4]. We selected the first 96 of the 221 SG cases to control manual work as
described in the following. Based on the distance images, we used the 96 cases of SG and all cases of CG to
produce appropriate preliminary fits.
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Two different models were used as initializations of the fitting procedure. The first initial model m1 was
a CPNG backwards mean of 62 hippocampus fits presented in [6]. In addition, the second initial model m2

was derived from the CPNG backwards mean of manually adjusted fits of the control group. The initial
models m1 and m2 were pre-aligned by translation and rotation, and fit to the hippocampi of CG and SG
followed by an atom and spoke stage. As a result, two fittings corresponding to m1 and m2 were obtained
for each hippocampus. The fitting with the lowest objective function were selected for further processing.
The objective function value is provided by the fitting software Pablo [5] and measures the goodness-of-fit
of each s-rep model to the binary data.

The 96 SG and 56 CG fits were manually evaluated and adjusted when necessary. The adjusted fittings
were refit by the second atom and spoke stage in order to minimize influence of the manual adjustment on
the final fittings and to ensure that all spokes match the object boundary. Let Ã1 be the set of 96 fits for
SG and Ã2 be the set of 56 fits for CG.

Correspondence across population is achieved by calculation of CPNG statistics. As a pre-processing step
the obtained fittings must be aligned, otherwise the CPNG statistics would reflect undesirable rotational
variations of the data. Therefore, the CPNG mean of the set union Ã1 ∪ Ã2 was calculated. Afterwards, all
fittings were translated and rotated to the mean by standard Procrustes alignment [1]. The alignment was
based on the skeletal positions and not on the spoke ends, due to the CPNG analysis of the skeletal positions
in a pre-shape space as described in Section 4 in the main article. Let Ā1 be the set of 96 aligned SG fits
and Ā2 the set of 56 aligned CG fits. Finally, CPNG statistics were calculated for the s-rep populations Ā1,
Ā2 and the pooled population Ā1 ∪ Ā2.

2 Additional data analysis on fittings using a pooled shape distribution

The presented results in the main article are based on fittings obtained by the use of a pooled shape
distribution during the CPNG stage (see Sections 7.1 in the main article). This section will present additional
analyses and plots based on the same data.

2.1 Procrustes alignment of final fittings

Let Ã be the obtained fittings of s-reps after the CPNG stage, final spoke stage and re-scaling into a world
coordinate system as described in Section 7.1 in the main article. Figure 2 visualizes the skeletal positions
and the spoke tail ends of Ã. Each spoke tail end is defined by the corresponding skeletal position, spoke
direction and length.
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Fig. 2: Final obtained s-rep fittings after the final spoke stage and re-scaling into a world coordinate system.
Skeletal positions are depicted in (a). Bottom, crest and top spoke directions and lengths are depicted in
(b-d) by the spoke tail ends based on the corresponding skeletal positions. The 277 fittings are represented
by individual colors.
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As discussed in Section 6.2.1 in the main article, an appropriate pre-processing of the data is required
for a reasonable interpretation of the differences, e.g., between the latitude, longitude, x, y and z-coordinate
using d2. Let µ̃ the overall backwards CPNG mean, estimated from the set union Ã of obtained final fittings
with

Ã = Ã1

⋃
Ã2 = {s̃11, . . . , s̃1N1

, s̃21, . . . , s̃2N2
}.

The CPNG mean µ̃ is translationally aligned by the subtraction of the mean of the locational components. In
addition, the eigenvectors of the second moments about the center of the skeletal positions yields a rotational
alignment to the x, y and z-axis. The translationally and rotationally aligned CPNG mean µ̃ is called µ.
Figure 3 depicts the translated, rotated and scaled s-reps of Ã to µ using a standard Procrustes alignment
[1], based on the skeletal positions of each s-rep s̃ ∈ Ã. The pre-processing removed undesirable variation
from the data and enabled a meaningful interpretation for later analysis. This is highlighted by Figure 3
which shows considerable reduced variation compared to Figure 2.
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Fig. 3: S-reps fittings are visualized after standard Procrustes alignment with translation, rotation and scaling
based on the skeletal positions. The aligned skeletal positions are depicted in (a). Bottom, crest and top
spoke directions and lengths are depicted in (b-d) by the spoke tail ends based on the corresponding skeletal
positions. The 277 fittings are represented by individual colors.

