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Abstract. Many structures in the world and several in the human body are nearly
tubular in shape, i.e., have approximately circular cross-sections. Examples are
portions of blood vessels, the colon and the whole head and neck. The method
of modeling populations of slab-like objects as medial objects and segmentation
using statistical shape and appearance models has been shown to be successful for
several structures. However, the medial surface of a tubular object degenerates to
a curve, and the statistics of even nearly tubular objects represented as slabs will
typically be unstable. In this paper, we detail the representation, geometry and
means of computing statistics of a population of nearly tubular medial models.
We test our method on CTs of real rectums.

1 Introduction

In the human body, the blood vessels, the bronchi and the colon are examples of nearly
tubular objects. Segmenting these structures is an important task in medical imaging and
learning probability distributions on their populations is useful to segmentations [1].
Most of them can be thought of as a tube at the large scale with smaller scale changes
understood as deviations from the tube. Some of these are shown in Fig. 1.

There are several definitions of tubular objects in the literature. Koenderink [2] de-
fines a tube as the envelope of a set of spheres centered on a space curve. This is the
medial definition of a tube. Swept surfaces and generalized cylinders model tubes as
skeletal structures. A tubular generalized cylinder has a circular cross-section that may
vary in size and have a possibly bent axis. In this paper, we discuss geometry and statis-
tics for the former definition of tubes and then extend it to support deviations from the
tubular structure. In Section 1.1 we discuss prior work done on modeling tubular ob-
jects. Section 1.2 presents the segmentation objective that serves as the driving problem.

1.1 Prior Work

Generalized cylinders, also known as generalized cones, were fist proposed by Bin-
ford [3] with special instances studied extensively in computer vision. A straight ho-
mogenous generalized cone [4] is the surface obtained by sweeping a fixed cross-section
along a straight axis while possibly scaling it, whereas a straight homogenous general-
ized cylinder may have a cross-section that can change shape. Huang et al. [5,6] discuss
∗ This work was supported under NIH grant number P01 EB02779. We would also like to thank

other members of the Medical Image Display and Analysis Group at UNC Chapel Hill.

1



Fig. 1. Renderings of quasi-tube models fitted
to different structures. From the left to right
the structures are sections of the skin surface
extracted from a 3D CT scan, carotid artery,
internal jugular vein and the pharynx.

Fig. 2. mean model of a rectum (cen-
ter) deformed by ±1.5 standard devia-
tions along the first mode of variation
(left and right), which resembles the
anatomical shape change due to gas.

generalized tubes that are constructed by sweeping a fixed cross-section along an axis
with certain constraints. Terzopoulos et al’s [7] physically motivated deformable model
uses image-based and regularity forces to deform the model. In our applications, it is
difficult to get image-based forces to work due to poor contrast and noise.

Several of these center-line based methods are agnostic to the choice of the center-
line. However, when modeling populations, there needs to be a principled way of finding
the center-line so that no unwanted variation introduced due to the modeling process is
reflected in the statistics. O’Donnell et al. [8] discuss a novel method of generalized
cylinders that works around part of this issue by starting with a base cross-section that
may be anisotropically scaled. Although they use only two scaling parameters, their
method can be extended to produce arbitrary scaling. Further, they allow for local de-
formations of the cross-section by a spline function on the surface. However, they have
not discussed any method to compute statistics of their structures.

The subtle differences between a skeletal and a medial axis are sometimes over-
looked; the two are used interchangeably in some of the cited work. Having a true me-
dial axis representation overcomes the issue of finding a unique center-line. The class of
generalized cylinders whose medial axis is a curve is restricted to those with a circular
cross-section. A non-circular cross-section results in a 2D medial surface.

A generalized cylinder and a structure with a well-defined medial axis are closely
related. When we sweep a constant circular cross-section along a curved axis, the curved
axis is the medial axis. However, if we sweep a non-constant circular cross-section
along a curved axis, then such a structure may not have a curve as its medial locus,
though some such objects (generated by sweeping spheres of varying sizes) will have a
curve as the medial locus. Even when a generalized cylinder does not have a curve as
its medial axis, it is useful to find an approximate medial axis for that object.

