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Abstract

The general problem addressed in this thesis is the automatic model-based segmentation of
two- and three-dimensional objects from medical images and volumetric image data. The
development of the 2-D segmentation procedure closely follows the seminal work of [Cootes
et al. 1994a]. The work done being necessary to allow the extension of this technique to
3-D, presenting solutions to the difficulties arising in application to true volume data as
opposed to slice-by-slice 2-D processing.

The segmentation system includes both the building of statistical models and the au-
tomatic segmentation of unseen image data sets via a constrained elastic deformation of
models. Geometric models are derived from a sample set of image data which has been
segmented by experts; a training set. The surfaces of these binary objects are converted
into a parametric surface net which is normalized to yield an invariant object-centered
coordinate system. Surface descriptions are expanded into series of spherical harmon-
ics which provide parametric representations of object shapes. Gray-level information is
represented by 1-D profiles normal to the surface. The alignment is based on the stereo-
tactic coordinate system, primarily chosen for its general acceptibility in applications of
neuroimaging. Shape statistics are calculated from the parametric shape representations
rather than from the spatial coordinates of sets of points. After initializing the mean
shape in a new data set on the basis of the alignment coordinates, the model elastically
deforms in accordance to displacement forces across the surface, restricted only by shape
deformation constraints.

The technique has been applied to the segmentation of the corpus callosum and the
left hippocampus from a large series of 2-D and 3-D magnetic resonance scans. Validation
was done by comparing the results of our automated segmentation approach to those
performed manually by experts.





Kurzfassung

Diese Dissertation behandelt das allgemeine Problem der automatischen modellbasierten
Segmentierung zwei- und dreidimensionaler Objekte aus medizinischen Bild- und Volu-
mendaten. Die Entwicklung der Segmentierungsmethode in 2-D folgt der grundlegenden
Arbeit von Cootes, Taylor, Cooper und Graham aus dem Jahre 1995. Hier werden neue
Konzepte vorgestellt, die es ermöglichen, diese Technik auf 3-D zu erweitern und auf echte
Volumendaten anzuwenden, im Gegensatz zur 2-D-Verarbeitung einzelner Schichten.

Das Segmentierungssystem umfasst den Aufbau statistischer Modelle und die automa-
tische Segmentierung unbekannter Bilddatensätze mittels eingeschränkter elastischer De-
formation der Modelle. Der Trainingssatz ist einer Stichprobe von durch Experten seg-
mentierten Bilddaten; aus ihm leiten sich die geometrischen Modelle ab. Wir konstru-
ieren eine bijektive Abbildung der Oberflächen der binären Objekte auf die Einheitskugel;
eine Normierung dieser Parametrisierung ergibt ein invariantes objektzentriertes Koordi-
natensystem. Die Reihenentwicklung der Koordinatenfunktionen der Oberfläche in Kugel-
funktionen liefert eine parametrische Darstellung der Form der Objekte. Die zugehörige
Grauwertinformation wird durch 1-D Profile dargestellt, die das Volumen orthogonal zur
Oberfläche abtasten. Die Ausgangslage der Modelle basiert auf dem stereotaktischen Ko-
ordinatensystem, das sich vor allem wegen seiner allgemeinen Verwendung in der Neu-
roanatomie anbietet. Formstatistiken werden aus den parametrischen Formdarstellun-
gen errechnet und nicht aus räumlichen Koordinaten von Punktmengen. Nachdem das
Durchschnittsmodell in einem neuen Datensatz auf Grund der stereotaktischen Koordi-
naten platziert ist, deformiert und verschiebt es sich elastisch unter der Wirkung der Ver-
schiebungskräfte, die sich aus der Übereinstimmung der Grauwerprofile auf der Oberfläche
mit dem Datenvolumen ergeben. Das statistische Modell definiert die zulässigen Defor-
mationen.

Das Verfahren wurde zur Segmentierung des Corpus Callosum und des linken Hip-
pocampus aus einer grossen Serie von 2-D- und 3-D-Magnetresonanzbildern eingesetzt.
Zur Validierung wurden die Resultate unserer automatischen Segmentierung mit den
manuell von Experten durchgeführten verglichen.
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2
Introduction

2.1 Medical image segmentation

Segmentation of anatomical objects from large 3D medical data sets, obtained from routine
Magnetic Resonance Imaging (MRI) examinations, for example, represents a necessary yet
difficult issue in medical image analysis. Today’s routine practice for 3-D segmentation
involves slice-by-slice processing of high-resolution volume data. Working on large series
of similar scans, human observers knowledgeable in anatomy become experts and produce
highly reliable segmentation results, although at the cost of a considerable amount of time
per data set. Realistic figures are several hours to one day per volume data set for only a
small set of structures. Regions in 2-D image slices corresponding to cross-sections of 3-D
objects are outlined and painted by an interactive tool called ”slice editor”. The series of
binary regions segmented from consecutive slices form volumetric voxel objects. Figure 2.1
illustrates the result of an expert segmentation of the left hippocampus.

Figure 2.1: Ten consecutive slices of manual segmentation of the left hippocampus overlaid with
the original MRI data set.

In many clinical applications such as computer assisted neurosurgery or radiotherapy
planning, a large number of organs have to be identified in the radiological data sets. While
a careful and time-consuming analysis may be acceptable for outlining complex patholog-
ical objects, no real justification for such a procedure can be found for the delineation of
normal, healthy organs at risk.
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Delineation of organ boundaries is also necessary in various types of clinical studies,
where the correlation between morphological changes and therapeutical actions or clinical
diagnosis has to be analyzed. In order to get statistically significant results, a large num-
ber of data set has to be segmented. For such applications manual segmentation becomes
questionable not only because of the amount of work, but also with regard to the poor
reproducibility of the results. The necessity of obtaining high reproducibility and the need
to increase efficiency motivates the development of computer-assisted, automated proce-
dures. Many attempts has been done to achieve semi- or fully automatic segmentation of
medical datasets by incorporating human expertise.