2.2 Visualization of generated permutations

The distribution of P = 1000 permuted sample means ν̂1l for SG and ν̂2l for CG (see Section 6.2.2 in the main
article) is visualized in Figure 4, l = 1, . . . , P . The permuted sample means are depicted by the projections
of the scaled CPNG scores matrix ZComp of {ν̂1l, ν̂2l | l = 1, . . . , P} (see Section 4 in the main article) onto
the distance-weighted discrimination (DWD) direction and the first three orthogonal directions to the DWD
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direction as described in Marron et al. [3] and Qiao et al. [7]. Red circles depict permuted SG means and blue
circles permuted CG means. The larger variance of CG is due to the unbalanced group size (SG contains
221 cases and CG 56 cases). The observed Gaussian distributions indicate appropriate permutation sets.
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Fig. 4: Scatter plots and jitterplots (diagonal) with KDE are showing the distribution of permuted sample
means projected on the DWD direction and the first three orthogonal directions to the DWD direction.
Additionally, the KDE of the pooled distribution of SG and CG is shown in the jitterplots. Red circles
depict permuted SG means and blue circles permuted CG means.

2.3 DiProPerm results using a MD test statistic and a DWD projection direction

Figure 5 visualizes the DiProPerm test [8] reported for PP1 in Table 1 in Section 7.2 in the main article using
a mean difference (MD) test statistic and DWD as the projection direction. The DiProPerm test is based on
the evaluation of the scaled CPNG scores matrix ZComp as described in Section 4 in the main article. The
DiProPerm test is a global test. The hypothesis of identical mean between the two populations was rejected
given a significance level α = 0.05.

2.4 ROC analysis compared to feature-by-feature test results using distance measure

d2 and PP1

This section evaluates the performance of the feature-by-feature test by Receiver Operating Characteristic
(ROC) curves. The ROC analysis gives a curve lying in [0, 1]×[0, 1], which quantifies the amount of “overlap”
of each GOP between the samples of the two populations. The ROC curve resulting from the observed data
is visualized by a red line in the following plots. In addition, for each permutation a ROC curve is generated,
represented by a blue line, which results in an envelope under the null distribution. In the following, each
envelope is visualized by the first 1, 000 of the 30, 000 permutations. A ROC curve of the observed data close
to the boundary of this envelope indicates a significant feature. The comparison is done using the distance
measure d2 and the standard pre-processing of the data as described in Section 6.2.1 in the main article.
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Fig. 5: The DiProPerm hypothesis test of mean differences based on the scaled CPNG scores matrix ZComp

of the final fittings after pre-processing by PP1. DiProPerm is a two sample mean hypothesis test. The left
plot shows a jitterplot by the projection of the data on the DWD direction together with the kernel density
estimates (KDEs) of the distribution of SG (red circles), CG (blue circles) and the set union SG∪CG. The
right plot shows a jitterplot of the mean differences of the 30, 000 permutations, a KDE of the distribution
of the MD test statistic in addition to the MD between the observed population SG and CG (green line).

The GOPs that represent latitude and longitude of the spoke direction are normalized corresponding to the
shift by the geodesic mean as explained in Section 6.2.4 in the main article.

The feature-by-feature test results are reported in Figures 7 and 8 in Section 7.3 in the main article.
Several GOPs were tested as statistically significant including the global scaling factor |U0K | = 2.7627 given
a corrected threshold λ = 2.2917. Figure 6 depicts the ROC curve for the global scaling factor (red) together
with the envelope (blue) obtained from the permutations. A major part of the red curve is located close to
the boundary of the envelope. Thus, Figure 6 indicates a significant GOP in agreement with the obtained
feature-by-feature test result.