A quasi-tubular object can be thought of as a structure that is modeled as deviations
from a tubular object. In the general case, it is a structure with a cross-section that may
not be close to circular but does not vary much along the axis.
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A sweep of a cross-section along an axis may result in two adjacent cross-sections
crossing each other near a sharp bend on the axis. Such instances of the generalized
cylinder are illegal, restricting the range of permissible cross-sections and axes. Da-
mon [9] has described a method in the swept surface paradigm using a shape operator
that can be used to detect these illegal generalized cylinders.

Several alternative methods exist that focus on extraction of the center-line from
image data. Examples include the cores methods (height ridges of medial strength)
developed by Aylward et al. [10] and by Fridman et al. [11].

No specialized means of performing statistics have been developed for the gener-
alized cylinders and swept surface models discussed above, so they are best suited for
modeling individual quasi-tubular objects versus populations of them. Such statistical
descriptions on populations are useful if objects are to be segmented from images in
which they have low contrast at their boundaries. There has been some work on mod-
eling tubes with the help of a statistical shape model. The generalized stochastic tubes
developed by Huang et al. [12] aid in the segmentation of blood vessels but are spe-
cialized for this application. De Bruijne et al. [13] have adapted the method of Active
Shape Models with center-line based methods.

With statistical shape models a special concern is their robustness against the num-
ber of training samples, since in medicine these training samples can be very expensive.
As mentioned by Joshi et al. [14], the orientation of the narrow medial sheet of objects
with a nearly circular cross-section is sensitive to small changes in the boundary and
will result in a population with broad variation. By avoiding this variability, the method
we describe uses statistical shape models for which the probability estimation is partic-
ularly robust against the number of training samples.

1.2 The Driving Problem: Segmentation of Quasi-tubes

The method of segmentation via posterior optimization of m-reps developed by Pizer et
al. [15] has been successful in dealing with slab-shaped objects with a lot of variability
and poor contrast. We develop a new method that draws on the ideas from these methods
but represents a tube-like object with a discretely sampled medial space curve and then
models quasi-tubes as deviations from these tubes.

The segmentation method can be divided into two parts: training and the actual
segmentation itself. During training, a rough m-rep model of the object is allowed to
vary inside an optimizer that favors smooth models with a regularly spaced discrete
medial mesh and that match well with the image data. The resulting models are known
as training or fitted models.

These training models are then statistically analyzed. The variation in the shape
space of the models is studied using Principal Geodesic Analysis (PGA), developed by
Fletcher et al. [16], which is a variation of Principal Component Analysis (PCA) suited
for non-linear spaces. The result is a mean shape m and a prior p(m) for segmentation.
At the same time, the region around the object is divided into small parts and the dis-
tribution of intensities in each region is studied with the help of local region intensity
quantile functions, developed by Broadhurst [17] and Stough [18]. We then apply PCA
on these quantile functions to produce a likelihood function p(I|m) for segmentation.
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When an image is to be segmented, the mean model is placed close to the real
organ with the help of landmarks or manually. The model is allowed to deform along
its principal modes of variation in an optimizer that favors likely shapes and intensity
distributions around and within the object. The objective function maximized is the
weighted sum of log p(m) and log p(I|m) with the weights chosen to make the two
terms have equal variance. This is a variant of the method of posterior optimization.

The remainder of the paper is organized as follows. In Section 2 we describe the
representation and geometry for tubular medial models. In Section 3, we describe the
way in which we estimate probability distributions on these models. We then describe
the modeling of the deviations from a tubular to a quasi-tubular model in Section 4.
Section 5 gives more details of our training and segmentation approaches. Finally in
Section 6, we test our method on real data obtained from CTs of rectums and provide
both quantitative and qualitative results on the same.

2 Medial Models for Tubes

A first order tube m-rep is a continuous space curve with a cone placed at every point
along the curve. The axis of the cone is tangential to the space curve at the tip of the
cone. Sweeping the edges of the cone bases gives the boundary of the modeled object,
which is orthogonal to the rays from the cone tip to the cone base. The cones may have
a half cone angle greater than π/2 but less than π. They are not allowed to intersect
each other. Damon [19] has provided us with tools that can be used to measure local
self-intersection (folding) of the object implied by the medial surface of a slab m-rep.
In Section 2.1 we adapt these tools to do the same for tubular m-reps.

