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ysis if there is good correspondence of the representations within a population. Many
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implied boundary well approximates the target surface in terms of low order geometric
boundary properties: 1) positions, 2) tangent fields, 3) various curvatures.

Our method involves a two-stage framework that first, roughly yet consistently fits a
skeletal structure to each object and second, refines the skeletal structure such that the
shape of the implied boundary well approximates that of the object. The first stage uses
a stratified diffeomorphism to produce topologically non-self-overlapping, smooth and
unbranching skeletal structures for each object of a population. The second stage uses
loss terms that measure geometric disagreement between the skeletally implied bound-
ary and the target boundary and avoid self-overlaps in the boundary. By minimizing the
total loss, we end up with a good d-s-rep for each individual shape. We demonstrate
such d-s-reps for various human brain structures. The framework is accessible and ex-
tensible by clinical users, researchers and developers as an extension of SlicerSALT,
which is based on 3D Slicer.
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1. Introduction

3D anatomical shapes in medical image analysis are most

intuitively understood in terms of their boundaries. However,

analysis of objects’ shapes benefits from models that capture

shape features additional to boundary positions. For instance,

objects’ widths, boundary normals and boundary curvatures

may be useful features (Srivastava and Klassen, 2016; Pizer

et al., 2019). The Blum medial representation (Blum, 1964;

Siddiqi and Pizer, 2008) captures these features via a skele-

ton and its connection to points of spherical bitangency on the

boundary. We call these connection vectors, spokes. As dis-

cussed in (Damon, 2008), this skeleton must share non-self-

overlap topology with the object’s boundary.

Medical images reflect aspects of structures but also include

noise from imaging devices. Moreover, a manual or automatic

discrete segmentation induces unintended deviations from true

boundaries of objects. Together these pose notable challenges

for anatomical shape analysis. Under a small perturbation

of low order geometric properties, a skeletonization method

(Kimia et al., 1995; Siddiqi et al., 1999) that derives a Blum

medial structure from a boundary could result in a skeleton of

branching topology that differs from that of the noise-free ob-

ject, as illustrated on the left of fig. 1. Such sensitivity to per-

turbations brings unnecessary variations and interferes with a

succeeding statistical analysis.

To address the problem, Damon (2003) introduced the no-

tion of a representation by radial flow of a skeletal model, in

which the skeleton flows to the boundary along spokes, as dis-

tinguished from the previous models of boundary (“grassfire”)

flow to the skeleton, the behavior of which is mathematically

studied in the work of Giblin and Kimia (2001). Based on ra-

dial flow, Damon introduced the notion of a general skeletal

structure for an object that relaxes the appropriate Blum condi-

tions while developing the mathematics needed for the structure

to capture the geometric and topological properties of an ob-

ject. Further, Pizer et al. (2019) proposed to use these relaxed

conditions in fitting a smooth unbranching skeletal structure (an

unbranching “s-rep”) to an unbranching object boundary, as op-

posed to deriving the structure from the boundary (see fig. 1).

Starting from a discretely sampled version of this s-rep

(“d-s-rep”), the implied region generated by the radial flow

(e.g., the region bounded by the dotted curve on the right of

fig. 1) needs to have geometric features well matched to the tar-

get object, to be non-self-overlapping and to correspond well

across a population of similar shapes. To achieve all three aims,

we have devised a two-stage d-s-rep fitting framework: first, we

initialize a d-s-rep that has consistent skeletal branching topol-

ogy within the population; second, we refine the d-s-rep with

respect to geometric match quality.

The first stage of the fitting process takes the topology of

the population of objects into account. Many human structures

are diffeomorphic to ellipsoids; namely, there exists a bijection

that is differentiable with differentiable inverse and that maps

the boundary of such structure to that of an ellipsoid. More-

over, many of them have no branching subfigures. When the

ellipsoid is eccentric, we refer such object as a slabular object;

roughly, its length is greater than its breadth, which is greater

than its width. We choose the ellipsoid as the basic slabular

object because 1) its Blum medial structure is an s-rep with a

flat, unbranching structure whose edge is an ellipse that directly

maps to the crest of the ellipsoid; 2) the map between its

boundary and its skeletal representation has an analytic form;

3) it is easy to parameterize both the boundary and the skeletal

sheet in such a way that the crest curve on the boundary of the

ellipsoid divides it into two open halves, namely, a north and a

south side; 4) there is a natural correspondence between eccen-

tric ellipsoids via the ratios of their largest, middle-sized, and

smallest principal radii respectively.

We infer the map between the target object and its skeletal

representation given 1) a diffeomorphic map A between the

boundary of the target object and that of an ellipsoid and

2) the s-rep of the ellipsoid, from which a d-s-rep can be analyti-

cally computed. We extendA−1 to the skeletal sheet, producing

what is called a stratified diffeomorphism A′. We apply A′ to

the ellipsoid’s d-s-rep to produce the initialized fit. We detail

this stage in section 3.
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Fig. 1: Left: a 2D object with simple Blum branching topology except for a boundary bump induced by noise. The noise induces an extra branch on the skeleton
(blue). Right: a fitted skeleton to the object that obtains the noise-free object’s branching topology. This skeletal model is associated with a slightly modified (dotted)
boundary. We aim to obtain such robust skeletal representations.