2.2 Segmentation techniques

Intensity based segmentation techniques on the low-level end, such as multi-spectral clas-
sification, provide a fast, reproducible and fully automatic way to segment medical images.
The only knowledge, however, these methods have about the sought objects is their inten-
sity distribution. Other important high-level features like location and shape of organs,
which a human expert would help to find the objects, are completely ignored and also
difficult to include because of the low-level nature of the procedure.

Elastically deformable contour and surface models, so-called snakes, have been pro-
posed as tools for supporting manual object delineation. Besides intensity, these tech-
niques use additional structural knowledge about the underlying image in form of edges.
On the other hand, through interactive initialization automation and reproducibility is
lost. Furthermore, while such procedures can be extended to 3-D, their initialization is
a critical issue. Most often, the initial guess must be very close to the sought contour to
guarantee a satisfying result.

Elastically deformable parametric models offer a straightforward way for the inclusion
of prior knowledge in the image segmentation process. This is done by incorporating prior
statistics to constrain the variation of the parameters of the elastic model.

For complex shapes described by a large number of often highly correlated parameters,
the use of such priors may become tedious. The modal analysis offers a promising alterna-
tive by changing the basis from the original modeling functions to the eigenmodes of the
deformation matrix. The dominant part of the deformations can thus be characterized
by only the smallest eigenmodes, substantially reducing the dimensionality of the object
descriptor space

The power of parametric deformable shape descriptors with statistical modal analysis
has been combined by [Cootes et al. 1994a]. They use active shape models, which restrict
the possible deformations using the statistics of training samples. Object shapes are
described by the point distribution model (PDM), which represents the object outline by
a subset of boundary points. There must be a one-to-one correspondence between these
points in the different outlines of the training set.

However, for a large training set containing several anatomical structures, the gener-
ation of the PDM parametrization becomes very tedious and, because of the lack of a
reasonable automatization, can be a source of errors.
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2.3 Thesis Overview

The goal of the presented thesis is to develop an automatic atlas-based technique for seg-
mentation of MR volumes of human neuroanatomy. The proposed segmentation technique
involves generation of an anatomical atlas in the first stage, and then elastic matching of
the atlas to individual anatomy in the second stage.

The atlas should be derived by the statistical evaluation of a set of manually segmented
3-D brain regions. Computation of statistical descriptors like average and covariance
out of a given set of shapes assumes correspondence between the objects. In case of
smooth surfaces, establishing homology by hand is infeasible because identification of
stable landmarks cannot be carried out.

An alternative way to approximate correspondence is provided by curve- and surface-
parametrization and subsequent normalization of the parameters. Mapping positions along
the boundary of similar objects onto a common parameter space automatically identifies
homology among them. This procedure can be also applied to 3-D surfaces and is not
limited to 2-D contours. A beneficial side-effect of correspondence by parametrization is
the more compact object description than the set-of-points representation behind point
distribution models.

Statistical description by average shape and covariance matrix obtained from nor-
malized coefficients of a training set can be computed. Applying modal analysis to the
covariance matrix reduces significantly the dimensionality of the shape description.

Having generated statistical models of organs, they has to be matched to individual
medical data sets. Because of the biological variability of human anatomy, elastic defor-
mations of the atlas is needed to achieve a sufficient fit. By using statistical models, the
matching algorithm can be constrained to only allow shapes which are consistent with the
natural variability of the training set.

New methods have been implemented first for 2-D objects, since testing and validation
can be carried out less costly in two dimensions. Only the most mature 2-D technique have
been implemented for 3-D surfaces. This concept is also reflected in the organization of
the thesis, which basically follows the historical development of the new 3-D segmentation
framework.

2.4 Organization of the Thesis

Chapter 2 (this chapter) describes the research field of medical image segmentation. It
states the goal of our work, which is the development of an automatic segmentation
tool for 2-D and 3-D organs of the human brain based on elastic matching of a
statistical atlas to individual anatomy.

Chapter 3 reviews previous work on related fields. It contains a description of deformable
models, since they represent the basis of our segmentation process. Curve and sur-
face parametrization techniques are then presented, followed by a discussion on rep-
resenting anatomical knowledge using deformable atlases of neurology, and capturing
biological variability of organs by statistical methods.
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Chapter 4 gives detailed overview on Fourier curve parametrization and its 3-D coun-
terpart, the parametrization of surfaces by spherical harmonic basis functions. These
methods have been applied to approximate correspondence between individual anatomy
in order to compute average models of shapes.

Chapter 5 describes our attempts towards building statistical models of 2-D organs
with the help of arc-length parametrization to solve the correspondence problem.
An example presents the limitations of this method and proposes solution by re-
parametrization. We also see the gradual development of an elastic matching algo-
rithm based on statistical models.

Chapter 6 presents the generalization of the techniques discussed in chapter 5 to the
third dimension. While most of the methods could be directly converted to 3-D,
there were some issues which needed different treatment, these will receive more
attention. Additionally, we address the topics of multi-shape models and robustness
of multi-variate statistics derived from small number of samples.

Chapter 7 draws conclusions from the presented thesis and gives suggestions for further
work.



3
Review of related work

3.1 Image segmentation

Segmentation of anatomical objects from large three-dimensional (3-D) data sets has be-
come increasingly important during the last decade. New techniques like magnetic res-
onance imagery (MRI), computed tomography imagery (CTI), nuclear medicine imagery
(NMI) or ultrasound imagery (USI) in the medical field or confocal scanning laser mi-
croscopy (CLSM) in biology produce thousands of volumetric images each year. Although
these new devices offer unique views into the internal human anatomy or microscopic
structures, computer based methods still lack in efficiency and in accuracy to extract and
quantify embedded structures. The spectrum of activities relying on accurate data ranges
from radiotherapy planning, to surgery, to diagnosis, to morphometric studies.

Segmenting structures from 3-D images is difficult because of the complexity and vari-
ability of the shapes of interest, and the artifacts typical to sampled data, such as noise,
bias field, and spatial aliasing. This prevents low-level image processing techniques, based
only on local information, from generating reliable and accurate segmentation results.
These model-free techniques often need expert interaction to achieve acceptable results.
On the other side, user interaction considerably slows down the segmentation process, and
it introduces additional errors and uncertainty into it.

