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ABSTRACT  

Shape from shading (SFS) has been studied for decades; nevertheless, its overly simple assumptions and its ill-conditioning 

have resulted in infrequent use in real applications. Price et al. recently developed an iterative scheme named shape from 

motion and shading (SFMS) that models both shape and reflectance of an unknown surface simultaneously. SFMS 

produces a fairly accurate, dense 3D reconstruction from each frame of a pharyngeal endoscopic video, albeit with 

inconsistency between the 3D reconstructions of different frames. We present a comprehensive study of the SFMS scheme 

and several improvements to it: (1) We integrate a deformable registration method into the iterative scheme and use the 

fusion of multiple surfaces as a reference surface to guide the next iteration’s reconstruction. This can be interpreted as 

incorporating regularity of a frame’s reconstruction with that of temporally nearby frames. (2) We show that the reflectance 

model estimation is crucial and very sensitive to noise in the data. Moreover, even when the surface reflection is not 

assumed to be Lambertian, the reflectance model estimation function in SFMS is still overly simple for endoscopy of 

human tissue. By removing outlier pixels, by preventing unrealistic BRDF estimation, and by reducing the falloff speed 

of illumination in SFS to account for the effect of multiple bouncing of the light, we improve the reconstruction accuracy.  

 

1. INTRODUCTION 

1.1. Problem and proposed solution 

Endoscopy is an in-body examination method that provides direct and high-resolution visualization of human organs to 

physicians. However, due to large camera distortion and the lack of spatial reference, it is difficult for a physician to 

interpret the 3D geometry and position of an object of interest, thus limiting the usefulness of endoscopic video in treatment 

planning. In addition, due to the large amount of redundant information, lack of an efficient method to do video-based 

comparison, and most importantly inability to provide a full view of the target object, endoscopic video is almost never 

used for review.  

 

Price et al. [1] developed an algorithm for shape-from-motion-and-shading (SFMS) that can reconstruct a textured interior 

tissue surface in 3D from each endoscopic video frame, and Zhao et al. [2] developed a group-wise surface registration 

algorithm that can fuse such single-frame-based 3D textured geometries into one complete textured surface. Through an 

overall pipeline described in [2], an endoscopic video that contains many flat and redundant views is transferred into a 

single complete 3D textured surface that we call the endoscopogram. The model provides (1) complete 3D anatomical 

geometry, which facilitates tumor localization; (2) efficient visualization, which provides a full overview of the scoped 

area and provides comparison within and between patients; and (3) the opportunity to register endoscopy data with other 

modalities, such as CT, thereby enabling transfer of the tumor information into CT spaces for treatment 

planning. Price et al. and Zhao et al. applied their work to pharyngeal endoscopic videos and showed success.  

 

However, their combined method is still far from perfect: (1) Since the reconstruction method of Price et al. is frame-by-

frame, there are no temporal constraints between successive images, which leads to inconsistent reconstructions and even 

failure to reconstruct some frames. In addition, due to such inconsistency, very few partial surface reconstructions can be 

selected for fusion. (2) One reason that Price’s method creates more realistic reconstruction than many other state-of-the-

art endoscopic reconstruction techniques [3,[4] is that it uses a reflectance model that is more sophisticated than simple 

Lambertian reflectance. However, this model is still not powerful enough to characterize the complex inner body 

environment with liquids causing specularities, absorption by multilayer tissues, and multiple bouncing of the light.  

 

In this work, we focus on solving the inconsistency problem of the SFMS method so that longer sequences can be fused 

together. In addition, we further explore the reflection model estimation module and refine it so as to produce a more 
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accurate reconstruction result. We use the same pharyngeal phantom and evaluation scheme as in Price’s paper to show 

the improvement of reconstruction accuracy. We also apply the improved SFMS on colonoscopic video to show its 

improved reconstruction consistency in this new domain. 