The second stage involves the improvement of the initial fit.

The initial fit needs such improvement because it may result in a

self-overlapping skeletal structure and may differ unnecessarily

in geometric properties from the target objects. We measure the

goodness of the fit in three low order geometric properties: the

boundary positions, the tangent fields and the radial curvature

(Damon, 2008) – respectively, zero-, first- and second-order ge-

ometric properties. Section 5 discusses the methodology of this

refinement.

The refinement stage needs a finely sampled s-rep, while the

initialization stage outputs a coarsely sampled d-s-rep. To fill

this gap, section 4 describes the methodology of interpolating a

d-s-rep into a more finely sampled d-s-rep or even a continuous

s-rep.

This paper is organized as follows. In section 2 we review

the related work. To demonstrate the proposed framework, we

show results from experiments on an infant brain imaging study

(IBIS) dataset. In section 6 we describe the data. Section 7 fo-

cuses on the experimental setup and the implementation details.

Section 8 shows the results from both the initialization and re-

finement stages. Section 9 discusses the accomplishments of

this paper and proposes future work. In order to make the

framework publicly accessible, we have implemented it as an

extension to 3D Slicer. It has been packaged in SlicerSALT

(Vicory et al., 2018) and was released recently.

2. Background

The skeletal fitting method described here differs from pre-

vious methods as surveyed (Siddiqi and Pizer, 2008). These

include a ridge following approach (“cores”), a boundary ero-

sion approach, discrete morphology approaches, Voronoi ap-

proaches, continuous medial fitting approaches (“cm-reps”)

(Yushkevich et al., 2006; Pouch et al., 2012) and our own labo-

ratory’s previous fitting approach (Joshi et al., 2002; Pizer et al.,

2003). Because our previous approach reflected some – but not

all – of the Blum medial properties, we called the resulting rep-

resentation an “m-rep”. None of these approaches, with the

possible exception of a very recent form of cm-rep (Yushkevich

et al., 2019), can achieve the goal of automatically computing

skeletal representations suitable for statistical analysis as dis-

cussed above.

Yushkevich et al. (2019) modified a method due to Arguillère

et al. (2015) to construct a diffeomorphism between objects that

mapped a finite set of points representing the medial axis and

the corresponding boundary points for the first object to another

finite set for the second object. Nonetheless, without taking into

account C1 or higher order information, such a diffeomorphism

could fail to satisfy higher order conditions on the boundary as

well as on the skeleton. As a result, this diffeomorphism can

change the skeletal topology as shown in Damon (2021).

Hong (2019) showed the promise of automatically fitting a

skeletal structure to a slabular anatomical structure; that is, a

skeletal fitting method not needing a pre-defined skeletal tem-

plate. Nonetheless, such a fit can result in a self-overlapping

skeletal structure and can not strongly enough match the target

object’s geometry (for example, see the middle and right panels

of fig. 2). A refinement stage is needed.
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Pizer et al. (2013) refined an m-rep within the shape space

obtained from statistical analysis in order to achieve a tight

shape distribution for a population. However, that shape space

is free from geometric constraints, which still cannot resolve

self-overlaps. Later, the refinement algorithm studied in Tu

et al. (2016) takes into account both global consistency and in-

dividual specificity of m-reps. However, the algorithm relies on

statistics (i.e., variation modes) of a population as the refine-

ment proceeds. It is computationally expensive and impractical

for refining each single medial structure.

Despite the above-mentioned drawbacks, these medial struc-

tures have been widely applied in anatomical shape analy-

sis. For example, Tu et al. (2016, 2018) have demonstrated

that entropy-based s-reps improve the performance of statis-

tics, as compared to boundary models. Schulz et al. (2016)

studied hypothesis tests of individual geometric object proper-

ties of s-reps. They found that using such geometric proper-

ties on hippocampi could effectively differentiate first episode

schizophrenics and controls. Vicory et al. (2014) showed effec-

tive segmentations using s-reps. Also, Hong et al. (2016) have

applied s-reps in classification tasks on two brain structures and

on two diseases.

3. Initialize an s-rep

In this section, we first give a formal definition of an s-rep in

both the continuous and discrete senses. Then we discuss the

initialization of s-reps with consistent branching topology for

slabular objects.

3.1. Skeletal representation

In this paper we restrict ourselves to s-reps of the form

(M, S ), where M is formed from two smooth colocated sheets

and thus has ellipsoidal topology, and where S is a field of non-

crossing spoke vectors on M (see fig. 2 left). That is, (M, S ) is

formed from 3 components: (M+, S +), (M−, S −) and (M0, S 0),

where M+,M−,M0 compose the colocated skeletal sheets (in

3D, curves in 2D): M0 is a fold curve of M that divides M into

two open submanifolds, namely M+ and M−. M+ is the south

side of M, and M− is the north side of M. Via S +, M+ is mapped

Fig. 2: Left: a 3D s-rep for a hippocampus. The grid connects skeletal points.
The yellow curve is the skeletal fold. The vectors proceeding from the skeletal
points are the spokes. Middle: the 3D implied boundary of this s-rep. Right:
the surface mesh of this hippocampus being fitted.

to the southern boundary of the object; via S −, M− is mapped

to its northern boundary; via S 0, M0 is mapped to a crest curve

on its boundary.