Deformable models has been thoroughly researched and proven to be a promising
model-based approach to computer-assisted image processing. Their ability to incorpo-
rate both a priori knowledge about the shape and environment of the object, and con-
straints from the image data itself, makes them suitable in particular for model-based
image segmentation. Depending on the mathematical model behind them, deformable
models can represent a vast variety of biological structures and their variability across dif-
ferent individuals. One must mention that deformable models are also extensively applied
in other fields of medical image analysis, like matching and motion tracking [McInerney
and Terzopoulos 1996].

There are several surveys discussing 3-D segmentation methods in general (e.g. [Ayache
1995]), this section, however, will only focus on to the present work more closely related
fields of deformable models and model based segmentation.
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3.1.1 Deformable models

The mathematical background of deformable models consists of three major parts: geom-
etry representing object shape, behavior constraining the way object shape may vary, and
fitting algorithm providing a method to fit the model to the measured data. Geometric
representations can be divided into nonparametric and parametric classes and the latter
into a large variety of groups ranging from fully local to fully global representations.

Nonparametric representations simply describe the curve or surface using geometric
primitives such as line segments or polygons, while parametric representations usually
provide a more compact way to describe an object and also allow of resampling object
boundaries. Global descriptions enable shape comparisons while losing the connection to
the contour itself, meaning that local changes of the boundary effect all of the descrip-
tors. Hybrid models has been introduced to merge the advantages of local and global
representations.

The behavior assigned to a certain geometric model constrains its deformation capacity
in an intuitively meaningful way. Traditionally deformable models are placed into a phys-
ical framework defined by Lagrangian dynamics. This physical interpretation views de-
formable models as elastic bodies which respond naturally to applied forces and constrains.
Typically, deformation energy functions defined in terms of the geometric descriptors are
associated with the deformable model. The value of the models energy increases as the
model deforms away from a natural rest position and usually include terms that constrain
the smoothness of the curve. In the Lagrangian setting, the deformation energy gives
rise to elastic internal forces. On the other hand, the external potential energy defined in
terms of the data of interest, to which the model is to be fitted, gives rise to external forces
which deform the model such that it fits the data. Some authors distinguish a separate
category of global forces which effect the whole model and are usually introduced artifi-
cially to enforce specific behavior tasks such as shrinking or expanding of the model. The
Lagrangian formalism allows to include interactive manipulations performed by the user
into this framework. Springs allow the user to drag one point of the model and acts as a
global force, while a volcano ads a Gaussian heap to the gradient image to push it away
and can be characterized as external force. Although, this physics-based terminology of
forces only applies fully to one certain category of deformable models, popularly known as
’snakes’ [Kass et al. 1988], other types of deformable models also inherit the very specific
properties of internal and external forces.

The fitting algorithm is the actual mathematical method to compute the elastic de-
formation of the geometry based on its defined behavior. Physics based models usually
use Euler-Lagrange differential equations to evolve the deformable model while parametric
models are most often apply multi-dimensional energy minimization techniques to com-
pute the equilibrium between internal and external forces.

3.2 Traditional Active Contour Models

Basically all deformable models can be originated from the seminal technique first proposed
by [Kass et al. 1988] in 1988. We briefly outline the mathematical background of their
“snakes” model.
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Traditional snakes used for image segmentation are polygonal curves to which an ob-
jective function is associated that combines an image term (external force) that measures
either edge strength or edge proximity, and a regularization term (internal force) that
accounts for tension and curvature. The curve is deformed so as to optimize the score
and, as a result, to match the image edges.

The original snakes introduced by Kass et al. [Kass et al. 1988] are modeled as time-
dependent 2-D curves defined parametrically as

v(s, t) = (x(s, t), y(s, t))0≤s≤1 , (3.1)

where s is proportional to the arc length, t the current time, and x and y the curve’s
image coordinates. The snake deforms itself as time progresses so as to minimize an image
potential Ei(v), with

EI(v) = −
∫ 1

0
P (v(s, t))ds (3.2)

where P (v(s, t)) is a function of the image. One typical choice is to take P (v(s, t)) to be
equal to the magnitude of the image gradient, that is

P (v(s, t)) = |∇I(v(s, t))| , (3.3)

where I is either the image itself or the image convolved by a Gaussian kernel.
Alternatively, one can take P (v(s, t)) to be the Euclidean distance to the closest edge-

point in an edge-map computed using an operator such as the edge-detector proposed by
[Canny 1986]. The results of all these approaches are very similar.

Unfortunately, whatever the choice of P , EI(v) is typically not a convex functional
which can affect the minimization in an undesirable way. To overcome this problem, a
convex regularization term ED(v) is introduced. As a consequence, a total energy term
E(v) that is the sum of EI(v) and ED(v) is then minimized. Using the elastic rod model,
ED(v) is taken to be

ED(v) =
1
2

∫ 1

0
α(s)

∣∣∣∣∂v(s, t)
∂s

∣∣∣∣2 + β(s)
∣∣∣∣∂2v(s, t)

∂s2

∣∣∣∣2 ds , (3.4)

where α(s) and β(s) are arbitrary functions that regulate the curve’s tension and rigidity.
The original approach has been extended by [Terzopoulos 1987] introducing dynamic

terms such as kinetic energy and velocity dependent friction. The kinetic energy term
EK(v) allows the snake to move in a physically reasonable manner and is set to

EK(v) =
1
2

∫ 1

0
µ(s)

∣∣∣∣∂v(s, t)
∂t

∣∣∣∣2 ds , (3.5)

where µ(s) represents the mass of the snake. The objective function associated to the
snake is then an energy term of the form

E(v) = EK(v) + EI(v) + ED(v) (3.6)
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Snakes in expression (3.6) are regarded as an energy conserving physical system. I order
to achieve a more realistic physical behavior, energy dissipation should be allowed also.
For this purpose, the Rayleigh dissipation functional

D(v) =
1
2

∫ 1

0
γ(s)|vt|2ds (3.7)

is incorporated where γ(s) is the damping coefficient. The segmentation process performed
with snakes is governed by the minimization of the term

∫
E(v)+D(v)dt. This amounts to

using Hamilton’s principle in variational calculus to derive the Euler-Lagrange equations
of motion.