The area under the curve (AUC) value is a simple numerical summary which is useful for a comparison
of several ROC curves, e.g., a comparison of the ROC curves between the figures below.
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Fig. 6: The ROC curve of the global scaling factor (red) is visualized together with the envelope (blue)
obtained from the permutations. The red curve is close to the boundary of the envelope and indicates
thereby a significant GOP.
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Figure 7 below is identical to Figure 8 in the main article and shows the magnitude of significance of
each GOP using the difference measure d2. In order to simplify the visualization all standard normal values
U0k, k = 1, . . . ,K are presented in absolute values. The color map is non-linear defined from blue to white to
red. The corrected threshold λ = 2.2917 defines the color white, blue and red visualize non-significant and
significant values, respectively. Blocks which show a white color have U0k around the threshold λ. The blue
small circles inside each block mark whether a U0k is less than or equal to the threshold λ. Red small circles
mark if an U0k is greater than the threshold λ and therewith statistical significant.
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Fig. 7: Colored significance map of U0k using difference measure d2 with a corrected threshold λ = 2.2917.
Each box corresponds to a GOP. The color map on the left side is non-linear and has a range from blue (not
significant) to white (λ) to red (significant). The circle inside each box marks whether an U0k is less or equal
than the threshold λ (symbolized by blue) or if an U0k is greater than the threshold λ (symbolized by red).

The results are presented on the basis of the 3 × 8 skeletal sheet such as the 24 skeletal x-positions in
Figure 7a. The skeletal sheet is numbered from bottom to top and from left to right, i.e., atom 1 corresponds
to the left bottom block, atom 8 to the left top block, atom 9 to the middle bottom block, atom 16 to the
middle top block, atom 17 to the right bottom block and finally, atom 24 corresponds to the right top block.
In the following, we compare results for selected GOPs from Figure 7 with the ROC analysis.

Figure 8 visualizes the ROC curve of the skeletal x, y and z-position of atom 22. Figure 7a indicates
the z-position of atom 22 as statistically significant. The x and y-position are not statistically significant,
whereas the x-position shows a lower value than the y-position of atom 22. These results are confirmed in
Figure 8 by the ROC analysis. The ROC curve for the x-position of atom 22 is located close to the center
of the envelope, the ROC curve for the y-position is located closer to the boundary of the envelope in some
regions, whereas the ROC curve for the z-position is close to the boundary in major parts of the envelope.

Figure 9 visualizes the ROC curve of the bottom spoke lengths of atom 8, 16 and 24. Figure 7b indicates
the bottom spoke length of atom 8 as statistically significant, whereas the bottom lengths of atom 16 and
24 are not significant. Furthermore, atom 24 shows a lower value than atom 16. These observations are
confirmed in the ROC analysis and the AUC values in Figure 9. The ROC curve in Figure 9a is located
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Fig. 8: ROC curves are visualized for (a) the x-position, (b) the y-position and (c) the z-position of atom
22 from the skeletal 3× 8 sheet. The blue lines depict the ROC curves from the permutations and define an
envelope. The red line depicts the ROC curve between the observed two population samples. The z-position
in (c) corresponds to a significant GOP in Figure 7, whereas (a) and (b) correspond to non-significant GOPs.

closer to the boundary of the envelope than the ROC curve in Figure 9b, and again more than the ROC
curve in Figure 9c.
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(b) atom 16 (bottom)
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Fig. 9: As Figure 8, now the ROC curves are visualized for the spoke lengths for (a) atom 8, (b) atom 16
and (c) atom 24 on the bottom side of the skeletal 3 × 8 sheet. The figure (a) corresponds to a significant
GOP in Figure 7, whereas (b) and (c) correspond to non-significant GOPs.

Figure 10 visualizes the ROC curve of the latitude spoke directions of atom 3 on the bottom, crest and
top of skeletal sheet. Figure 7c indicates the latitude spoke direction of atom 3 on the bottom of the skeletal
sheet as statistically significant, whereas the latitude spoke direction on the crest and top are not significant.
The box color of the top latitude spoke direction of atom 3 reflects a smaller value than the crest latitude
spoke direction of atom 3. As above, all observations are confirmed by the corresponding ROC curves in
Figure 10.