S +, S − and S 0 are continuous vector-valued functions; each

vector s ∈ S has a length r and direction U, and it proceeds

from a point on M+,M− or M0, respectively. The “spoke” s

points from a skeletal point p to a point B(p) on the boundary.

Fig. 3: An oblique view of a skeletal representation, where the skeletal sheet is
discreetized as a grid, of an ellipsoid. The interior black grid is the discretized
colocated skeletal sheets MI . Each grid point on MI is associated with a spoke,
pointing to either the north (magenta) or south (cyan) side of the ellipsoid’s
boundary. The yellow curve is the fold M0, from which red spokes point to the
crest curve of the ellipsoid.

In Blum’s view of medial models and Damon’s view of skele-

tal models (Damon, 2003), the two colocated sheets M+ and M−

are thought of as a single manifold M with boundary ∂M (i.e.,

M0) . The locations on M \ M0 are the “smooth” points and the

locations on M0 are the fold (“edge”) points. In this conven-

tional view, associated with each smooth point p there are two

spokes s+,p and s−,p. Notice that in a skeletal model the length

of s+,p is not necessarily equal to that of s−,p. Moreover, the



Z. Liu et al. / Medical Image Analysis (2021) 5

spokes swing infinitely fast as their base points approach and

pass around the fold. We will detail this in section 5.

To establish correspondence among 3D objects, we discretize

MI (i.e., M+tM−) into grids and M0 into intervals, as shown in

fig. 3. As a consequence, functions S +, S −, S 0 are also sampled

at each skeletal point. We denote the result from the discretiza-

tion as a “d-s-rep” (M̂, Ŝ ).

3.2. Automatic initialization methodology

Since many human organs have a similar boundary and skele-

tal topology with a slabular object, we can treat them as dif-

ferent derivations from a symmetric slabular object such as an

ellipsoid (Leyton, 1992). Such uniform boundary and skele-

tal topology yields statistics-friendly (mutually corresponding)

skeletal representations. Inspired by this, we establish an initial

fit to a hippocampus by deforming a skeletal representation of

an ellipsoid to that of the hippocampus.

To automatically obtain the corresponding ellipsoid and per-

form the deformation, we estimate stratified diffeomorphisms

on boundaries via mean curvature flow1 and on skeletons via

the thin plate splines algorithm. Therefore, for each object we

initialize a skeletal representation in three steps:

1. We establish the correspondence between the surface of

the object and that of an ellipsoid (Hong, 2019).

2. We derive a continuous skeletal representation of the ellip-

soid and discretize it.

3. We infer the interior mapping from the ellipsoid to the ob-

ject and apply it on the discrete skeletal representation of

the ellipsoid.

There is an easily computed smooth normal vector field on

the boundary. To establish the correspondence between the ob-

ject and an ellipsoid, we continuously perform mean curvature

flow (Taubin, 1995) on the boundary at small steps, given the

normal vector field. After each step the normal vector field is

updated on the deformed boundary. We keep track of these lo-

cal diffeomorphisms at each step. Consequently, the final map

1Here, we assume the target boundary will not develop any singularities due
to the flow as discussed in section 8. This assumption holds for structures such
as the hippocampus, caudate, lateral ventricle, etc..

from the object to the ellipsoid is the composition of these local

diffeomorphisms.

While typically this mean curvature flow ultimately con-

verges to a sphere, on the way it becomes a near-ellipsoid, de-

noted as Ẽ. We measure the distance between the deformed

boundary and the boundary of the best-fitting ellipsoid during

the flow. We stop the flow once the distance is adequately small.

Next, we derive the skeletal representation for that best-

fitting ellipsoid. Let r1, r2, r3 be radii of the ellipsoid. Then

any point (x, y, z) within or on that ellipsoid satisfies

x2

r2
1

+
y2

r2
2

+
z2

r2
3

≤ 1 (1)

where we assume r1 > r2 > r3.

The flat skeletal (here medial) sheets MI reside in the middle

of the ellipsoid, and M0 is an ellipse. Let a skeletal point p ∈ M

have coordinates (xp, yp, zp) and let m1,m2 be the radii of M0.

Then we have
x2

p

m2
1

+
y2

p

m2
2

≤ 1 (2)

where

m1 =
r2

1 − r2
3

r1
(3)

m2 =
r2

2 − r2
3

r2
(4)

zp is a constant. Let zp = 0 for convenience.

We must now discretize the skeletal sheets of the ellipsoid.

The location of the skeletal sample points was motivated by

two considerations. First, the quality of the fit of the model into

any object depends especially heavily on the fit at the crest and

especially at its vertices (local extrema of convex curvature).

For an ellipsoid these object surface loci correspond to the fold

(end curve) of the medial ellipse and to that curve’s two vertices,

respectively. Thus, as illustrated in fig. 3, on the medial ellipse

we generate samples most densely at and near the fold and more

densely along the fold near the vertices of the fold.