 

 

1.1 Related works 

A variety of partial solutions to the difficult problem of 3D reconstruction of endoscopic video have been published. The 

majority of them are based on two types of computer vision techniques: shape-from-shading [9,10,11] and structure-from-

motion [11,12]. SFS is useful for 3D reconstruction of the endoscopic video because (1) it operates on single image and is 

thus unaffected by tissue deformations from frame to frame; (2) it gets simplified by the fact that the light source and the 

camera are co-located in the endoscopic environment. SFM can produce accurate 3D reconstruction by matching salient 

feature points from multiple different views and more importantly estimate the camera positions for each frame, which is 

useful for fusing multiple 3D reconstructions into a whole. The complementary properties of these two methods make the 

combination of them a natural choice for medical vision tasks. Kaufman et al. [3] use SFS to reconstruct a 3D surface from 

the endoscopic image and then use 2D feature points to find a transformation matrix to align consecutive 3D surfaces. 

Malti et al. [15],[16] use SFM to build a rigid 3D template of the scene and then use such template together with SFS to 

refine the existing surface. Wu et al. [4] proposed a multi-frame SFS algorithm that can obtain consistent and complete 

shape reconstruction by leveraging trackers in the endoscope and identifying common occlusion boundaries across 

different frames. However, their method only works for rigid objects with a surface exhibiting Lambertian reflectance. 

Besides these SFS and SFM-based methods, Hong et al. [6] proposed a virtual colon reconstruction scheme based on 

identifying pre-designed features. In Nadeem et al.’s work [5], machine learning techniques are used to estimate depth 

from a single endoscopic image. They use a virtual endoscopic dataset as training data and applied it on real images. 

However, none of these methods can produce a full 3D reconstruction from endoscopic video with a poorly known shape 

prior, arbitrary surface reflectance, and large tissue deformation. 

 

  

2. METHODS 

               
Figure 1. Original SFMS and the proposed improved SFMS pipeline for single frame reconstruction. Modifications are shown in red 
boxes. The underlying algorithms of SFS and SFM are detailed in [1]. 

Figure 1 shows the original [1] as well as the improved SFMS pipeline. New contributions are outlined in red. In summary, 

starting from sparse point clouds obtained by structure-from-motion, the overall pipeline iteratively estimates both the 

reflectance model and the shape of an unknown object, in this case the anatomical surface viewed by an endoscope. This 

is an EM-type problem, to estimate the latent data (depth) and a vector of unknown parameters (reflectance model), given 

observed data (the input image) and a sparse surface representation obtained via structure-from-motion (SFM) [7] from a 

few nearby frames. By utilizing data from SFM, SFMS is able to perform guided per-frame reconstruction without relying 
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on a pre-estimated reflectance model. However, due to a lack of temporal constraints, the method often induces 

inconsistent reconstructions across successive individual frames.  

 

2.1 Improving shape reconstruction and reflectance model estimation by fusion 

As mentioned before, one of the problems that we are addressing in this paper is the inconsistency of the frame-by-frame 

SFMS method. We assume that even the tissues in endoscopic video are deformable, in adjacent frames they should still 

be relatively close to each other. Therefore, we expect the reconstructed surfaces from adjacent frames to have small 

deformations from each other. In other words, we want the reconstruction to be consistent across time. In the original 

SFMS method, each frame uses its own SFM points to generate a warped surface, which is used as a prior shape for 

reflectance model estimation. During the iterative reconstruction, the method makes no interconnection between different 

frames. Therefore, initialization errors easily lead to different reconstruction results. We solve this problem by introducing 

a fused reference surface. This fused reference surface can be seen as a summary estimation from multiple frames, which 

is more robust than a single frame estimation. In addition, by leveraging the deformable registration and outlier geometry 

trimming in the geometry fusion [2], this fused reference surface is much more reliable than a simple average. Finally, all 

the frames use this fused reference surface to estimate their reflectance models and guide the SFS reconstruction as well.  

Our experimental result shows that this fused-reference surface provides not only more consistent but also more accurate 

geometry for each frame.  

The modified algorithm is as follows. Lines in boldface indicate the new contributions. 

In this algorithm the subscript 𝑖 indicates the frame or camera index and 𝑡 is the iteration index. The superscript f 

indicates the fused reference surface, w is the warped surface, and e is the extracted surface. A sequence of endoscopic 

video frames {𝐹𝑖|𝑖 = 1 … 𝑁} is the only input to our system. At step 1, a sparse 3D point cloud 𝑃 is generated using a 

software named Colmap [7]. Colmap implements a structure-from-motion (SFM) algorithm that simultaneous estimates 

both camera pose and 3D scene structure from multiple frames. In our system, the point cloud P is used as a prior for 

reflectance model estimation and surface reconstruction.  