Finally, Figure 11 visualizes the ROC curve of the longitude spoke direction on the crest of atom 8, 16
and 24. Figure 7d indicates a statistically significant longitude spoke direction of atom 8 on the crest of
the skeletal sheet, whereas the longitude spoke direction on the crest of atom 16 and 24 are not significant.
The color for atom 24 reflects a considerably smaller value than for atom 16. A comparison with Figure 11
confirms these observations. The ROC curve in Figure 11a is mostly located outside or close to the boundary
of the envelope wheres the ROC curve of Figure 11c is close to the center of the envelope.

The observations described in this section verify the correctness of the feature-by-feature test results on
the basis of selected GOPs. The ROC visualization of all 271 GOPs described by the distance measure d2

was omitted for the purpose of clarity of this article .
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Fig. 10: As Figure 8, now the ROC curves are visualized for the spoke latitude directions for atom 3 on
(a) the bottom, (b) the crest and (c) the top of the skeletal 3 × 8 sheet. The figure (a) corresponds to a
significant GOP in Figure 7, whereas (b) and (c) correspond to non-significant GOPs.
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Fig. 11: As Figure 8, now the ROC curves are visualized for the spoke longitude directions for (a) atom 8, (b)
atom 16 and (c) atom 24 on the crest of the skeletal 3× 8 sheet. The figure (a) corresponds to a significant
GOP in Figure 7, whereas (b) and (c) correspond to non-significant GOPs.

2.5 Test results for the unsigned difference measure d1

This section reports hypothesis test results using distances measure d1 as described in Section 1.3. Results
are based on the pre-processing methods PP1 and PP2 as described in Section 7.2 in the main article.

2.5.1 Global test results using d1

Figure 12 shows the global test results for difference measures d1 using PP1 and PP2. The global hypothesis
of equal sample means is rejected and a statistical significant difference between the shape distribution of
SG and CG is established (p = 0.0274 for PP1 and p = 0.0051 for PP2 with p = P (M0|H0)). These results
correspond to the results using d2 (p = 0.0109 for PP1 and p = 0.0029 for PP2) as presented in Section 7.2
in the main article. The larger p-values for d1 are due to less information being used for the unsigned
differences, because the correlation structure between the GOPs was removed after the applied mapping
to a full multivariate Gaussian as described in Section 1.3. Thus, results presented in the main article are
quantified by the conservative test results in this section.

2.5.2 Single GOP test results using d1

Figures 13 and 14 visualize the feature-by-feature test results for the difference measure d1 using PP1. Recall
that each discrete slabular s-rep is organized into 24 atoms by a 3 × 8 grid. Thereby, the measure d1 (see
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Fig. 12: Global test results using PP1 in (a) and PP2 in (b). The empirical distribution of Ml, l =
1, . . . , 30, 000 is shown together with M0 and the 95% quantile of the empirical distribution.

Section 1.3) results in 157 GOPs with 24 GOPs corresponding to the skeletal position of each atom, 66 GOPs
for the spoke directions (bottom, crest and top), 66 GOPs for the spoke lengths (bottom, crest and top) and
1 GOP for the global scaling factor. Figure 14 shows the magnitude of significance as described for Figure 7
in Section 2.4. The corrected threshold from the feature-by-feature test is λ = 2.5532.
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Fig. 13: Significant GOPs using PP1 and difference measure d1 based on the 3 × 8 skeletal sheet of the
SG CPNG mean. Test results are shown in (a) for the skeletal positions, in (b) for the spoke directions
and in (c) for the spoke lengths. No skeletal position is statistically significant where non-significant skeletal
positions are marked by small blue circles and significant skeletal positions are marked by large red circles.
Similar, non-significant spoke directions and lengths are marked by small blue lines whereas significant spoke
directions and lengths are marked by wide red lines.

Figures 13 and 14 show several statistically significant GOPs. No skeletal position but one spoke length
and 10 spoke directions are statistically significant. Moreover, the global scaling factor τ between SG and
CG was found statistically significant by the GOP |U0K | = 2.7704.