The second consideration is that, for consistency with the

skeletal modeling of 3D objects, the sampling of the 2D me-

dial ellipse should also be skeletal, or more precisely, medial.

That is, the samples should be arranged along normals to the

ellipse’s boundary, i.e., the fold curve M0. These normals are
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sampled at the boundary, at a position slightly eroded from the

boundary, and then equally spaced between that position and

the ellipse’s medial axis (including a point on the medial axis).

The rate of sampling along the normals is a parameter choos-

able by the user.

We sample the medial points along the fold curve (the yellow

curve in fig. 3) as follows. The points on the fold are calculated

as (m1cosθ, m2sinθ, 0), and θ is uniformly sampled. The result

is that the arclengths between adjacent fold points in the flat-

ter region of the ellipse are notably greater than those near the

vertex.

At each of these sampled points on the fold, we compute

the interior sample points (the vertices of the black grid in

fig. 3) as locations along the ellipse’s normals at the respec-

tive fold points. The resulting grid is made up of quadrilaterals.

Those near the ends of the ellipse’s medial end-curve are quite

small, and four of the quadrilaterals are degenerate, having two

collinear sides.

We now must compute the spokes at each skeletal sample

point. For each point p ∈ MI , we find the nearest bound-

ary point B(p) on the corresponding side of the ellipsoid an-

alytically. p and B(p) form the endpoints of a spoke. Hav-

ing both boundary points and corresponding skeletal points, we

have formed the discrete skeletal representation (M̂, Ŝ ).

Finally, we deform the discrete skeletal representation of the

best-fitting ellipsoid to the target object. Because the boundary

of the near-ellipsoid Ẽ can be arbitrarily close to that of the

best-fitting ellipsoid, this discrete skeletal representation can as

well fit Ẽ. Having the local diffeomorphisms in the process of

flowing the boundary points of the object to those of Ẽ, now we

apply the inverse of these diffeomorphisms in a reverse order

step by step on the boundary points of Ẽ. Meanwhile, we infer

the deformation on M via the thin plate splines algorithm and

apply it to give the base points of spokes in Ŝ . This yields an

initial fit of an s-rep to the target object.

4. Interpolation

This section discusses the methodology of interpolating a

discrete skeletal representation (“d-s-rep”) into a continuous

s-rep in 3D. Given a d-s-rep, we treat the interior elements (i.e.,

skeletal points and spokes) and others (i.e., fold points and fold

spokes) differently as follows.

4.1. Interpolate skeletal sheets and associated spokes

Each quadrilateral on a skeletal sheet is parameterized by

(u, v) coordinates. We fit a cubic Hermite patch (Han et al.,

2006) to each quadrilateral and interpolate it into a continuous

patch. We interpolate in a quad-by-quad manner on MI .

Then we interpolate both the directions and radii of the

spokes via a successive subdivision method. The principle of

interpolating directions is to have a smooth unit vector field on

the respective open submanifold M+ or M−. Given a quadri-

lateral bounded by 4 skeletal points (each associated with a

spoke), we interpolate unit vectors at centers of edges and

the center of the quadrilateral by spherical linear interpolation

(Shoemake, 1985). Along an edge starting from p0 and ending

with p1, we wish to interpolate between the orientation of the

spoke at p0 and that at p1. The associated orientation at λ (e.g.,
1
2 ) fraction away from p0 to p1 is given by the quaternion

q = q0(q−1
0 q1)λ (5)

where q0, q1 are quaternions associated with p0 and p1, respec-

tively. For the associated orientations at the center points in a

two-dimensional quadrilateral, we interpolate the two dimen-

sions individually in a similar fashion.

We apply this interpolation to produce sub-grid quadrilater-

als of half size in each direction, producing a subdivision step.

We repeat this process, yielding our successive subdivision for

spoke directions.

We also use a similar successive subdivision strategy to in-

terpolate the spoke radii, using skeletal geometry. Specifically,

the associated radius at a middle point is given by

rp 1
2

= Up 1
2
· (

1
2

(S p0 + S p1 )))

−
d2

4
(S p0 · Uww,p0 + S p1 · Uww,p1 )

(6)

where subscripts p0, p 1
2
, p1 are respectively the start, middle

(interpolated) and end positions. d is the distance from p 1
2

to

p0. Up 1
2

is the interpolated spoke direction at position p 1
2
, and
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S p = rp · Up. Further, Uww,p0 ,Uww,p1 are the second derivatives

of the spoke directions along the interpolating direction w at

point p0, p1, respectively. The first term can be understood as

the average of two end spokes projecting to the spoke direction

at the middle position. This projection should be a good esti-

mate of the interpolated radius. The second term corrects this

estimate based on the skeletal geometry. We refer the reader to

Pizer et al. (2019) for a more rigorous explanation. For the cen-

ter of a sub-grid quadrilateral, we interpolate the radii first along

u then v and also along v then u, and we average the results.

4.2. Interpolate spokes in a crest region

For skeletal points on the fold curve, we interpolate interval

by interval via the cubic Hermite splines.

The associated spokes’ directions are differentiable along the

fold curve (Damon, 2008). Thus, we can use the same inter-

polation strategy along the fold as described in section 4.1 and

obtain the spokes associated with the fold.