µ
∂2v(s, t)
∂t2

+γ
∂v(s, t)
∂t

− ∂

∂s

(
α(s)

∂v(s, t)
∂s

)
+
∂2

∂s2

(
β(s)

∂2v(s, t)
∂s2

)
= −∇P (v(s, t)) (3.8)

Presuming α and β are taken to be constant and supplied by the user, the equations of
motion for the snake can be written as

µ
∂2x(s, t)
∂t2

+ γ
∂x(s, t)
∂t

− α∂
2x(s, t)
∂s2

+ β
∂4x(s, t)
∂s4

= −∂P
∂x

µ
∂2y(s, t)
∂t2

+ γ
∂y(s, t)
∂t

− α∂
2y(s, t)
∂s2

+ β
∂4y(s, t)
∂s4

= −∂P
∂y

(3.9)

Solving these equations in a computer system means that the evolution of the snake can
be performed only in discrete time steps. The model v is taken to be a polygonal curve
defined by a set of vertices. It is customary to use central and backward finite differences,
respectively to approximate time and spatial derivatives.

3.3 Parametric models

Another way of representing the model is to use a parametric vector p rather than a set
of points. Since parametric models are of particular interest with respect to the presented
work, they will be outlined in more detail. We first give an overview of curve and surface
parametrization techniques, then summarize methods applied to these to achieve elas-
tic deformation and finally present optimization techniques applied to solve the energy
minimization problem arising in the model fitting process.

3.3.1 Curve and surface parametrizations

Parametric models use a parameter vector p rather than a set of points as their geometric
representation. The general 2-D and 3-D models v(p) can be defined by the mappings:

v(s;p) : Ω ⊂ R → R2

s 7→ v(s;p) = (v1(s;p), v2(s;p))T

v(s, t;p) : Ω ⊂ R2 → R3

s, t 7→ v(s, t;p) =

 v1(s, t;p)
v2(s, t;p)
v3(s, t;p)


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Coordinate functions in v(s;p) and v(s, t;p) can be either represented in a geometric way
by assigning unique functions to each of them or they can be taken as a series of basis
functions. Both classes house parametrizations ranging from local to global. In the category
of geometric parametrizations belong objects represented by a set of points at the local
extreme and superquadrics at the global end. Similarly, in the category of parametrizations
by basis functions B-splines provide a local and Fourier and spherical harmonics bases a
global representation, while wavelets compromise between the two inheriting advantages
of both. Hybrid parametrizations offer an alternative way to extend local descriptions by
global ones and achieve a more flexible model. In the following these techniques will be
introduced one by one in more detail.

Point sets

The most simple and direct way to represent objects is by taking a set of points which lie
on its boundary or surface. This can be expressed in 2-D as

v(s,p) = (x0, y0, x1, y1, . . . , xs, ys, . . . , xn−1, yn−1)T , (3.10)

and in 3-D as

v(s,p) = (x0, y0, z0, x1, y1, z1, . . . , xs, ys, zs, . . . , xn−1, yn−1, zn−1)T , (3.11)

where s = 0 . . . n−1 parameter indexes the points and the coordinates (xs, ys), respectively
(xs, ys, zs) are the actual shape descriptors. Since point sets are not mapped onto a
surface, there is no need for a second parameter t. One can notice that point sets does
not necessarily have any topology, hence they can represent objects of arbitrary shape.

Point set representations have been used as a basis for Point Distribution Models
(PDMs) by [Cootes et al. 1994a] to represent 2-D objects such as hands, faces, and organs
in medical images. They have been applied by [Caunce and Taylor 1998] to compute a
PDM of the 3-dimensional cortical sulci of the human brain. [Bookstein 1997] employed
them in his morphometric synthesis of the midsagittal plane of the brain.

Superquadrics

A superquadrics ellipsoid, is defined as

v(a, a1, a2, a3, ε1, ε2) = a

 a1C
ε1
u C

ε2
v

a2C
ε1
u S

ε2
v

a3S
ε1
u

 −π/2 ≤ u ≤ π/2
−π ≤ v < π

(3.12)

where Sεw = sgn(sinw)| sinw|ε and Cεw = sgn(cosw)| cosw|ε. Here, a ≥ 0 is a scale
parameter, 0 ≤ a1, a2, a3 ≤ 1 ere aspect ratios and ε1, ε2 ≥ 0 are “squareness” parameters.

This six degrees of freedom model in its plain form is rarely employed in elastic fitting
techniques because of its limited capability in describing detailed surfaces. It customary
to extend it by “tapering” and “bending” terms to achieve higher flexibility. Combining
superquadrics with surface representations by series of basis functions results in hybrid
models as discussed later in this section.
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B-splines

B-splines are a computationally convenient representations for functions. In the B-spline
form, the coordinate functions v1(s) and v2(s) are constructed as a weighted sum of NB

basis functions Bn(s), n = 0, . . . , NB − 1. In the regular case, each basis function consists
of d polynomials each defined over a span of the s-axis. The spans have unit length and
are joined at evenly spaced knots. The constructed spline function is

x(s) =
NB−1∑
n=0

xnBn(s) (3.13)

where xn are the weights applied to the respective basis functions Bn(s). B-splines provide
a local parametrization since one particular weight only affect a small well defined part of
the whole curve. By convention, B-spline basis functions are constructed in such a way
that they sum to 1 at all points:

NB−1∑
n=0

Bn(s) = 1 for all s. (3.14)

In the simple case of a quadratic B-spline with knots spaced regularly at unit intervals,
the first B-spline basis function has the form

B0(s) =


s2/2 if 0 ≤ s < 1
3
4 − (s− 3

2)2 if 1 ≤ s < 2
(s− 3)2/2 if 2 ≤ s < 3
0 otherwise

(3.15)

and the others are simply translated copies:

Bn(s) = B0(s− n). (3.16)

A more detailed introduction to B-splines and deformable models based on them can be
find in the book Active Contours by [Bake and Isard 1998].