 

In comparison to the original SFMS, where 𝑆𝑖,𝑡
𝑤  (step 3) is directly used for reflectance model estimation (step 9) and 

surface reconstruction (step 10), our fusion-guided SFMS uses a single fused reference surface 𝑆𝑡
𝑓
. That surface is 

generated by fusing all warped surfaces {𝑆𝑖,𝑡
𝑤 | 𝑖 = 1 … 𝑁} at iteration 𝑡 using Zhao’s [2] registration method (step 4). 

Since each endoscopic image is taken at a different time, such fusion provides temporal regularity across all the frames. 

Figure 2 shows an example of 𝑆𝑖,𝑡
𝑤  and 𝑆𝑡

𝑓
. We could directly incorporate temporal regularity into the SFS equation by 

computing optical flow between successive fames, but that would result in an extremely complex optimization system. 

Separating the temporal regularity and SFS makes the overall problem more solvable and stable.  

Algorithm 1 Fusion-guided SFMS 

Input: A sequence of endoscopic video frames {𝐹𝑖|𝑖 = 1 … 𝑁} 

  1: Generate a sparse 3D point cloud P and camera positions 𝐶𝑖,𝑡 from the input frames using SFM 

  2: Initialize estimated surface of each frame with constant depth 

  3: Warp the estimated surface 𝑆𝑖,𝑡
𝑤   using its corresponding SFM 3D points Pi 

  4: Fuse the warped surfaces into a fused reference surface 𝑺𝒕
𝒇
 

  5: For each frame 𝐹𝑖 

  6:  Extract a reference surface 𝑆𝑖,𝑡
𝑒  from the fused reference surface 𝑺𝒕

𝒇
 

  7:         Warp the reference surface 𝑆𝑖,𝑡
𝑒  using its corresponding SFM 3D points Pi 

  8:         Remove saturated and under-illuminated pixels 𝑭𝒊
′  

  9: Estimate the reflectance model BRDF using the extracted reference surface 𝑆𝑖,𝑡
𝑒  and the 

preprocessed image 𝐹𝑖
′ 

  10:  Perform SFS to generate a better estimate surface 𝑆𝑖,𝑡+1
𝑤  

  11: Repeat steps 3-10 until convergence 
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(a) Frame-by-frame reference surface          (b)  Fused reference surface 

Figure 2. In the original pipeline, the reference surface is generated for each reconstruction separately. In fusion-guided SFMS, the 

fused reference surface generated using the deformable registration is shared by all reconstructions by extracting a surface visible only 

to each specific camera pose from that fused reference surface. 

Step 6 illustrates how the fused reference surface is being used.  Given camera position 𝐶𝑖,𝑡, obtained from SFM (step 1), 

the corresponding surface 𝑆𝑖,𝑡
𝑒  that is visible to 𝐶𝑖,𝑡 is extracted from 𝑆𝑡

𝑓
 as the initial guidance surface for the following 

reflectance model estimation and surface reconstruction. Since SFM points are treated as ground-truth, a warping is 

performed in step 7 to ensure that the reference surface 𝑆𝑖,𝑡
𝑒  won’t deviate too much from those points. 

The SFS equation is a parameterization of radiance of light 𝐼𝑟 reaching the observer and irradiance of light 𝐼𝑖 hitting the 

surface. 

   𝐵𝑅𝐷𝐹(𝜃) =
𝐼𝑟

𝐼𝑖
, 𝐼𝑖 = 𝐼

𝐴

𝑟2 𝑐𝑜𝑠𝜃             (1) 

The BRDF here is a function with only one variable, the detailed derivation can be found in [1] 

                           𝐵𝑅𝐷𝐹(𝜃) = ∑ (𝛼𝑘 + 𝛽𝑘 sin (
𝜃

2
)) cos𝑘 𝜃𝐾−1

𝑘=0       (2) 

Given the extracted reference surface 𝑆𝑖,𝑡
𝑒 , the distance r to the light source, and the angle between the incident light and 

surface normal 𝜃  can easily be computed. Thus estimating the BRDF becomes solving a linear system with 2K 

parameters. 

