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ABSTRACT

4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated res-
piratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the
dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic
respiratory motion estimation in 4D lung IGRT. Using the shape deformations of the high-contrast lungs as the
surrogate, the statistical model trained from the planning CTs can be used to predict the image deformation
during delivery verication time, with the assumption that the respiratory motion at both times are similar for
the same patient. Dense image deformation fields obtained by diffeomorphic image registrations characterize the
respiratory motion within one breathing cycle. A point-based particle optimization algorithm is used to obtain
the shape models of lungs with group-wise surface correspondences. Canonical correlation analysis (CCA) is
adopted in training to maximize the linear correlation between the shape variations of the lungs and the corre-
sponding dense image deformations. Both intra- and inter-session CT studies are carried out on a small group
of lung cancer patients and evaluated in terms of the tumor location accuracies. The results suggest potential
applications using the proposed method.

Keywords: respiratory motion prediction, 4D motion modeling, correlation analysis, shape modeling, image
guided radiation therapy, 4D lung CT

1. INTRODUCTION

4D image-guided radiation therapy (IGRT) in general is still in its early stage of development1 . The treatment
of inoperable tumors in lung remains a therapeutic challenge. Increasing the radiation dose improves local
control but requires high-precision techniques. There is widespread interest in linear accelerator-mounted cone-
beam computed tomography (CBCT) systems for guiding radiation treatment, but respiratory motion adversely
affects CBCT image quality and limits its accuracy. Improved localization accuracy will permit smaller treatment
volumes, thereby enabling safe delivery of higher radiation doses. Our long-term goal of this research project is
to improve the accuracy and reliability of CBCT guidance of radiation treatment in lung.

Non-rigid registration has been adopted to characterize the respiratory motion in the whole imaging space
or within the major organ region2–6 . However, the regular non-rigid image registrations may not be usable
due to serious reconstruction artifacts introduced by inevitable breathing motion. A model-based approach is
to approximate a linear motion model of the breathing mechanism from simulation data and use the model to
predict the motion of the target images. In practice, the simulation data used for training would be respiratory-
correlated CT (RCCT images) obtained at the planning time and the target image used for on-line guidance
could be CBCT, RCCT or megavoltage CT (MVCT), depending on different IGRT applications.

Recognizing the hysteresis and irregular breathing patterns, auxiliary devices, such as the pencil-beam navi-
gators7 and the spirometer8 , have been used to obtain extra modeling parameters as the surrogate for the motion
estimation. Distinctive image features, such as high image contrast features, are potential surrogate candidates.
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In abdomen liver contour has been used as the surrogate for tracking the intra-hepatic tumors, which are hard
to visualize in the CBCT scans9 . In thorax air-filled lungs are the major sources of motion observation and
most easily visible from the diaphragm region (the bottom of the lungs). Zhang et al.10 proposed to use the
diaphragm position as the surrogate for estimating the CT respiratory motion and showed effective prediction
results. Nevertheless a more comprehensive surrogate is needed to navigate the whole image deformations with
better accuracy, especially in the superior regions of the lungs.

Considering its large coverage and high-contrast intensity feature, the shape of the lungs is commonly used
to evaluate the motion estimation accuracy5, 10 . We propose to use the shape of the lungs as the surrogate
to predicate patient-specific respiratory motion described by dense displacement field. We have carried out
some preliminary studies on building a shape-guided statistic model, using a deformable medial representation
for extracting lung shapes and multivariate linear regression for calculating correlation statistics11 . In this
paper, we improve the method in both accuracy and efficiency by adopting a point-based surface correspondence
method, which is designed to build shape models with good group-wise correspondence across the training
samples. We also adopt the canonical correlation analysis to maximize the correlation between the shape and
image deformations and reveal the relationship between different correlation methods in our application. Finally,
prediction evaluations are demonstrated in intra-session RCCT studies of five patients and inter-session RCCT
studies of 3 patients.

2. METHODOLOGY

Given the planning CT images at different phases within one breathing cycle, our method begins by calculating
dense diffeomorphic image deformations from the end of expiration (EE) phase to all other phases (Sec.2.1).
Meanwhile, shapes of the anatomical structures are automatically extracted from each phase image and the group-
wise surface correspondence is optimized via a point-based correspondence program (Sec.2.2). PCA are then
applied to both the training shapes and the image deformations to reduce the dimensionality of the data (Sec.2.3).
Finally by correlating the shape changes with the temporally corresponding image deformations, we compute a
linear mapping which maps a shape model temporal change to a dense image deformation field (Sec.2.4). This
linear correlation is then ready to apply to the lung shapes of target images to predict the corresponding image
deformations. This relative computationally expensive training process can be done completely off-line. Given
a target image at an arbitrary phase, we only need the extracted shape to estimate the corresponding image
deformation using the trained statistics.