Figures 15 and 16 are identical to both previous figures except for the use of PP2 instead of PP1. Several
skeletal positions are statistically significant in contrast to Figures 13a and 14a with no statistically significant
skeletal position. The volume difference between the two populations is reflected by the skeletal positions
using d1 and PP2. Thus, Figures 15a and 16a show rather significant differences from a global deformation
than from local deformations. Figures 14c and 16c show only small differences, which reveals that the global
volume information is described by scaling of the skeletal grid. The spoke lengths are designed to capture
only local differences, whereas the skeletal position captures global scale differences. Similar results between
spoke directions are expected because of the scaling invariance of uij ∈ S2.
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Fig. 14: Colored significance map of U0k with a corrected threshold λ = 2.5532 using PP1 and difference
measure d1. Each box represents a GOP which corresponds to a skeletal atom. The color map on the left
side is non-linear and has a range from blue (not significant) to white (λ) to red (significant). The circle
inside each box marks whether an U0k is less or equal than the threshold λ (symbolized by blue) or if an
U0k is greater than the threshold λ (symbolized by red).
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Fig. 15: As Figure 13, now based on PP2 and difference measure d1.
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Fig. 16: As Figure 14, now based on PP2 and difference measure d1 with a corrected threshold λ = 2.6368.

A comparison of the results in this section with Section 7.3 in the main article leads to very similar
observations and conclusions. Thereby, the results in the main article are quantified by the conservative test
results presented in this section which not use the correlation structure between the GOPs (see Section 1.3).
This is reflected by fewer significant GOPs, in particular for the spoke directions.

Using difference measure d2 a significant volume difference was observed in the x and y-directions but
not in the z-direction for the aligned hippocampi. Thus, we could obtain additional information using d2

compared to d1.
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2.6 Number of permutations for the global test using the two difference measures d1

and d2

This section will study the impact of the number of permutations on the global test (described in Section 6.2
in the main article) using PP1. The reported empirical p-values are 0.0274 for d1 and 0.0109 for d2 using
30, 000 permutations and given a significance level of α = 0.05.

We have randomly selected independent subsets of P = 500, 1000, 1500, 2000, 2500, . . . , 29500 from the
set of 30000 permutations and applied the proposed testing procedure of Section 6.2 in the main article.
Figure 17 visualizes the results and indicates a stabilization of the p-value from the global test after around
10, 000 permutations. Surprisingly, we observe a p-value equal to zero for a very small permutation size. This
section will show the Mahalanobis space as the cause when using distance measure d1.
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Fig. 17: The p-values are plotted against the number of permutations using difference measures d1 and d2.
30000 permutation were generated. The hypothesis test was calculated on randomly chosen subsets with
500, 1000, 1500, 2000, 2500, . . . , 29500 permutations.

In order to study the convergence behavior of d1, we have generated 30 independent random permutation
sets with 500, 1000 and 5000 permutations for each permutation set. Afterwards, we applied the proposed
testing procedure of Section 6.2 in the main article.

First, we calculated the difference measure Tl = d1(t1l, t2l) (see Section 6.2.5 in the main article) between
the s-reps t1l and t2l, l = 1, . . . , P where P is the number of permutations. Each blue line in Figure 18 shows
the cumulative empirical distribution for the chosen element k = 22 from the 157 dimensional GOP d1-
difference vector Tl. The selected element describes the atom position 22 from the 3× 8 skeletal grid. Each
plot contains 30 cumulative empirical distributions (blue lines) corresponding to each permutation set. We
observe a higher variance of the envelope for a smaller permutation set size. T0 = d1(t1, t2) is identical for
all 30 permutation sets.

Afterwards, we estimated the empirical cumulative functions Ck for k = 1, . . . ,K partial tests following
to Section 6.2.5 in the main article. As a result, we obtained for each GOP difference a p-value Ck(Tlk),
and Ck(T0k) respectively. The cumulative empirical distribution of the calculated p-values are depicted in
Figure 19. The p-values of the 30 permutation sets have by construction a uniform distribution. Therefore,
no variance is visible between the blue line in Figures 19a-19c. However, we observe a larger variance of the
red line for smaller permutation set size. The cumulative function Ck is based on the empirical distribution,
which shows larger variation for a smaller permutation set size in Figure 18. Therefore, the observed larger
variance between Ck(T0k) (red line) can be expected.