More details about the SFM, reflectance model estimation, and SFS are provided in [1]. More details about the group-wise 

deformable surface registration algorithm used for fusion are provided in [2].  

2.2 Improving reflectance model estimation by outlier removal and approximation of multiple light bouncing 

Many assumptions and constraints are needed for SFS to be solvable. Among those assumptions, Lambertian surface 

reflection is one of the most popular. In [1], Price et al. proposed a more flexible reflectance model (equation 2) for 

modeling the surface in endoscopic environment, which is suitable for any kind of surface property. Furthermore, the 

reflectance model estimation process is simplified by utilizing SFM points as prior information, and the co-location of the 

light and camera. 

Price’s reflectance model estimation uses a linear regression yielding the BRDF coefficients ω given the reflectance model 

X and image y. This regression is sensitive to noise. In the original SFMS, the whole frame is used to estimate the 

reflectance model. However, saturated and under-illuminated pixels do not provide much useful information on surface 

depth. Such pixels can easily be filtered out using a predefined threshold. Doing so prevents corruption of the reflectance 

model by these outliers. In addition, because large BRDF coefficients are unrealistic, we also introduce a term preferring 

small coefficients ω in estimation of the reflectance model, thus improving its robustness against noisy data: 

min
𝜔

||𝑋𝜔 − 𝑦||2
2 + 𝛼||𝜔||2

2.             (3) 

Furthermore, the use of the fused surface instead of the reference surface from each single reconstruction induces further 

consistency of the reflectance model across different frames.  
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We noticed that the original SFMS formulation tends to underestimate surface depth for points farther away from the 

camera compared to the average depth of the scene. We suspect this is because the single-reflection assumption inherent 

in [1] does not hold in endoscopic video. Points farther away from the camera are additionally illuminated by light 

bouncing off nearer points. Figure 2 shows that the original reflectance model (on the right) expects the far surface to be 

very dark, while it is much brighter in the actual image (on the left). We solve this problem by reducing the falloff speed 

of illumination in the SFS model and thus roughly approximate the multiple light bouncing effect where the overall 

environment is brighter. Equation 4 is the new reflectance model, where 𝑚 controls the rate of light attenuation:   

𝐼𝑟 = 𝐼𝑖
𝐴

𝑟𝑚 cos(𝜃) 𝐵𝑅𝐷𝐹(𝜃).      (4) 

𝐼𝑟 is the observed radiance, 𝐼𝑖 is the light source intensity, A is related to the projected area of the light source, and 𝜃 is 

the angle between incident light and surface normal. Table 1 shows the total squared error in intensity, averaged over 12 

images, using a variable falloff term versus using a fixed falloff of 𝑚 = 2. It is apparent that intensity over the entire 

image is much better modeled when a variable falloff is used.  

                                                 

 
Figure 3. Estimated image from the refined and original reflectance models. From left to right: original image, estimation according 

to the refined reflectance model, and estimation according to the original reflectance model. 

 
 Variable Intensity Falloff (proposed) Fixed Intensity Falloff 

Mean squared error in intensity over 12 images 3261.293 7983.519 

Table 1.The mean squared error in intensity between the original input intensity image and a rendered version of that image using a 

reflectance model fit to that image with the underlying ground-truth surface. Error is averaged over 12 images of the phantom model. 

 

3. RESULTS 

 
Figure 4. Example results from our improved SFMS method. Left: Phantom. Middle: Colonoscopy video. Right: Throat. 

 
To evaluate SFMS, Price et al. used endoscopy of a 3D-printed phantom model. A CT image of that model provided a 

ground-truth 3D mesh of the throat (on the left of Figure 3). We use the same data and evaluation scheme to show the 

superiority of our fusion-guided SFMS. The closest distance of SFMS estimation to phantom surface is used to measure 

the reconstruction accuracy. We uniformly picked 50 frames from a sequence of 100 frames as testing data. Table 2 

shows the percentage of average distance of each pixel to the ground-truth surface that falls within 0.5, 1.0, 1.5, 2.0, and 

2.5 mm. These show improvements due to our modifications. 