2.1. Motion description via diffeomorphic registration

Fluid based diffeomorphic image registration12 is used to obtain the image deformation of all phases in one
respiratory cycle. The registrations generate dense and smooth displacement vector fields for each phase, which
are used to characterize the respiratory motion.

In a respiratory sequence, each image is denoted by It, where t is phase number that is typically from 0
to 9 for one complete breathing cycle, with approximately 0.5 seconds intervals. We use the end of expiration
(EE) phase I5, usually the middle phase, as the reference/fixed image due to its high reproducibility. For
each image It with dimension of I × J × K, the corresponding dense deformation is denoted by the vector
Ut = [ut(0, 0, 0), ...,ut(i, j, k), ...,ut(I, J, K)]T , where ut(i, j, k) = [Δx,Δy, Δz] is the displacement vector field
as the result of diffeomorphic registration with I5 . As a result of the choice of the reference phase, U5 itself is
zero.

Given the reference phase image and the displacement vector field, we can warp the reference image and get
the deformed image or propagate any known anatomical structure contours from the reference image.

2.2. Shape modeling with group-wise correspondence

Due to high intensity contrast of the air filled lung regions in CT, the respiratory motions can be observed from
the shape changes of the lungs (left lung and right lung) clearly, especially near the diaphragm regions. As the
major source of motion in the imaging field, the geometrical variations of lungs are used as the surrogate for the



temporally corresponding dense image deformation. Furthermore the high-contrast shape boundaries make the
automatic segmentation feasible.

Binary lungs are extracted using a simple automated segmentation pipeline.13 First, a binary threshold is
manually set for all the CT scans to extract the air-filled low intensity lung regions roughly. The higher intensity
small vascular structures leave small holes in the rough segmentation. Then a 3D math-morphological “ball
rolling” operator fills the remaining holes and remove unnecessary details in the connecting region of bronchi
structures, airways and lungs.

The surface point distribution model (PDM) representing the shape of lungs is denoted by Pt = [pt(0), ...,pt(N)]T ,
where pt(i) = [x, y, z] is the ith point on the surface and N is the number of surface points. The number of
phases in a breathing cycle limits the training sample size to a small number. Considering the dimensionality
of the displacement field, the shape correspondence condition therefore directly affects the effectiveness of the
statistics in this high dimension low sample size (HDLSS) problem.

An state-of-art point-based surface modeling method14, 15 is adopted to construct compact shape models
with group-wise shape correspondence. The method does not rely on any specific surface parameterization and
topology. In this algorithm, surface points samples, defining the shape-to-shape correspondences, are modeled
as sets of dynamic particles whose position is subject to entropy minimization. A fixed number of particles are
automatically generated for all binary images at once with a quick optimization convergence. Examples of the
PDM for the EE and EI ( end of inspiration) phase are shown in Fig.1. In our experiments each pair of lungs
contains 512 surface points.

Comparing with the deformable m-rep model construction method used in our previous study11 , the point-
based correspondence method has several advantages: 1) The algorithm explicitly optimizes on a group-wise
correspondence measurement, which produce more reliable correspondence condition that is crucial for statistical
analysis; 2) It handles multiple-objects shape and arbitrary topology, which makes the task of modeling two
lungs at the same time much easier; 3) No initialization model is needed and the surface sampling density can be
adjusted as needed. The computation of the point-based optimization is also efficient considering it generates all
the training models at once. Users can also adjust the resolution of the surface sampling. Less dense sampling
means shorter computation time. Our experiments suggest that 512 points are dense enough to represent the
variation details of the lung shape for our prediction purpose.

Figure 1. Segmentation and shape modeling. First three images from the left: the axial, coronal and sagittal views of
the binary segmentation of the EE (white) on top of the EI (gray) phase; Two images on the right: The PDMs, composed
of 512 points, shown on the surface of the lungs at EE phase and at EI phase with group-wise correspondence indicated
by colors.

2.3. PCA on shape and image deformation spaces

Both shape surrogates and the dense volume deformation representations are high dimensional. For 3D CT
lung images with typical resolution of 512 × 512 × 100 the image deformation fields demand large storage. The
dimension of 3D shape representation for lungs are also in the order of thousands. Dimension reduction is
therefore necessary to carry out any computations involving covariance matrix between two large data matrices.
Principal component analysis fits the task well. With good surface correspondences across the phases in one
breathing cycle, we can carry out PCA on the 4D data, treating the shapes of each phase as sampling points in
the shape space. Similarly for the image deformation, the correspondence of the displacement vectors at each
voxel position (as a result of the image registration) allows the usage of PCA. With small number of training



samples, it only takes 2-4 principal modes to cover 90% total variations. Removing noises in the data is shown
to make notable differences in our application. We therefore only use those first 2-4 modes.