Subsequently, we calculated standard normal distributed variables from the uniformly distributed p-values
by the inverse cumulative normal distribution function as described in the previous Section 1.3. Figure 20
visualizes the calculated standard normal distributed variables Ulk (blue) and U0k (red). The blue and red
lines show a larger variance for smaller permutation set size. However, the mean of T0k, Ck(T0k) and U0k is
similar for different permutation set size.
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Fig. 18: The cumulative empirical distributions of GOP differences are depicted for a selected GOP us-
ing difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500, 1000 and 5000
(corresponding to 30 blue lines in each plot). The selected GOP is the atom position 22.
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Fig. 19: The cumulative empirical distributions of the p-values Ck(Tlk) (blue) are depicted together with
Ck(T0k) (red) using difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500,
1000 and 5000. The selected GOP is the atom position 22.
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Fig. 20: The cumulative empirical distributions of the standard normal variables Ulk (blue) are visualized
together with U0k (red) using difference measure d1. Each plot visualizes 30 random permutation sets of
sizes 500, 1000 and 5000. The selected GOP is the atom position 22.

Finally, the p-values of the global tests were obtained by the estimation of the covariance matrix Σ̂U

from Ulk and the Mahalanobis distance as a combining function (see Section 6.2.6 in the main article). For
each permutation l = 1, . . . , P , we obtained the Mahalanobis distance Ml in addition to M0 between the
two populations SG and CG. Figure 21 shows the Mahalanobis distance for the three different permutation



Supplementary Material S15

set sizes. A smaller permutation set size strongly increase the variance of M0. In addition, the blue curves
indicate a smaller slope for higher permutation set size. In contrast to the previous figures, we observe a
change in the mean value of M0 with a larger value for smaller permutation set size. As a result, p(M0) is 0
(see equation (9) in the main article) using a small permutation set size such as 500 because H(Ml,M0) = 0
for all l = 1, . . . , P .
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Fig. 21: Cumulative empirical distributions of Mahalanobis distances Ml (blue) are visualized together with
M0 (red) using difference measure d1. Each plot visualizes 30 random permutation sets of sizes 500, 1000
and 5000. The selected GOP is the atom position 22.

Figures 18 to 21 and additional simulations on the covariance matrix found the covariance matrix as
the reason for the convergence behavior in Figure 17. The Mahalanobis distance combines all GOPs to a
corrected global test by the covariance matrix Σ̂U . A smaller permutation set size increases the magnitude
of the elements of the covariance matrix, i.e., leads to a larger variance between the matrix elements of Σ̂U .
As a result, the covariance matrix assigns different weights to the GOPs by the Mahalanobis distance.

Therefore, we recommend a permutation set size greater than 10, 000 for the proposed global hypothesis
test. The study of an alternative combining function for the global hypothesis test is left for future research.

3 Data analysis on an alternative group of final fittings

Besides the obtained final fittings using a pooled shape distribution during the CPNG stage as described
in Section 7.1 in the main article, we have generated a second group of final fittings derived from CPNG
stages using a pooled shape distribution (FG1), two individual shape distributions (FG2) and two individual
interchanged shape distributions (FG3). Interchanged shape distributions use the estimated individual CG
shape distribution for the re-fitting of the SG population during the CPNG stage, and use the individual
SG shape distribution for the re-fitting of the CG population. In each CPNG stage, the obtained backward
mean was translationally and rotationally aligned to the data, i.e, the alignment of the CPNG backward
mean of

1. Ā1 ∪ Ā2 to the 221 and 56 CG cases for FG1,
2. Ā1 to the 221 SG cases and of Ā2 to the 56 CG cases for FG2,
3. Ā2 to the 221 SG cases and of Ā1 to the 56 CG cases for FG3.

Afterwards, the means were optimized inside the CPNG shape space with an additional final spoke stage
(see Section 5 in the main article). As a result, we obtained three fittings for each hippocampus. We chose
the fitting with the largest Dice similarity coefficient. The Dice coefficient is a measure of volume overlap and
was calculated between the original binary image B1 and the binary image B2 generated from each fitting.
The coefficient is defined by

dvol(B1, B2) = 2
|B1 ∩B2|

|B1|+ |B2|
(4)

where |·| denotes the number of voxels that describe hippocampal tissue. Figure 22 shows the Dice coefficients
of SG and CG for all three fitting types. Accordingly, the second group of final SG fittings consists of 84
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fittings from FG1, 107 fittings from FG2 and 30 fittings from FG3. The second group of final CG fittings
consists of 18 fittings from FG1, 21 fittings from FG2 and 17 fittings from FG3.