Our definition of s-reps in section 3.1 allows spokes to swing

smoothly as approaching and passing around the fold. In do-

ing so, we fit splines on the boundary across the crest, and we

interpolate along those splines to produce tips of interpolated

spokes. Correspondingly, we interpolate the skeletal points be-

tween the outermost interior skeletal points on M+ to corre-

sponding fold points on M0 and onto the outermost interior

skeletal points on M−. By doing so, we obtain interpolated

spokes around the fold.

Were this whole interpolation to be applied continuously, it

would turn a d-s-rep into a corresponding s-rep. Thus, assuming

this interpolation, we can simply refer a d-s-rep as an s-rep. We

will use the term “s-rep” in this way for the remainder of this

paper.

5. Refinement

This section discusses the second stage of the fitting. While

taking advantage of Damon’s relaxation of medial conditions,

we wish to deviate only slightly from the medial conditions

while maintaining the non-self-overlap and branching topology.

We accomplish this by designing an optimization in which we

penalize those deviations that can change most strongly in our

initialization stage (see section 5.1). In sections 5.2-5.5 we ad-

dress the penalties involving non-fold spokes. Then in section

5.6 we address the refinement on fold spokes. We defer the

implementation details to section 7.

5.1. Relax Blum conditions

Pizer et al. (2013) have shown that the following enumerated

objectives often provide a tighter fit to the geometry of the tar-

get object than a purely Blum-based fit. We will compare under

two conditions the properties of the fit between the boundary B

of the target object and B̃, that is created from the ends of the

primary and interpolated spokes. The two conditions compared

are when the full set of spokes satisfy the Blum conditions rel-

ative to B̃ and when they are released from those conditions,

according to Damon’s skeletal geometry.

1. In both conditions B and B̃ do not precisely agree, even at

the primary spokes. We do want the differences between

B and B̃ to be small.

2. In both conditions the tangent planes of B and B̃ at cor-

responding spokes do not precisely agree, even at the pri-

mary spokes. We do want the differences between the tan-

gent planes of B and those of B̃ to be small. However, in

the case of Blum conditions the spokes are orthogonal to

B̃, i.e., they satisfy the partial Blum condition; Damon’s

skeletal geometry allows this condition not to hold.

3. According to (Damon, 2003), for a smooth point p ∈ M+

and the colocated point p ∈ M− in both conditions local

self-overlap is prevented by the condition

rp < min{
1
κri,p
}, if κri,p ∈ R+

∗ (7)

where rp is the radius of the spoke associated with the

point B̃(p) and κri,p is a positive real number denoting

the ith principal radial curvature at p. However, when

the partial Blum condition holds, all of the eigenvalues

of S rad (the “radial shape operator”, see section 5.4) are

real, whereas in our relaxed skeletal situation, the condi-

tion need hold only for those places where the eigenvalues

of S rad are real. In our method, we wish this condition to
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hold. We handle this in our objective function by a ReLU

function (eq. (10)) described in section 5.4.

4. In both conditions a fold point p represents the maximum

curvature point on the boundary at B̃(p). We wish 1
rp

to

agree with the maximum curvature of the target boundary

B near B̃(p).

We also take advantage of another flexibility allowed by Da-

mon’s skeletal geometry, namely, that the two spokes s+,p and

s−,p need not be of the same length. However, because of the

properties of our initialization stage, we have found it unnec-

essary to include a term as another objective making the differ-

ence in these spoke lengths small.

We approach the objectives 1–3 by penalizing deviations

from those conditions with penalties L0, L1, L2. L0 measures

the overall squared distance from tips of spokes to the target

boundary; L1 measures the overall deviation of spokes’ direc-

tions from the perpendicularity to the boundary; L2 measures

the overall degree of violating objective 3.

It is the parameters of primary spokes Ŝ , emanating from the

grid points (i.e., M̂I), that are refined. The interpolated spokes

vary in response to this refinement. We evaluate the fit by mea-

suring those penalties over the set of both primary and the cor-

responding interpolated spokes, which we call S̃ .

5.2. Penalize boundary distances

To compute the penalty L0, given the target surface mesh, we

generate a 3D image of signed distances from the target object

boundary. For each spoke sp ∈ S̃ , we measure the distance dsp

from its tip to the boundary according to the distance image.

Thus, the total squared boundary distance penalty is

L0 =
∑
p∈M̂I

∑
p′∈N(p)

d2
sp′

(8)

where M̂I represents the sampled skeletal points and N(p) de-

notes the interpolated skeletal points near to the skeletal point

p (see section 4).

5.3. Partial Blum condition

We penalize the non-orthogonality L1 of spokes to a bound-

ary. At each point of the signed distance image, we compute the

direction of the gradient which is perpendicular to the distance-

level-set through that point. In particular, the gradient direction

at a tip of a spoke is approximately perpendicular to the target

boundary. We compare this gradient direction and the spoke di-

rection, yielding the local penalty L1 at p, i.e., 1−cos(θp). Then

we compute the overall penalty L1 by

L1 =
∑
p∈M̂I

∑
p′∈N(p)

(1 − cos(θp′ )) (9)

where θp′ is the angle between the spoke direction Up′ and the

gradient direction at the tip of the spoke.