In practice, we represent the medial model of a tube by discretely sampling the
space curve of cone tips. Each sample, shown in Fig. 3, is called an atom. Associated
with each sample is its position in space, p = (x, y, z), and a cone with its tip positioned
on the sample. The cone in turn is represented by its bisector, Û0 = (U0,1, U0,2), the
half cone angle, θ, and the length of its inclined surface rays, r. The bisector of the
cone always points along increasing arc length. Thus, the bisector points in the same
direction when θ changes across π/2. To keep the discrete samples regularly spaced,
while developing the models, we impose a penalty, called irregularity penalty, on the
model that penalizes atoms moving away from the average of its neighbors.

The atoms at the two ends of the chain have an additional parameter describing
the curvature of the cap at that end. However, when we are modeling open tubes, the
end-atoms don’t have any special properties and are just like any other atom.

A continuous medial curve γ(u) is interpolated from these atom positions and cone
bisector vectors with the help of piecewise cubic Hermite splines. The cone bisector
vectors, scaled by the mean of the distance between the position of the atom and its two
neighbors, are used as the tangents in the Hermite interpolation.

To resolve the rotational symmetry, we have a parameter φ that rotationally orients
the entire tube along its length. One of the atoms in the tube is designated as a base
atom. Usually this atom is close to a feature in the object that can help fix the rota-
tional orientation. This feature can be an anatomic entity such as a part of a bone, a
certain neighboring organ or tissue that can be easily identified in the entire population.
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Fig. 3. Representation of a tube
atom

Fig. 4. A mean model of
a rectum from one of our
studies showing the medi-
ally implied surface as a
wireframe.

Fig. 5. A quasi-tube
atom with spokes of
varying length and a
cut-away section of
the medially implied
surface shown in two
different orientations.

Whenever the cone for this atom is rotated around its bisector, all the other cones are
sympathetically rotated. This is needed for correspondences that depend upon the posi-
tion along the circumference of the tube such as those required for quasi-tube statistics.

The surface implied by the tubular medial model is called as the medially implied
surface and generated as follows. The circles at the base of the cones are discretely
sampled. The medially implied surface is the fine and smooth mesh obtained by in-
terpolating the set of surface points generated from the cones of all the atoms. The
medially implied surface for a tube model of a rectum is shown in Fig. 4.

In Section 2.1, we highlight a geometric operator that is useful for detecting models
with self-intersecting surfaces and interpolating between atoms in the medial axis. In
Section 2.2, we describe a geometric measure, which we call curviness, that is useful in
avoiding wavy medial axes.

2.1 Geometry on tubular models

Consider the medial atom cone to be composed of a set of spokes U extending from
the tip to the base. These spokes are parameterized by the arc angle φ ∈ [0, 2π) on
the circumference of the base made with respect to a zero point on the circumference.
Define the 1D radial shape operator for a tube as

Srad(φ) = − projU
(
∂U(φ)
∂s

)
, (1)

where projU is projection along the spoke vector U , U is the corresponding unit spoke
vector and s is an arc-length parametrization of the medial curve. Note that Srad and r
are also functions of u but we will ignore this for brevity. The derivative may be written
in the form

∂U(φ)
∂s

= a ·U− κrad · γ′(s), (2)
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where κrad is the principal radial curvature. Thus Srad(φ) = κrad(φ).
An important use of this shape operator is in detecting models that are illegal, i.e.,

some of the spokes are crossing each other and the surface has folded onto itself. Da-
mon [19] shows us that spokes will cross each other if and only if r×κrad > 1. Unlike
Damon’s shape operator, our shape operator is a function of the angle φ. However, it
suffices to evaluate this for the angle corresponding to the direction of the curve normal.

The model is illegal if ∃ u s.t. r × Srad >= 1. This condition can be relaxed as a
penalty more suitable for an optimizer, which expects a continuous objective function,
that is the p-norm of the individual measurements max(0, r×Srad−β) along the tube
for a certain threshold β ∈ [0, 1). Experimentally, we have seen that p = 6 − 8 and a
threshold of 0.8 − 0.9 produces good results. Larger values of p are sometimes useful
when we wish to make the aggregate measure more sensitive to local problems.