Figure 22 also shows an average volume overlap of 94% for both groups, which indicates accurate fittings.
We observe an outlier for case 73 of SG for FG3 due to a poor fitting result. The variance of the Dice
coefficient is small for both groups. Nevertheless, a larger variance inside SG can be observed. Moreover, we
can observe that FG1 and FG2 leads to comparable Dice coefficients. The Dice coefficient of FG3 is inferior
to FG1 and FG2 for SG but comparable for CG. There are two reasons for this observed behavior. First,
schizophrenia is a heterogeneous disease and also contains hippocampi variations between healthy patients.
Therefore, the interchanged shape distribution from the schizophrenia cases can also describe the control
cases. Second, both populations have an unbalanced size with a higher number of schizophrenics.
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Fig. 22: Dice coefficient between the final fittings for (a-b) SG and (c) CG. The coefficient is depicted for
the three types of obtained fittings using a pooled shape distribution (FG1), two individual distributions
(FG2) and two interchanged individual distributions (FG3) during the CPNG stage. The maximal Dice
coefficient is depicted by a circle for each case colored by the corresponding class. The solid and dashed lines
connect all points of the corresponding classes and depict the variance. SG shows larger variance than CG
in correspondence with the heterogeneous character of the schizophrenia disease.

In addition to Figure 5 in the main article, Figure 23 shows the distribution of of SG and CG fittings
obtained from (a) two individual distributions during the CPNG stage, (b) two interchanged individual
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distributions and (c) of SG and CG fittings selected by the Dice criteria. The distributions are visualized by
the projections of the CPNG score matrix ZComp on the DWD direction. Figures 23a and 23b show high
separation properties between SG and CG. In contrast, a difference between the populations is not very
strongly visible in Figure 23c which visualizes the second group of final fittings. The group is a compromise
between independent fittings and a small bias as discussed in Section 7.1 in the main article.
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Fig. 23: Jitterplot and KDEs show the distribution of SG and CG fittings projected onto the DWD direction.
SG and CG fittings are obtained by using (a) two individual distributions during the CPNG stage, (b) two
interchanged individual distributions during the CPNG stage and (c) a selection of the final fittings using
the Dice criteria. Additionally, the KDE of the pooled distribution of SG and CG is shown (all). A difference
between the populations is visible for (a) and (b) but not very strong in (c).

The obtained second group of final fittings were used to test each of the hypotheses

H0 : {µ1 = µ2} versus H1 : {µ1 > µ2} (one-sided) (5)

for a one-sided test in case the difference measure is unsigned (e.g., d1) and

H0 : {µ1 = µ2} versus H1 : {µ1 6= µ2} (two-sided) (6)

for a two-sided test in case the difference measure is signed (e.g., d2). The hypotheses are tested by the
proposed global and feature-by-feature test in Section 6.2 in the main article at a significance level of
α = 0.05.

3.1 Global test results

Table 1 shows the global test results for the difference measures d1 and d2 for the two different pre-processing
methods. Both difference measures rejected the hypothesis of equal population means and established a
statistical significant difference between the two populations. In addition, DiProPerm results are reported
in Table 1. All reported values are consistent with the results obtained from fittings using a pooled shape
distribution; see Table 1 in the main article and Section 2.5 above. We observe smaller p-values in Table 1
compared to fittings using a pooled shape distribution, particularly for the difference measure d2. Thus,
the second group of final fittings reveals an improved separation of the two populations, schizophrenics and
controls.