5.4. Resolve local self-overlaps

Objective 3 guarantees that we avoid local self-overlaps, and

resulting singular kinks on the implied boundary, ensuring its

smoothness. The principal radial curvatures κri,p are eigenval-

ues of the “radial shape operator” S rad at p ∈ MI introduced by

Damon (2003) for skeletal structures. This operator is a mod-

ification of the differential geometric shape operator (O’Neill,

2014), using instead the unit vector field in the spoke direc-

tions. This is usually not orthogonal to the medial sheet. Con-

sequently, S rad is not a symmetric operator, and if the partial

Blum condition does not hold, its eigenvalues need not be real.

However, S rad still captures the shape of the region bounded

by the implied boundary; as well the regions bounded by any

of the level surfaces of the radial flow (formed by dilating the

skeletal sheet along each spoke by τ times its spoke length, for

some τ ∈ [0, 1]). These fill the region between the implied

boundary and the skeletal set like a series of the onion-skins,

which occur at specific times of the radial flow.

This operator S rad has a matrix representation Ŝ rad, which

may not have real eigenvalues if the partial Blum condition

doesn’t hold. We detail such a matrix representation for our

s-reps in section 7.

For real principal radial curvatures at p from the eigen-

analysis on Ŝ rad, we can compute for each single spoke sp of

radius rp the deviation from the objective 3 by a ReLU func-

tion:

δsp = max(0, rpκr1 − 1) (10)
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where κr1 is the maximal eigenvalue of Ŝ rad at p. If instead the

principal radial curvatures at p are not real, we let δsp = 0.

The overall L2 penalty of an s-rep is

L2 =
∑
p∈M̂I

∑
p′∈N(p)

δsp′ (11)

5.5. Overall objective for interior spokes

The overall objective function for the refinement of interior

spokes is given by

L = αL0 + βL1 + γL2 (12)

where weights α, β and γ are available to be set on a case-by-

case basis. For example, one needs to tune up α and/or β if an

initial fit was far from the object’s boundary, and one needs to

tune up γ if an initial fit presents self-overlaps. A good s-rep is

obtained by minimizing eq. (12) over the parameters describing

the primary spokes Ŝ .

5.6. Refine fold spokes

The initialization may result in fold spokes that violate objec-

tive 4; that is, fold spokes may deviate from the tangent plane of

the s-rep. Our current solution to refine this condition is to ad-

just spokes’ lengths, followed by relocating base points of fold

spokes.

To do so, we start from adjusting lengths of fold spokes such

that tips are on the boundary. Then, according to the maximal

curvature κB(p) at a boundary point B(p), we relocate the skele-

tal end of this fold spoke so that the spoke’s length becomes

rp =
1

κB(p)
(13)

In shapes with sharp ends (e.g., the caudate neuclei), the re-

location can make skeletal points of fold spokes far from the

outermost interior ones (see fig. 4). This strategy can be viewed

as extending MI toward the sharp ends.

6. Materials

We collected MR brain images (the voxel size is 1mm ×

1mm × 1mm) from 177 6-month-old infants. From these im-

ages the subcortical structures were automatically segmented

Fig. 4: Fit an s-rep to a caudate nucleus in the dataset described in section 6.
Top: the initial fit. Bottom: the refined s-rep. In the refined s-rep, the skeletal
points of fold spokes (red line segments) are relocated according to curvatures
of the crest.

(Wang et al., 2014) to produce label images. We fit a surface

triangular mesh to the boundary of each object of interest (i.e.,

a hippocampus or a caudate nucleus in this work) from each

label image using SPHARM-PDM (Styner et al., 2006).

7. Experimental settings and analysis

This section focuses on the settings and details of the experi-

ments.

7.1. Initialize an s-rep for a hippocampus

Recall that the initialization stage has two stages. First, we

flow the target shape boundary into a near-ellipsoid by follow-

ing a series of local diffeomorphisms. We compute the best-

fitting ellipsoid’s s-rep that also fits to the near-ellipsoid. Sec-

ond, we flow that s-rep back via a stratified diffeomorphism.

In the first stage, given the surface mesh of an object (see

fig. 5 for an example of a hippocampus), we build a diffeomor-

phism from this boundary to that of a near-ellipsoid via mean

curvature flow. At each step of the flow the boundary becomes

smoother. To make the steps small enough and highly likely

to be correct and easy to invert, it is recommended to perform

500 steps for a hippocampal shape. At the end the flow, we

can achieve a near-ellipsoid (refer to fig. 5 middle) that is close
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Fig. 5: Left: Input a 3D shape of a hippocampus represented by a surface mesh. Middle: The overlay of the target shape (red) and a near-ellipsoidal shape after
mean curvature flow (black). Right: the best fitting ellipsoid (yellow transparent mesh) to the black mesh in the middle figure and its discrete s-rep (consists of cyan
and magenta spokes, a discrete skeletal mesh and a fold curve).

enough to its best-fitting ellipsoid. We discretize the skele-

tal sheet of that best-fitting ellipsoid, sampling one point be-

tween the ellipse’s medial axis and the outermost interior skele-

tal point, shown on the right of fig. 5. This s-rep also well fits

to the near-ellipsoid.