Fourier

The contour of a simply connected object is represented by a closed curve with coordinates
(v1(s), v2(s)), with s ranging from 0 to 2π. The coordinate functions can be expanded in
a Fourier-series. Restricting the series to degree K results in the parametric description

v(s,p) =
(
v1(s,p)
v2(s,p)

)
=
(
a0

c0

)
+

K∑
k=1

(
ak bk
ck dk

)
·
(
cos(ks)
sin(ks)

)
. (3.17)

The outline is now completely described by the parameter-vector

p = (a0 . . . aK , b1 . . . bK , c0 . . . cK , d1 . . . dK)T . (3.18)

The parameters can be easily calculated from the sampling points of the outline
q0, q1, . . . , qP with q0 = qP . The resulting parametric shape description can be made
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invariant under similarity transformation by shifting, rotating and scaling according to
the actual displacement, orientation and size of the ellipse determined by the first degree
terms of the Fourier series. Similarly, the starting point is moved to a canonical position.
The theorem of Fourier curve parametrization as developed by [Kuhl and Giardina 1982]
will be discussed in the next chapter in more detail.

Fourier parametrization has been extended by [Staib and Duncan 1992b] to 3-D. In
this representation each of the three coordinate functions, v1(s, t), v2(s, t), and v3(s, t),
are represented by the sum:

f(u, v) =
2K∑
m=0

2K∑
l=0

λm,l( am,l cos 2πmu cos 2πlv + bm,l sin 2πmu cos 2πlv+
cm,l cos 2πmu sin 2πlv + dm,l sin 2πmu sin 2πlv)

(3.19)

where:

λm,l =


1 for m = 0, l = 0
2 for m > 0, l = 0 or m = 0, l > 0
4 for m > 0, l > 0

Using this parametrization, four 3-D topology classes can be described: tori (closed tubes),
open surfaces (with one edge), tubes (open surfaces with two edges) and closed surfaces
(no edges, sphere topology).

Spherical Harmonics

offer a more elegant and compact surface representation than 3-D Fourier descriptors.
Selecting the spherical harmonic functions (Y m

l denotes the function of degree l and order
m (see [Greiner and Diehl 1986]) as a basis, the coordinate functions v1(s, t), v2(s, t), and
v3(s, t) can be written as

v(θ, φ,p) =
K∑
k=0

k∑
m=−k

c mk Y m
k (θ, φ) , (3.20)

where

c mk =

 c1
m
k

c2
m
k

c3
m
k

 . (3.21)

The expansion is restricted to the first K + 1 terms.
Y m
l denotes the spherical harmonic function of degree l and order m. 3-D surface

models based on this representation has been applied in the present thesis as described in
chapter 6, therefore it will be discussed in more soundly in the next chapter.

Wavelets

Wavelets are a mathematical tool for hierarchically decomposing functions. The wavelet
analysis procedure is to adopt a wavelet prototype function or mother wavelet. Temporal
(or spatial) analysis is performed with a contracted, high-frequency version of the mother
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wavelet, while frequency analysis is performed with a dilated, low-frequency version of the
same wavelet. Thus wavelets ere able to combine the local and global properties of the
same function.

Comparing wavelet and Fourier transforms, the most interesting dissimilarity between
these two kind of transforms is that individual wavelet functions are localized in space,
while Fourier sine and cosine are not. Another difference is that wavelet transforms do
not have a single set of basis functions like the Fourier transform, which utilizes just the
sine and cosine functions. Instead, wavelet transforms have an infinite set of possible
basis functions such that depending on the application an optimal mother wavelet can be
chosen.

A A A
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Figure 3.1: The filter bank.

Following [Finkelstein and Salesin 1994], Figure 3.1 explains the composition of wavelet
coefficients starting with a discrete signal cn, expressed as a column vector of samples
[cn1 , . . . , c

n
m]. In the first step, multiplying cn with the matrix An a filtered and downscaled

version of it, cn−1, is computed

cn−1 = Ancn , (3.22)

where An is an m′×m matrix. If An is appropriately chosen, it is possible to capture the
lost details as another signal dn−1, computed by

dn−1 = Bncn , (3.23)

where Bn is an (m − m′) × m matrix, which is related to matrix An. The procedure
for splitting cn, into a low-resolution part cn−1 and a detail part dn−1 can be applied
recursively to the new signal cn−1. This recursive process is known as a filter bank. Since
the original signal cn can be recovered from the sequence c0,d0,d1, . . . ,dn−1, this sequence
can be thought of as a transform of the original signal, known as a wavelet transform.
The transform can also be expressed using basis functions, called scaling functions. In
many applications the piecewise constant Haar basis is used because of its simplicity.
However, for applications such as curve editing and deformable models B-splines of degree
2 or 3 are a more appropriate choice due to their continuity (see [Stollnitz et al. 1995a,
Stollnitz et al. 1995b, Stollnitz et al. 1996]).

Hybrid models

Vemuri et al. in [Vemuri and Radisavljevic 1994] introduce an extension to the su-
perquadrics model by a displacement vector function in a wavelet basis. This hybrid
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model have the property of being able smoothly to scale up or down the range of possi-
ble deformations and the number of parameter required to characterize them. Thus, the
model comprises global and local shape parameters.

Another parametrically deformable model has been introduced by [Terzopoulos and
Metaxas 1991] which uses Deformable Superquadrics to fit the model to range data. They
propose to use superquadrics with 6 parameters as models with global and local deforma-
tion properties inherited from ellipsoids and membrane splines.