Pt = μP +
kP∑
i=1

xieP
i = μP + XtEP , (1)

Ut = μU +
kU∑
i=1

yieU
i = μU + YtEU , (2)

where μ is the sample mean, ei is the ith eigenvector, E is the matrix form of the eigenvectors, xi/yi is the
corresponding coefficient or the projection score of the data in the ith eigendirection, and k is the number of
eigenmodes. With the training sample consisted of N phases, N-1 eigenmodes at most for both shape deformation
and image deformation spaces are obtained.

In Figure.2 we show the PCA results of one patient data set (10 phases ) in one breathing cycle. Seperate PCA
spaces for the shape deformations and the image deformations are calculated first from the 10 training samples.
Then we project the training samples back to the first three principal modes to understand the distributions
of the 10 phases in the PCA space. The three dimensional spaces are spanned by their first three principal
components, whose score units are normalized by the standard deviations of each modes ( 1.0 of PC-1 means one
standard deviation away from the mean along PC-1 direction). In the shape variation space, the first, second
and the third mode takes up 76.2% , 15.5% and 3.6% total variations respectively. While in the image variation
space, the first three modes take 67.1% 19.2% and 4.7% of the total variation. Strong linear correlation between
the two spaces can be revealed from the first couple of modes that collects the majority sampling variation. For
example, the data used in Figure.2 has the correlation coefficient of 0.98 between the first PC modes of the shape
and image deformation spaces and 0.96 between the second PC modes .
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Figure 2. PCA results of shape and image deformation spaces from one sequence of RCCTs, where the number tagged
with a point in space is the phase number in one breathing cycle. Left: Shapes of the 10 training phases projected back
onto the space spanned by the first three principal components Right: Dense image deformations of 10 training phases
project back onto the space spanned by the first three principal components. The Euclidean sample mean is marked by
the solid red circle.

2.4. Shape-correlated image deformation statistics
2.4.1. Canonical Correlation Analysis

Canonical correlation analysis (CCA) has been recently used in biomedical image analysis fields, especially for
predictive modeling of brain anatomical structures in neuroscience16–18 . Here we use CCA to maximize the
correlation between the shape surrogate and it corresponding dense image deformation in the training sample.

After the PCA dimension reduction, the canonical correlation (CC) between the two multidimensional
variables Xt and Yt is maximized via the following canonical transformation. Given data matrices X =



[X0 − X̄, ..., Xt − X̄, ..., X1 − X̄] and Y = [Y0 − Ȳ , ..., Yt − Ȳ , ..., Y1 − Ȳ ] where X̄ and Ȳ are the mean vectors of
the training sample, the canonical variables α and β is calculated by projecting the data onto the basis matrices
A and B :

α = XT A, β = YT B. (3)

The canonical correlation basis A and B is calculated by solving the eigenvalue equations :
{

C−1
XXCXY C−1

Y Y CY XA = ρ2B
C−1

Y Y CY XC−1
XXCXY A = ρ2B,

(4)

where CXX and CY Y are the within-sets covariance matrices, and CXY and CY X is the between-sets co-
variance matrix of X and Y . And the eigenvalues ρ2 are the squared canonical correlations defined as ρ =

AT CXY B√
AT CXXABT CY Y B

To use the statistics for predicting the dense image deformation Ût∗ of a target image at phase t∗ , the
following steps are carried out:

(1) Reparameterized the shape Pt∗ by Xt∗ = (Pt∗ − μP)ET
P ;

(2) Calculate the CC representation of the shape αt∗ = (Xt∗ − X̄)A ;

(3) The canonical variate βt∗ = αt∗ρ;

(4) The CC representation of the displacement field Yt∗ = βt∗B−1 + Ȳ ;

(5) Finally, the predicted displacement Ût∗ = μU + Xt∗EU .