The second stage builds a stratified diffeomorphism to apply

to the discrete skeletal points and to the corresponding spoke

ends. This diffeomorphism is built from the vertices of the tile

surface created on the target object. For the target objects (both

the hippocampi and the caudate neuclei) in this paper, each sur-

face mesh has 1002 vertices. With the stratified diffeomorphism

we transform the s-rep of a near-ellipsoid to that of the target

object, as shown in figs. 6 (a-c). Due to the stratified diffeomor-

phism, both the boundary match and the skeletal topology are

preserved.

7.2. Refine the s-rep

We interpolate the discrete s-rep to evaluate the penalties

L0, L1 and L2 (refer to eqs. (8), (9) and (11)) as the primary

spokes being refined in the procedure. An interpolated example

is shown in fig. 6 (d).

We compute the loss term L2 as follows. For each smooth

point p ∈ M̂I , we construct and compute the eigenvalues of the

matrix rŜ rad (Han, 2008) representing the local radial shape at

p as

rŜ rad = ((
∂S
∂w
−
∂r
∂w

U)QT (QQT )−1)T (14)

where r and U are the length and direction of the spoke at p, re-

spectively; w is a velocity direction of a curve on TpM through

p, and

Q =
∂p
∂w

(UT U − I) (15)

where I is an identity matrix. As described in eq. (11), the

eigenvalues of rŜ rad are used to form L2.

In fitting the hippocampi we set the weights α, β, γ in eq. (12)

as 0.004, 20 and 50, respectively. It is recommended to subdi-

vide each quadrilateral into a 8 × 8 sub-grid during the interpo-

lation, yielding moderately interpolated s-reps. We found these

settings also effective in fitting the caudate.

The optimization method that we use was chosen with the

following considerations in mind:

1. The optimization can be over as few parameters as those

describing a single primary spoke and as many as those

describing the full set of primary spokes. So the method

must be able to handle optimization over a few or over

hundreds of parameters.

2. The objective function (eq. (12)) has many local optima,

so a multiscale method is preferred.

3. No analytic expression for the objective function is avail-

able.

4. In each iteration of the optimization, as many as all of

the primary spokes have been modified, so interpolation

of many or all of the more finely sampled spokes must be
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(a) (b) (c) (d) (e)

Fig. 6: (a-c) The result of the initial fit to a hippocampus from different perspectives. The gray transparent mesh is the input target surface mesh. The black grid in
the middle of the object is a discrete representation of the skeletal sheet. The cyan and magenta spokes indicate spokes pointing to different sides. The red spokes
are fold spokes. (d) The white spokes are the interpolated northern spokes of the initial fit. (e) The refined s-rep.

recomputed. Thus, computation of the gradient of the total

loss by numeric approximation at every iteration would be

unacceptably inefficient. Together, considerations 3 and 4

make a method involving gradients of the objective func-

tion inappropriate.

As a result, we have chosen a derivative-free optimization

algorithm named “new unconstrained optimization algorithm”

(NEWUOA) (Powell, 2004) to minimize the objective eq. (12).

8. Results and discussion

We tested our method on a machine with Ubuntu 18.04.3

LTS, 15.5 GB memory, Intel R© CoreTMi7-8750H CPU @

2.20GHz and GeForce GTX 1060. With the above-mentioned

default parameters (e.g., the sampling rate of a skeletal sheet

shown in fig. 3), a direct initialization takes about 2 minutes.

A refinement from a previous result and the default parameters

(e.g., the subdivision level) takes about 11 minutes.

We fit s-reps to the surface meshes of the hippocampi. Fig-

ure 7 shows the the initial and refined implied boundaries of

a typical hippocampus. The initial implied boundary, shown

in fig. 7(a), presents singular kinks in the middle, and these

have been resolved by the refinement (see fig. 7(c)). The initial

implied boundary has overall small distances from the target

boundary positions (fig. 7(b)), while the refinement can reduce

those distances around the crest region (see fig. 7(d)).

To examine the quality of the initial and refined fits, we com-

pute the distances from tips of primary and interpolated spokes

to the target boundaries at the recommended subdivision level.

The statistics of these distances are shown in fig. 8. The re-

sults show that the worst case of the initialized s-reps has an

object-average distance of 0.48mm between the implied and

the target boundaries, as compared to 0.41mm after refinement.

Due to the refinement, the object-average distance from implied

boundaries to the target boundaries is improved by 11% on av-

erage. The improvement could be more significant if case-by-

case parameters were employed. With slightly tuned parame-

ters, we show the improvement of local distances between the

implied and target boundaries in a typical example in figs. 8 (c)

and (d).