3.3.2 Elastic deformation of parametric models

To achieve elastic deformation, parametric models are usually handled differently from tra-
ditional physics-based deformable models. In the parametric approach curves and surfaces
are represented by their descriptors rather than by coordinates of contour points. Exter-
nal and internal energies are expressed in terms of contour parameters. Multi-dimensional
nonlinear optimization techniques can be applied to simultaneously adjust shape param-
eters and minimize the total energy.

Energy minimization using direct optimization

The snake technique as proposed by [Kass et al. 1988] tries to find the position of a curve
v(t,p), which minimizes the energy

E(p) = E(v(t,p)) = EI(v(t,p)) + ED(v(t,p)) . (3.24)

By varying p, the curve deforms itself to minimize the image energy

EI(v(t,p)) = −
∫ 2π

0
P (v(t,p)) dt , (3.25)

searching for an optimal position in the image, described by the potential P (v(t,p)).
Comparing the equation above with eq. 3.2 one can notice that the integration interval
changed to [0, 2π]. This is due to the fact that parametric curves are usually closed and
mapped to the unit sphere, while original snakes were open curves mapped to the linear
interval [0, 1]. A typical choice takes P (v(t,p))) equal to the negative magnitude of the
image gradient as given in equation 3.3.

Contrary to traditional physics-based snakes, parametric models based on a limited
number of basis functions cannot deform in an entirely free manner. Thus, energy terms
such as tension, rigidity, mass, and energy dissipation become redundant in this frame-
work. The deformation term ED(v) is called the internal energy of the parametric snake
and serves as a regularization force. It restricts the elongation and bending of the snakes,
and normally depends on the first and second derivatives of the curve v(t,p). To balance
between external and internal energy the parameter α is introduced

E(v(t,p)) = αEI(v(t,p)) + (1− α)ED(v(t,p)) . (3.26)

A different energy model has been proposed by [Staib and Duncan 1992a] which better
suits their Fourier curve and surface parametrizations. The new model makes use of the
normal direction of the parametrized curve and of the image gradient to achieve a higher
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selectivity. Normalizing the image potential by the contour length allows contraction and
dilation of curves without affecting the energy function.

EI(v(t,p)) = ±

∫ 2π

0
∇I(v(t,p)) · v̇⊥(t,p) dt∫ 2π

0
‖v̇(t,p)‖ dt

(3.27)

The sign of the energy EI(v) will decide about segmenting bright objects on a dark
background or vice versa. The polarity of the boundary can be neglected by using the
absolute value of the dot product in the integration term.

One has to realize that cutting the Fourier expansion at a finite degree serves already
as a regularization, leaving out high frequency variations of the coordinate functions.
However, the internal energy cannot be neglected, basically because of two reasons

• Even Fourier models of low degree can generate sharp cusps, and

• the parametrized contour can cross itself.

Whereas self-crossings of the outline are expensive to detect, discontinuities of the tangent
can be evaluated from the curve parametrization. At such location the curvature κ(t0,p)
and its derivative κ̇(t0,p) become both infinite. While high curvature of the boundary
should not be excluded a priori, the curvature derivative is chosen to indicate disconti-
nuities (see also [Staib and Duncan 1992a]), providing the following expression for the
internal energy of the Fourier-snake.

ED(v(t,p)) =
∫ 2π

0
κ̇2(t,p) · ‖v̇(t,p)‖2 dt

3.3.3 Optimization techniques

Detailed contours and especially surfaces often require a large number of coefficients to
capture and describe them by a given parametrization technique. The dimensionality of
the problem is usually of the order of several tens to a few hundreds, with the latter
to be more realistic. Not every optimization method is able to handle that many free
parameters and it is often unavoidable to invent a new method to a specific problem.
Possible choices reach from deterministic techniques like conjugate gradient optimization
to stochastic methods such as genetic algorithms.

The objective function to solve is not in general convex, but depends ultimately on
the gray level surface shape of the image. Smoothing of the image can be used to avoid
getting trapped in a local maximum.

3.4 Representing anatomical knowledge

Many attempts has been done to achieve semi- or fully automatic segmentation of medical
datasets by incorporating human expertise. This section gives a short overview of the
different model-based techniques.



3.4. Representing anatomical knowledge 17

3.4.1 Deformable atlases

The general goal of deformable atlases is to remove structural variation between individuals
by matching an atlas image to each individual using non-rigid registration, in order to
have a common coordinate system for comparison. Shape differences between the atlas
and individual’s anatomy are contained in the non-rigid transformation.

The customary classification of registration methods using the terms rigid and non-
rigid is less intuitive, since the rigid group only contains registration by rotation and
translation, while similarity and affine transforms are characterized together with elastic
transforms as non-rigid. Therefore we propose to use the classification introduced by
[Evans et al. 1994] which suggests the classes parametric and non-parametric. Thus, in
the parametric group will belong, besides the previous rigid class, the similarity and affine
transforms, while the rest of the non-rigid group such as fluid-registration and thin-plate
splines is characterized as non-parametric. In the following we briefly discuss the most
relevant approaches to atlas based registration.

Bookstein in [Bookstein 1997] proposed a thin-plate spline interpolation approach to
the description of deformations specified by a finite set of corresponding point pairs. This
method requires the identification of large number of homologous pairs of anatomic point
landmarks throughout the the image because local changes to the spline have global effects.
These landmarks must be very reliable, because the thin-plate spline forces these points
exactly into correspondence.

Bajcsy and Kovačič in [Bajcsy and Kovacic 1989] present a multiresolution elastic
matching process to fit a voxel based anatomical atlas to individual tomography scans.
In their approach first the model and the input data are aligned globally. After global
alignment the the model is deformed like a piece of rubber simulating the mechanical
properties of an isotropic homogeneous body by partial differential equations. Deformation
proceeds step-by-step in a coarse-to-fine strategy, increasing the local similarity and global
coherence. The driving force of the elastic matching is derived from a local similarity
measure of image intensities between the region at some particular position in the object
and corresponding regions in the other object. A local search is performed to find the best
possible local match for the displacement vector at a given position. The process is carried
out at different scales of the images proceeding from large to small gradually improving
the overall fit.