3.2 Single GOP test results

This section presents feature-by-feature test results for the two distance measures d1 and d2 using PP1. We
have left out additional results for PP2 because neither additional information nor conclusions would be
added to this section by a repeated comparison of PP1 and PP2 as presented for fittings using a pooled
shape distribution.
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Table 1: Empirical p-value results using difference measures d1 and d2 for the proposed global hypothesis
test in comparison with results obtained by DiProPerm. Two different pre-processing steps were applied:
(PP1) Full Procrustes alignment with scaling. (PP2) Full Procrustes alignment without scaling. Three
different projection directions were used for DiProPerm.

method
empirical p-value
PP1 PP2

Mahalanobis distance
difference measure d1 0.0245 0.0043
difference measure d2 0.0013 0.0009

DiProPerm using MD-statistic
DWD direction vector 0.0018 0.0011
SVM direction vector 0.0039 0.0051

Figures 24 and 25 visualize the feature-by-feature test results for the difference measure d1 and correspond
to Figures 13 and 14 above. The corrected threshold is λ = 2.5632. The measure d1 results in 157 GOPs with
24 GOPs corresponding to the skeletal position of each atom, 66 GOPs for the spoke directions (bottom,
crest and top), 66 GOPs for the spoke lengths (bottom, crest and top) and one GOP for the global scaling
factor. Figures 24 and 25 show statistically significant GOPs. One skeletal position, two spoke lengths and
7 spoke directions are statistically significant compared to Figure 13 above where no skeletal position but
one spoke length and 10 spoke directions are statistically significant. Moreover, the global scaling factor τ
between SG and CG was found statistically significant.
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Fig. 24: As Figure 13, now based on PP1, difference measure d1 and the alternative group final fittings.
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Fig. 25: As Figure 14, now based on PP1, difference measure d1 and the alternative group final fittings with
a corrected threshold λ = 2.5632.

Figure 25 shows the magnitude of significance as described for Figure 7 in the previous Section 2.4. The
corrected threshold from the feature-by-feature test is λ = 2.5632. The GOP |U0K | = 2.7388 is statistically
significant, where the index K corresponds to the global scale factor τ . A comparison of Figure 25 with
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Figure 14 above shows a very similar pattern between the colored significance maps except for the pattern
between the bottom spoke directions. In the previous Figure 14, we observe two significant atoms 7 and 8
(top right of the skeletal sheet) and two significant atoms 12 and 13 (center middle) that are not significant
in Figure 25. A detailed interpretation of this observation is left as an open question for the future. However,
the second group of the final s-reps reflects tighter fittings based on the Dice coefficient. Therefore, the two
populations are better separated, which decreases noise artifacts and yields a larger threshold λ = 2.5632
compared to λ = 2.5532 in Section 2.5.2.

Figures 26 and 27 visualize the feature-by-feature test results for the difference measure d2 and correspond
to Figures 7 and 8 in the main article. The measure d2 results in 271 GOPs with 72 GOPs corresponding to the
skeletal position of each atom (x, y and z-position), 66 GOPs for the latitude spoke directions (bottom, crest
and top), 66 GOPs for the longitude spoke directions (bottom, crest and top), 66 GOPs for the spoke lengths
(bottom, crest and top) and one GOP for the global scaling factor. The corrected threshold is λ = 2.5214.
Figures 26 and 27 show statistically significant GOPs. Two skeletal x-positions, no y-position, 4 z-positions,
one bottom, no crest and one top spoke lengths, 7 bottom, one crest and three top latitude spoke directions,
5 bottom, two crest and 9 top latitude spoke directions are statistically significant. Moreover, the GOP |U0K |
is 2.7198 and is statistically significant, where the index K corresponds to the global scale factor τ .
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Fig. 26: As Figure 13, now based on PP1, difference measure d2 and the alternative group final fittings.

As before, a comparison of Figure 27 with Figure 8 in the main article shows a very similar pattern
between the colored significance maps. The lower color intensity for several boxes in Figure 27 is due to a
larger threshold λ = 2.5214 compared to λ = 2.2917 in the main article.

3.3 Conclusion

The additional data analysis by the second group of final fittings in this section confirms the results and con-
clusions of the main article and Section 2 above. The global test results establish smaller p-values compared
to the results from the first group of final fittings. This indicates a better separation of the two populations
by the second group of final fittings. The feature-by-feature test show similar patterns between the colored
significance maps and demonstrate therewith the sensitivity of the proposed test in the case of less separated
fittings.
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Fig. 27: As Figure 14, now based on PP1, difference measure d2 and the alternative group final fittings with
a corrected threshold λ = 2.5214.
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