2.4.2. Relationship with MLR and PLS

There are alternatives for carrying out statistical prediction from the surrogate deformation to the target image
deformation, such as multiple linear regression (MLR) and partial least square method (PLS). All three methods,
trying to relate one group of data with the other, can be unified into the following generalized eigenproblem or
two-matrix eigenproblem form19:

Aw = λBw. (5)

Table 1. Two-matrix problem foumular for MLR, CCA and PLS

A B

MLR
(

0 Cxy

Cyx 0

) (
Cxx 0
0 I

)

CCA
(

0 Cxy

Cyx 0

) (
Cxx 0
0 Cyy

)

PLS
(

0 Cxy

Cyx 0

) (
0 Cxy

Cyx 0

)

MLR, CCA and PLS correspond to find the subspaces of minumum square error, maximum correlation
and maxinum covariance respectively. The corresponding covariance matrixes used for A and B are shown in



Table.1. In our application dimension reductions via PCA are first carried out to both data sets (X and Y)
before calculating the correlation. Cxx and Cyy are therefore both scaled to identity matrix I, which makes all
the three methods deliver equivalent results. One merit of the CCA method is that the correlation coefficients
quantitatively indicate how strong the correlation is between the surrogate and the motion, which helps to
understand how well the statistics model fit into the data.

3. EXPERIMENTAL RESULTS

In our experiments the respiratory correlated CT (RCCT) data sets are provided by a 4-slice scanner (lightSpeed
GX/i, GE Medical System), acquiring repeat CT images for a complete respiratory cycle at each couch position
while recording patient respiration (Real-time Position Management System, Varian Medical Systems). The CT
images are retrospectively sorted (GE Advantage 4D) to produce a series of 3D images at different respiratory
time points. The training image sequences used for build the statistic model has the time resolution of 0.5 s and
the CT slice thickness of 2.5 mm. We first carried out intra-session study, where the statistics are trained and
tested within one sequence. In the inter-session study, we have secondary RCCT scan from the same patient to
test the prediction results. The secondary RCCT sequence is imaged at a different day and has poor spatial and
temporal resolutions and much smaller field of views.

3.1. Intra-session study: Leave-one-phase-out

Leave-one-phase-out (LOPO) study was carried out for each of the five patients. Namely, the statistics that
used on each target phase image were trained from the other 9 phases from the same breathing cycle. For each
patient the EE phase image was used as the reference image for registration, and the gross tumor volume (GTV)
of the EE phase (contours provided by clinicians’ delineation) is also used as the reference GTV for validation.

Figure 3. LOPO study on 5 patients (50 predictions in each notched box). Left: The 99th percentile euclidian distance
between the predicted displacement field and the “true” displacement field; Right: The euclidian distance on the center
of gravity between the deformed GTV and the delineation truth.

In Fig.3 we show the LOPO prediction results on five patients (50 predictions in total). Standard boxplots
are used for statistical comparison. We measured the Euclidian distance between the predicted displacement
field and the “true” displacement field calculated from diffeomorphic registration. The 90% quantile surface
distance accounts for large discrepancies. Given clinicians’ delineations on the GTV, we are able to measure
the center of gravity (COG) errors of the predicted GTV. In order to better understand the scale of the tumor
motion, we show the errors of without motion correction (static GTV), in which the reference GTV is used for
all phases. We also plot the estimation errors when directly applying the image deformation to the GTV via the
diffeomorphic registration used in training. The LOPO studies show that the prediction effectively corrects the
tumor motion and is close to the results produced from direct image registration. The maximum error of 0.25cm
surface distance is in fact within one voxel size, 0.1cm× 0.1cm× 0.25cm. In both patients, our shape-navigated
statistical model largely reduces the estimation error from the static (no registration) method. We show an
example of predicted tumor volume overlapped with the clinicians’ manual segmentations in Fig.4.



Figure 4. A median case (from the 50 predictions in terms of the COG error) example of predicted GTV in sequential
2D slices. Blue: predicted tumor voxels; Red: the manual delineations; Yellow: the overlapping volumes. This predicted
GTV has the COG error of 1.9 mm and the Dice’s coefficient of 0.86.

3.2. Inter-session study

The LOPO studies in the last section are done within a single RCCT sequence, where both shape and image
deformation statistics are fairly tight. While in the inter-session study,a RCCT sequence obtained on one day
are used to predict the motion for another day. Although we assume that the breathing patterns of the same
patient are repeatable in certain degree, it is not surprising to observe big variations between sequences taken
years apart. Without extra known variability introduced to the statistics, our current model might not be able
to handle large variations between the training and the test scan. In the following experiments, we have primary
RCCT sequence and secondary RCCT sequences of the same patient taken with different imaging protocols.
Besides the poorer resolution, the secondary RCCT sequences has much smaller imaging region and only four
phase bins reconstructed. The coverage in the longitudinal direction of the second session is about 6 to 10 cm,
centered around the tumor region, as shown in Figure.5. The four phases roughly sample the whole breathing
cycle, including the EE and EI phases. The statistics trained from all ten phases of the primary session are used
to predict the motion in the secondary session.