Evans et al. in [Evans et al. 1994] developed an MRI-based probabilistic atlas of
neuroanatomy by registering and averaging the brain of about 300 normal young males.
The Talairach coordinate system served as the basis of the registration. It is defined by the
anterior-posterior commissural (AC-PC) line and a set of perpendiculars to this crossing at
the midpoint of AC-PC. All brain volumes has been linearly transformed to this coordinate
system and then averaged. The resulting composite MRI-intensity atlas has proven to
be useful as a qualitative indicator of local anatomical variability. For the purpose of
quantitative analysis the authors constructed a 3-D volume-of-interest atlas by manual
outlining of 64 individual brain regions. In this approach, the labeled atlas has been
deformed to match an individual image volume by manual identification of corresponding
3-D landmarks, using a thin-plate spline algorithm for non-linear deformation of atlas
coordinates.
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The non-linear matching method has also been applied to compute an average of 16
brain MRI volume. By this study Evans et al. demonstrated the nonlinear variability
in brain anatomy, since the non-linear average brain had a sharper appearance than the
linear one.

Christensen et al. in [Christensen et al. 1996] present two physical models for non-rigid
registration of the brain. The transformations are constrained to be consistent with the
physical properties of deformable elastic solids in the first method and those of viscous
fluids in the second. Viscous fluid models are less constraining than elastic models and
allow long-distance, nonlinear deformations of small subregions. In these formulations,
however, no matter what model is used, the deformed configuration of the atlas is al-
ways determined by driving the deformation using only pixel-by-pixel intensity difference
between images.

Davatzikos and Prince in [Davatzikos and Prince 1994] propose a method where they
first identify the boundary of homologous brain regions in two images to be registered, and
establish a one-to-one mapping between them. Based on this mapping, they deform the
boundaries in one image into those in the other image. The rest of the image is deformed
by solving the equations describing the deformation of an elastic body using the boundary
deformations as input. In this approach, although the mapping may be accurate on the
boundary, the farther away the structure is from the boundary, the more error there is,
because only information from object boundaries is used for registration.

Wang and Staib in [Wang and Staib 1998] incorporate statistical shape information
into physical model based registration. The algorithm they employ is based on a physical
model, a gray level similarity measure and a consistency measure between corresponding
boundary points. The statistical shape information is embedded in the boundary finding
with correspondence process applied to the study. This method uses statistical point
models with shape, and shape variation, generated from sets of examples by principal
component analysis of the covariance matrix.

3.4.2 Mechanical modes of variation

Martin et al. in [Martin et al. 1994] proposed another framework for analyzing the
shape of structures within the human brain. They developed a mathematical model to
describe the deformation of any brain structure whose shape is affected by both gross
and detailed physical processes. Their model decomposes the total shape deformation
into physical modes of variation obtained from finite element analysis, and experimental
modes of variation obtained from sample data using principal component analysis.

The authors use this mathematical model to classify diseases that affect the shape of
the ventricular system of the brain. They find that because ventricular shape is affected
not only by pathology but also by overall brain shape, disease discrimination can be
difficult. Martin et al. claim that by modeling the brain’s elastic properties, they are
able to compensate for some of the nonpathological modes of ventricular shape variation.
This allows them to experimentally characterize and separate modes of variation that are
indicative of disease processes.
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3.4.3 Rule-based expert systems

Although they are not closely related to model-based segmentation techniques, rule-based
expert systems represent an alternative way to capture human expertise. [Raya 1990]
describes a two stage rule-based system to segment 3-D MRIs of the brain. The proposed
technique applies in the first stage domain-independent knowledge of segmentation, group-
ing and shape analysis, while the second stage embodies domain-dependent knowledge of
anatomy and physiology. A similar procedure has been introduced by [Stansfield 1986] to
segment coronary vessels from digital angiograms of the chest.

3.4.4 Statistical shape models

Shapes of anatomical structures show off a certain variability over different individuals.
The most plausible way to capture this variability is to use distributions. Statistically
deformable models has been introduced by several researchers during the last few years,
and they are proved to be powerful in capturing expert knowledge about object shape in
model based segmentation techniques. Statistical modeling requires knowledge of the a
priori probability p(p) of the model’s parameter vector p and sometimes also the probabil-
ity of p conditioned on the sensed data, i.e., p(p|D). Unfortunately, in surface-modeling
applications we rarely if ever have this kind of complete knowledge about the probabilistic
structure of the problem. Typically, we have a number of representative samples of what
we want to model. These samples are used to estimate the unknown probability which in
turn are used as if they were the true values. In the following three different approaches
will be presented, among which the last had larger influence to the present work, therefore
we devote more attention to it.

Solving the correspondence problem

Estimating the distribution p(p) of given individual shapes pi requires that the descriptors
of the individuals can be directly compared, in other words, that there is correspondence
between them. This means, e.g., that the expression (p1 + p2)/2 yields the descriptors
of the average shape. That is, correspondence or homology of pi-s is essential to derive
statistics on them.

In order to determine correspondence we have two distinct classes of methods. These
being the discrete and continuous cases. Considering the first class, when the contour
has to be parametrized by a set of discrete points stored in p, correspondence can be
established manually by annotating landmarks along the contour of the objects. Given
objects of the same class and the homologies between them, the point sets can be aligned
using Kendall’s Procrustes algorithm (see [Bookstein 1997]). This involves centering and
scaling each point set such that the sums of squared distances of each point set is unity
and then evaluating the Euclidean distance between the point sets after superimposing
the two forms.

However, when the point sets are automatically derived from images, the difficult
problem of establishing correspondence and rejecting non-homologies and outliers remains.
Rangarajan et al. [Rangarajan et al. 1997] developed their Softassign Procrustes Matching
Algorithm to handle these cases. They formulate the matching algorithm as two inter-
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locking optimimization problems – one on the rotation between the two point sets and the
other on the point-to-point feature correspondence. The algorithm iteratively alternates
between solving for the rotation and the correspondence until a minimum is achieved.