 

Methods Mean (Std. Dev.) Proportion of Pixels within D mm of Ground Truth 
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D 0.5mm               1.0mm              1.5mm              2.0mm              2.5mm 

SFMS 0.148 (0.066)    0.273 (0.093)    0.386 (0.100)    0.485 (0.108)    0.573 (0.115) 

0.169 (0.044)    0.314 (0.071)    0.427 (0.100)    0.519 (0.116)    0.593 (0.123) 

0.158 (0.024)    0.319 (0.054)    0.453 (0.090)    0.560 (0.112)    0.637 (0.110) 

SFMS with improved refl. model 

SFMS with fusion and improved refl. model                                             

Table 2.  Comparison result between original and improved SFMS methods using ground-truth endoscopic data. 

Since the phantom is rigid, the SFM algorithm already produces a fairly dense point cloud, which leads to rather 

consistent surface reconstructions between adjacent frames. However, in real endoscopic video, SFM produces only a 

sparse and sometimes inaccurate point cloud due to tissue deformation. Therefore, without temporal regularities, the 

original SFMS generates reconstruction results that have larger deformations than pure tissue deformations between 

adjacent frames, which we called inconsistent reconstructions. We have used real patient data to visually compare the 

reconstruction consistency between the original and the fusion-guided SFMS methods. Besides the pharyngeal dataset, 

we also applied the improved SFMS on colonoscopic video as a new application. Figure 4 shows the comparison result 

on a colonoscopic video sequence. Those three surfaces (in red, green, and blue) are reconstructed from three adjacent 

frames. As we can see, fusion-guided SFMS (a and c) produces a more consistent reconstruction (surfaces are closer to 

each other) than the original SFMS (b and d).  

 

 

(a)                                        (b)     (c)           (d) 

Figure 5. Demonstrating increased reconstruction consistency of improved SFMS method. Three single-frame reconstructions of 

colonoscopic video, shown respectively in blue, green, and red are superimposed. (a) top view of improved SFMS results. (b) top view 
of original SFMS results. (c) side view of improved SFMS results. (d) side view of original SFMS results. 

 

4. DISCUSSION & FUTURE WORK 

This paper communicated an effective method for reconstructing a 3D textured surface from endoscopic video named 

SFMS. We have presented several improvements to it. By using a fused reference surface, we incorporated a temporal 

constraint into the frame-by-frame SFMS that leads to more accurate and consistent reconstructions. This allows the 

method to be applied to longer sequences, such as colonoscopic videos. We also refined its reflectance model by outlier 

pixel removal, preference for realistic BRDFs, and an approximation for multiple bouncing light. We have demonstrated 

via both phantom and real endoscopic videos that our fusion-guided SFMS produces more accurate and consistent results.  

 

The target object of our system is deformable; therefore, using a rigid phantom for evaluation could not show its full 

capacity. Therefore, we are developing a new evaluation scheme that use a deformable phantom as ground-truth. We 

will use one of the endoscopograms that has realistic texture and 3D structure as a base model. Such an endoscopogram 

is shown in figure 4. Then we will learn elasticity parameters of this model from a sequence of frame-by-frame 3D 

reconstructed partial surfaces. Afterwards, the learned elasticity parameters will be applied to the base model to create 

realistic deformations. Finally, a synthetic camera and light source can be simulated using computer graphics techniques 

to produce a synthetic endoscopic video. We believe this deformable ground-truth data can produce a more 

comprehensive evaluation than our current 3D printed phantom model. Furthermore, since the whole rendering is based 
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on computer graphics techniques, different BRDF can be applied to evaluate the generality of the surface reflectance 

modeling. 

  

We are also applying convolution neural network (CNN) techniques to further improve our current pipeline. We have 

applied CNN to automatically select informative frames (no motion blur, no saturated illumination, clear view of target 

object, etc.) from a raw endoscopic video. We are currently working on using CNN to directly infer depth from endoscopic 

images, which will bypass the complex surface reflectance modeling problem. 
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