With regard to the high order boundary geometric features,

singularities on implied boundaries can be resolved by the re-

finement (see figs. 7 (a) and (c)). To quantify local shapes

on the initial and refined implied boundaries as well as target

boundaries, we measure the curvedness C (Koenderink, 1990)2

on each boundary. The curvedness at a point on a surface is

defined as

C =

√
(κ2

max + κ2
min)/2 (16)

where κmax and κmin are the maximal and minimal curvature,

respectively. C is close to 0 when the local shape is flat; C gets

2The corresponding notation used in the reference is R.
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(a) (b) (c) (d)

Fig. 7: (a): The implied boundary of the initial fit to a hippocampus. (b): The heat map of unsigned distances measured locally between the initial implied and target
boundaries. (c): The implied boundary of the refined skeletal representation. (d): The local distances (in mm) from the target boundary to the implied boundary of
the refined skeletal representation.

(a) (b) (c) (d)

Fig. 8: (a): The object-average distances (measured in mm) between the implied and target boundaries in sorted order of 177 hippocampi. (b): The
kernel density estimation (KDE) of histograms of average distances between the implied and target boundaries in these 177 hippocampi before
and after the refinement. (c): the box plot of local distances from the target boundary in one typical case. (d): the histogram of the local distances
in the same case.

larger when the local shape is sharp.

We present the histograms of local curvedness measured on

an initial implied boundary, its refined implied boundary and

its target boundary in fig. 9. The smooth target boundary (see

the dashed curve) resulting from SPHARM-PDM has a rela-

tively tight distribution of curvedness. The initial fit (see the

blue curve) implies many local patches with high curvedness

on the boundary; the refinement smooths a lot of them (see the

orange curve).

The pattern of points adopted to sample the skeletal surface

was described in section 3.2. The measurements used for figs. 8

and 9 were made using this adopted pattern. Previously, we had

made the hippocampal skeletal fittings and the same measure-

ments using a pattern of points where the quadrilaterals were

closer to being the same size (Hong, 2019), so as compared to

Fig. 9: The histogram of the curvedness on the initial and refined implied
boundaries and target boundaries of a typical example. We apply the logarithm
on the count of boundary point plus 1, yielding the y-value. The curvedness
resulting from equation (16) is the x-value.
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the adopted pattern, the central part of the basis skeletal ellipse

was sampled more finely than with the final sampling pattern

and it was sampled less finely near the vertices of the ellipse.

We have succeeded in fitting 3D s-reps to the caudate nuclei

well (see fig. 4 for example). We intend to apply the framework

on other shapes.

Fig. 10: The conventional mean curvature flow develops singularities (e.g.,
around the circled region) for a mandible. Left: the input surface mesh of the
mandible. Right: the result from a few steps of the flow.

However, the conventional mean curvature flow can develop

singularities in evolving local shapes that have sections that are

nearly rotationally symmetric and have convex mean curvature

(Huisken, 1990), which happens, for example, with mandibles

(see fig. 10). For such cases we would replace the flow with a

modified mean curvature flow algorithm as studied in (Kazhdan

et al., 2012), which is beyond the scope of this paper.

9. Conclusions and future work

The essential motivation of fitting s-reps is to obtain topo-

logically consistent shape models that contain a rich collection

of geometric features for statistical analysis. The fitting pro-

cess should be automatic and independent on an explicitly pre-

defined template. The implied boundary by a good s-rep should

approximate the target boundary as to boundary positions, tan-

gent fields and curvatures. To obtain such an s-rep, this paper

has described a two-stage fitting framework: the first stage con-

structs a stratified diffeomorphism between an ellipsoid and the

target object, resulting in an s-rep of desirable branching topol-

ogy; the second stage refines the s-rep so as to minimize the

deviations from the Blum conditions. As shown in the results,

both initial fits and refined results approximate the boundary

positions quite well. The refinement improves the fits of the

skeletal structures to the boundaries in terms of boundary dis-

tances and curvedness.

We have found that the fitted s-reps to the hippocampi and

caudate nuclei have shown a good correspondence among ob-

jects. Also, the shape features from these s-reps have shown

statistical significance in discriminating shapes of the autism

against those of the non-autism group (Pizer et al., 2019).

We have packaged our algorithm in an open-source toolbox

SlicerSALT (http://salt.slicer.org/). SlicerSALT pro-

vides the state-of-the-art statistical shape analysis methods as

extensions of a customized 3D Slicer. It includes a number of

powerful tools for visualizing and processing data. Also, the

consistent user interfaces in SlicerSALT make it easy to oper-

ate. Like other extensions of 3D Slicer, SlicerSALT supports

modules written in C++ and Python. A module in C++ is typi-

cally more efficient than that in Python. Thus, we implemented

the initialization and the refinement modules using C++. In

addition, we provided a visualization module in Python.

This method can also be applied on 2D skeletal modeling,

i.e., to study the shapes of boundary contours in 2D images.

To this end, we construct a generalized cylinder with smooth

and closed boundary surface by repeating the target contour and

capping it smoothly and symmetrically at both ends. Then we

apply the framework discussed in this paper to fit a 3D s-rep to

this generalized cylinder. An initial fit is obtained by slicing the

3D s-rep in the middle cross-section of the cylinder.

In future we will develop this method to fit s-reps to more

complicated shapes (e.g., mandibles, patches of cerebral cortex,

heart valves (Pouch et al., 2015)). To do this, we will address

the singularities developed in mean curvature flow. Also, we

will continue investigating the strength of our s-reps in statisti-

cal shape analysis.
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