The Srad operator can also be used to interpolate between two consecutive atoms
on the same medial manifold. Han et al. [20] have used this operator to interpolate
atoms in 2D medial manifolds. We have adapted the interpolation method to generate
interpolated atoms for tubes. An important use is in interpolating atoms to improve
correspondence between models.

2.2 Geometric Penalty - Curviness

A wavy medial sheet results in crooked-looking models. It also necessitates the use
of significantly more samples in the computation of the illegality penalty. Penalizing
fitted m-reps according to an aggregate measure of curviness can alleviate these prob-
lems. Apart from being anatomically improbable, there is nothing wrong with crooked-
looking models. We define curviness by the p-norm of the total curvature over the entire
length of the medial curve.

C =

 1
n− 1

n−1∫
0

T pdu

1/p

, (3)

where the total curvature T is related to the geometric curvature κ and the geometric
torsion τ of the interpolated medial axis γ(u) by T =

√
κ2 + τ2. Different values of

p between 2 and 10 are appropriate depending upon how much we need to emphasize
individual sharp bends. However, larger values of p create steeper gradients that may
not be good in an optimizer.

The curviness measure is rotation and translation invariant. Dividing by the arc
length or the average inter-atom distance makes it scale-invariant too.

3 Shape Space and Statistics

A tube atom m can be represented by the tuple M = 〈P, Û0, θ, r〉. A tube consisting
of n atoms can be represented by n such tuples concatenated together. Here the cone
vertex P belongs to the group R3, the cone axis Û0 is a point on the two dimensional
sphere S2, the half cone angle θ ranges from 0 to π and is related to the group RP1, and
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the cone length r belongs to R+. All of the groups are Lie groups and except for R3,
they are not Euclidean manifolds. A Lie group has a differentiable group operator, an
inverse element and the identity element. Using the group operators and by the action
of the inverse on an element of the group on the element itself, we obtain the identity
element. The other things needed are a distance metric in this space and the ability to
project back and forth between this shape space and a tangent plane. Several of the
results presented in this section are similar to those worked out by Fletcher et al. [16]
for slabular m-reps.

The path with the shortest distance between two points in a manifold is known as
the geodesic between them. The length of this path is called the geodesic distance. If we
have a suitable mapping between the manifold and a tangent space, then this mapping
can be used to measure the geodesic distance on the tangent plane. The map that takes
us from the manifold to the tangent space is called as the Logarithmic chart and the
reverse map is known as the Exponential chart. The maps of the individual components
are given by the following equations. The map for the atom is simply the direct product
of these maps. The maps for the position are identity functions and that for the radius
are logarithm and exponential functions. In the following equations, θ ∈ (0, π), U =
〈u1, u2, u3〉 ∈ S2 and U′ = 〈u′1, u′2〉 ∈ T(0,0,1)S2.

Log(θ) = tan
(
θ − π

2

)
, (4)

Exp(θ′) = tan−1(θ) +
π

2
, (5)

Log(U) =
(
u1

α

sinα
, u2

α

sinα

)
, (6)

Exp(U′) =
(
u′1

sin |u′|
|u′|

, u′2
sin |u′|
|u′|

, cos |u′|
)
, (7)

(8)

where α = cos−1(u3) and |u′| =
√
u′21 + u′22 . All the above maps are taken centered

at the identity element. The identity element for the group R3 is 0, for R+ it is 1 and for
S2 it is the point (0, 0, 1). For the group of θ, the identity element is π/2. To obtain the
chart for a tangent plane centered at a point m different from the identity element, we
need to apply the inverse of that point to the element in order to move the tangent plane
to the identity element. We use Logm and Expm as the notation in this case.

To make the units of all the components commensurate in the Log map, we multiply
the unitless quantities with the mean radius taken over all the corresponding atoms in
the population. The geodesic distance is then defined as the norm of the difference of
these normalized atoms projected into the tangent space.

We define the Fréchet mean µ of a set of atoms as the one that minimizes the sum
of squared geodesic distances from all the corresponding atoms from the population.