A rigid registration based on the veritable bones was used to align the two sessions first. The pre-calculated
displacement field and binary lungs at each phase from the first session were down-sampled and cropped to
match the resolution and the size of the secondary scans. The correlation statistics modeling process are not
much different than the intra-session study. With the same imaging modality, the same binary segmentation
scheme can be directly carried out for the secondary scan. And we use the EE phase of the primary scan as the
reference image for calculating the image deformation of the training set. The only notable difference for our
inter-session study is that the shapes of the surrogate extracted from the target image are no longer the full set
of lungs, but the bottom part of the lung region with a cut plane on top. Since our point-based correspondence
algorithm does not depend on topology, the points on the top plane are not treated differently and therefore
forced to be matched across the phases, which introduces artificial variations more or less. Also the real in-and-
out-of plane motion variations during the breathing will not be constructed into the statistics due to the cut off.
As a result, the statistical model in this setting is expected to be less robust challenged by the noises.

Figure 5. Left: The second session EI phase image is shown on top of the first session EI phase Image: a coronal
view, the intersection region is the darker region on the bottom part of the lungs; Right: The PDM of the partial lung
shape, composed of 64 surface points, shown with the surface of the lungs at EE phase and at EI phase with group-wise
correspondence.

The preliminary tests were evaluated on 3 patients in terms of the tumor location errors (COG error), see
Figure.6 . Clinicians’ delineations on the tumors were provided on EI and EE phases of the secondary scan. The
predicted image deformation propagated the tumor volume from the reference image ( EE phase of the primary
scan). The shown prediction results were able to correct some of the large tumor motions as large as 1.5 cm .The
errors are in much bigger mm magnitude, partly due to the double-sized slice thickness we adopted to match the
secondary scans.



Figure 6. Inter-session study on 3 patients ( each has 10 first-session images for training ) : The COG errors of the
predicted GTV are compared with the clinician’s delineations on EE and EI phases.

4. DISCUSSION AND CONCLUSION

4.1. Surrogates comparison
In earlier work of Zhang et.al10 , the diaphragm position along the longitudinal axis was used as a distinctive one
dimensional surrogate signal, which can be manually labeled in 3D. The one dimensional diaphragm surrogate
might be capable of navigate the major breathing motion, but oversimplified motion model is not reliable towards
accurate motion prediction, especially irregular breathing deformation with tumors located in various places in
the lung. The further away the region is to the diaphragm, the less accurate the deformation might become.
Especially in cases where the tumors are located in the upper part of the lung, the deformation around tumor
might not correlated well with the diagram.

In our current method a lot more features are used by extracting the shape of the whole lung region, which
therefore is designed to be more comprehensive and robust for the thorax motion prediction. In order to
quantitatively understand the advantages of engaging the more complicated surrogate, we roughly compare the
prediction results by replacing the shape model with the diaphragm signal that are manually recorded. Linear
regression was computed to map the diaphragm position to the dense image deformation field. We carried
out the LOPO studies using 4D RCCT sequences from two patients, in which the tumors are located in the
neighborhood region of the diaphragms. The evaluations in terms of the prediction errors on the displacement
field, lung boundaries and GTV are shown in Figure.7. As a local feature, the diaphragm position, is shown to
be less capable of predicting the nonrigid deformation of the entire imaging field.

Figure 7. Comparison of the surrogates on 2 patients (20 predictions in each notched box). Left: The 99th percentile
euclidian distance between the predicted and true displacement fields are plotted to show the large discrepancies.Right:
The center of gravity of the predicted GTV are compared with the clinician’s delineations.

4.2. Conclusion
The proposed shape-correlated deformation statistics is used to predict the patient-specific respiratory motion
efficiently in both intra- and inter-session studies. The linear correlation between the shape and image defor-



mation spaces is shown to be encouraging. In our modeling, we treat each phase in a breathing sequence as an
independent sample. No temporal correlation among the phases is assumed, which makes the method applicable
to irregular breathing patterns often seen in reality.

Large inter-session data sets need to be collected for further large-scale evaluation. Given 4D image sequences
both at planing time and treatment time in different imaging modalities, such as Tomosynthesis and CBCT,
our next goal includes estimating the respiratory motion if inter-session scans with different imaging modalities,
which requires to extract shapes from the target images and maintain the correspondence with the training
images. Also, it is possible to extend the methodology to inter-patient studies to include more training samples
for more robust statistics.
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