µ = argmin
m∈M

∑
i

|Logm(mi)|2. (9)

We then compute the Log map of all these atoms and project them on the tangent
plane centered on the mean. We do PCA on these projected atoms and keep the first
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few modes that represent more than 90% of the total variation. Fig. 2 shows the shape
variation along the first mode of variation of the rectum from our study.

4 Quasi-tubes

In this section, we show how we model the deviations from a tube to a quasi-tube.
Several objects in the real world can be modeled as deviations from a tubular struc-

ture. Take the head and neck for example. Start with a cylinder, make the cylinder bulge
out in certain regions to produce features such as the nose and the lips, and make it cave
in to produce the eye sockets and other cavities. Sections of the colon, blood vessels,
the bronchial tree and many other organs in the body can be thought of as quasi-tubes.

A tube atom is represented by a cone of spokes. All of the spoke ends lie in a single
plane, α, forming a cross-section of the tube. Our approach is to change the cross-
section in this plane. This can be accomplished by inclining each spoke in the plane
between it and the axis in such a way that the tips of all the spokes continue to lie in
the plane α. Changing the cross-sectional shape in this way makes the computation of
the shape operator in the circumferential direction straightforward and the component
along the axis is still given by the 1D shape operator defined by equation 1 as U is a
function of the spoke angle φ.

The above method results in varying length spokes in an atom. Therefore the struc-
ture is no longer Blum medial but skeletal. Damon’s proofs concerning the use of the
shape operator Srad in illegality measurements are valid for skeletal structures too.

The change in the length of the spokes is represented as a multiplicative parameter
that belongs to the group R+. The Log and Exp maps for this parameter have the same
form as that for the radius r.

The segmentation step is divided into two scales. At the large scale, a mean of each
quasi-tube atom across all population samples is used. This gives a large scale model
with each cross-section having a different shape. In the small scale, the individual quasi-
tube atoms are allowed to vary to allow for small changes in each cross-sectional shape.

5 Training and Segmentation

We have discussed how we geometrically and statistically model tubes and quasi-tubes.
We now discuss their training and the appearance model we use.

To fit quasi-tube models to training cases and derive a probability distribution on
that object we follow the general approach described in Merck [21]. Expert outlines
designating the target object in several 3D images are converted into binary images.
An initial model that somewhat resembles the object is created. Sometimes landmarks
are added to initialize our models. The parameters for these models are then varied
inside an optimizer. The objective function is set to a sum of a combination of image
match and geometric penalty terms. The image match we use is the average of the sum
of squared distances between a point on the object’s surface and the closest point on
the expertly outlined object. In certain places such as the crest, the reverse distance is
used as the original distance is artificially low. When landmarks are used, the distance
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between them and the corresponding positions on the model are taken into account.
The geometric penalty terms consist of a combination of the irregularity, Srad and the
curviness penalties mentioned in Sections 2, 2.1 and 2.2 respectively. The weights for
the geometric penalties are relaxed proportionally to the quality of the fit of the model.

We then compute the statistical shape model from all the models in the population.
The log map of the atoms is computed. The spoke deviations are represented as a multi-
plicative parameter that belongs to the group R+. The Log map of the deviations is the
Log map for the group R+ as described in Section 3. We then compute the mean across
the entire population to give us the mean shape. The atoms are projected at the tangent
plane centered on the mean. The statistical shape model is computed as described in
Section 3 except that the spoke deviations are only used in the computation of the mean
and not in the computation of the modes of variation of the shape. These comprise the
large scale shape variation. The spokes are allowed to vary in the smaller scale. This
separation of variation at two different scales gives more stable statistics.

At segmentation time, the appearance model we use has been developed by Broad-
hurst [17] and Stough [18]. The object’s surface is divided into several regions. An in-
tensity histogram for each region is computed and converted into quantile distributions.
The distribution of these quantile functions is then analyzed with the help of Principal
Component Analysis (PCA). As tubes can be arbitrarily cut-off, we optionally allow for
the ends of the tubes to not contribute to these appearance models.

During segmentation, we use the method of posterior optimization where the statis-
tical shape model gives the prior and the appearance model gives the likelihood.

6 Application and Results

Segmenting rectums from 3D CT scans is important for adaptive radiotherapy treat-
ment for prostate cancer. It is important for the patient’s health and quality of life that
the rectum does not receive too much radiation. The rectum changes shape a lot from
day to day due to the presence of gas and faeces pushing the abutting prostate around.
The presence of gas also creates a large variation in the intensity distributions and ne-
cessitates special handling of the interior intensity distributions in the rectum.

In our experiment the data comes from different days of several patients. For each
patient, the statistical shape model is built with the help of data from just that patient.
The study is done in a leave-one-out manner, i.e., we build the statistical shape model
for each day of a patient by using data from the other days. This is clinically not possible
but it suffices for the purposes of our study. In the availability of more training data, one
can incorporate cross-patient statistics to get over this limitation.

We obtained 3D CT images with a resolution of 0.98 × 0.98 × 3 mm3 of 5 pa-
tients with 13–18 images for each patient for a total of 79 images. We then trained
quasi-tubular medial models on manual segmentations of rectums from this data. For
our training, we used a hierarchical training process where we first fit a coarsely sam-
pled tubular medial model to the data. We then allowed the individual spokes to vary,
generating quasi-tubular models. After this we subdivided the model by generating in-
terpolated atoms halfway between previously existing atoms and then refined this finely
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Fig. 9. Each row shows the outline (white
or black) of our segmentation on two dif-
ferent axial slices of the same image. Note
the poor contrast in the slices in the right
column. The slices on the right are inferior
with respect to those on the left. The first
three rows are typical results and the last
row is one of the better segmentations.

sampled model to fit the binary image better. Further subdivision yielded only marginal
improvement.

The quantitative results of our training process are shown in Fig. 6. The median
average surface distances for the coarse tube, coarse quasi-tube and the fine quasi-tube
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Fig. 10. Quasi-tubular medial models (in white) fit to a section of the head and neck
skin surface (left) and the pharynx (right) vs. the manually segmented structures (in
translucent blue)

models are 1.58, 0.84 and 0.54 mm with standard deviations of 0.70, 0.62 and 0.09
mm. We can conclude that we can model rectums fairly well and in cases where the
tube model is lacking, the quasi-tubular model does a much better job.

In Fig. 7, we show the cumulative shape variation captured by the first few eigen-
modes for a quasi-tubular model trained over the data of one of the patients. In about 7
modes, we can effectively capture most of the shape variation. In Fig. 2, we show the
variation of the rectum along the first principal direction, which resembles anatomical
shape changes due to filling of gas.

During segmentation, we used a similar hierarchical approach. The model was first
initialized semi-automatically. We then segmented the model in the shape space of the
coarse models. The result was then used to drive the segmentation in the shape space of
the finely sampled trained medial models. In Fig. 8, we show the segmentation results
versus the quality of fine training fits for all the patients. The median of the segmentation
results is 1.53 mm. The segmentation results for a few of these is shown in Fig. 9. Notice
the complete lack of contrast in some of the inferior slices.

We have also fit quasi-tubular models to various structures of the head and neck.
In Fig. 10, we show quasi-tubular models fit to sections of the skin surface and the
pharynx. The expertly contoured outline is shown in translucent blue. The average sur-
face distance for the fitted models of the skin surface, common carotid artery, internal
jugular vein and the pharynx are 1.22, 0.8, 1.3 and 1.13 voxels.

7 Conclusion

We have developed a new method for modeling populations of nearly tubular objects as
a tubular medial model with deviations from the perfect tubularity described by local
changes and demonstrated the same over real world rectum data. We have seen that
this representation is also effective for elongated objects with distinctly noncircular but
slowly varying cross-sections.

Further, we show how we can study population variations by doing statistics in the
non-linear space in which these quasi-tubular medial models lie. We also discuss the
radial shape operator that is needed for studying medial geometry on these models.

The rectum is a challenging organ due to immensely varying shape and poor image
contrast. Several structures in the head and neck – skin surface, pharynx, jugular veins
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and carotid arteries – provide difficult modeling challenges. We have shown that our
models can be trained to within sub-voxel accuracy and give reasonable segmentations.
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