We discuss now the second case, when the contours are given as continuous functions.
[Tagare 1997] defines a correspondence between two closed curves c(p1) and c(p2) as a
subset of the product c(p1)×c(p2). It is shown that the product space c(p1)×c(p2) is the
surface of a torus and that corresponding point pairs on c(p1) and c(p2) define a closed
curve on the surface of it which curve is nondecreasing with respect to arc length. Using
this property a dissimilarity function between the shapes c(p1) and c(p2) is defined and
the correspondence is found by minimizing this function.

Correspondence can be approximated between curves or surfaces using length- or
area-preserving parametrizations, respectively. Taking a continuous surface as example,
global parametrizations map each point of the surface onto parameter values. Thus,
surfaces with simple sphere-topology can be mapped onto the spherical parameters (θ, φ),
which establishes one-to-one correspondences between surface points. Assuming a uniform
parametrization, meaning that equal areas on the object surface are assigned to equal ar-
eas on the corresponding sphere, and additionally assuming a standardized position of the
starting point of the parametrization achieved by normalization, surface descriptors can
be directly compared. This method, however, is only able to establish correspondence
between highly similar contours and surfaces and it clearly fails if one part of the object
is missing or there is an additional part attached to it.

Kotcheff and Taylor in [Kotcheff and Taylor 1997] describe a technique to enhance
correspondence among a larger set of shape representations obtained, e.g. from manual
annotation of object contours or from arc-length parametrizations. Based on a training
set of similar objects deformation modes of the shape can be determined using principal
component analysis of the covariance matrix, as shown in the next section. The authors
construct an objective function that prefers concentrating the variance into a few defor-
mation modes with large variances, this being a measure for higher correspondence. The
objective function is minimized using a genetic algorithm which iteratively reparametrizes
the contours.

Not belonging in any of the categories above, but important to mention is the method
proposed by [Thirion and A. 1996] which uses crest lines to find correspondence between
volumetric images. Crest lines are defined as lines of maximum or minimum of the first or
second principal curvatures of an isointensity surface in the 3-D image, i.e. it can be either
a ridge or a valley. Their method is based on the implicit representation of the surface,
and the differential values of the isointensity surfaces are directly computed from the
voxel image, without extracting any surface first. Possible applications are registration of
volumetric images or, if combined with surface models, the computation of average shapes.

Applications

Vemuri and Radisavljevic in [Vemuri and Radisavljevic 1994] present a real 3-D model-
fitting process in a probabilistic framework which applies prior distributions on the vector
of geometric parameters that are being estimated. Their solution comprises a training
phase and an operational phase. In the training phase human supervision via interaction
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and manipulation is needed to provide adequate training samples, while in the operation
phase the model-fitting process becomes fully automatic and relies solely on statistics
accumulated in the prior model.

Their hybrid 3-D shape model combines a global superquadrics parametrization with
a local wavelet representation, already surveyed in the previous section. The training
process collects statistics on the global parameters of the model. For the local parameters
the energy, which governs the deformation of the model away from its natural form, is
converted into a probability distribution over expected shapes. This is achieved via a
technique of statistical mechanics, which converses energies into probabilities using Gibbs
distribution:

p(p) =
1
Zp

exp(−Ep(p)), (3.28)

where Ep is the internal smoothness energy restoring a model toward a rest state and Zp
is a normalizing constant. The internal energy Ep of the model given by a quadratic form,

Ep = 1/2[(p− p̄)TKp(p− p̄)] , (3.29)

where p̄ the rest state of their model, and the matrix Kp corresponds to the stiffness
of deformation. The equation turns the internal energy into a probability distribution
over expected shapes, with lower-energy shapes being more likely. Similarly, the external
energy is converted into the probability distribution:

p(D|p) =
1
ZD

exp(−ED(D,p)), (3.30)

where ED(D, p) is the edge-based potential energy synthesized from image data. Com-
bining the two distributions (from equations 3.28 and 3.30, respectively) using Bayes’ rule,
we obtain the posterior distribution:

p(p|D) =
p(D|p) p(p)

p(D)
=

1
Z

exp(−Ep(p)− ED(D,p)). (3.31)

Computing the maximum a posteriori estimate

pmap = arg max
p

p(p|D) = arg max
p

p(D|p) p(p)
p(D)

, (3.32)

i.e., the value of p that maximizes the conditional probability p(p|D), provides the same
result as finding the minimum energy configuration of the physically based model. How-
ever, the advantage of the probabilistic framework is that it allows for incorporating a
prior model. The authors trained their prior models of a gyrus and a hippocampus dur-
ing a supervised learning procedure on several brain MR images and present segmentation
result for these two objects.

Staib and Duncan in [Staib and Duncan 1996] apply a similar probabilistic formula-
tion to fit their Fourier-based globally parametrized model (see Section 3.3.1) to image
data. However, the way of transforming energies into probabilities is different. The ex-
pression 3.32 can be simplified by taking the logarithm and eliminating p(D), the prior
probability for image data, which is equal for all p:
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pmap = arg max
p

[ln p(p) + ln p(D|p)] = arg max
p

M(p,D) (3.33)

Modeling the imageD as a noise-corrupted version of an image template, tp, and assuming
a Gaussian additive noise model with zero mean and standard deviation σn, M(p,D) can
be written as

M(p,D) = ln p(p) +
k

2σ2
n

∫ ∫
A

[D(v(p))]dA, (3.34)

where dA is a surface element on the surface A. The authors use a conjugate gradient
method to maximize M(p,D).

This technique has been applied to a variety of synthetic and radiologic images. In the
synthetic example the model’s probability distribution was simulated and the initial surface
was positioned roughly at the target object. Another example illustrates the segmentation
of a dog’s heart from 3-D MRI data. A prior model, p(p), was determined from a sample
of four images which were delineated manually with a closed surface. The prior probability
distribution, characterized by the mean and standard deviation, was determined from the
parameters of the sample. The mean of the distribution was used as the initial position for
boundary finding in another image. Compared with contours hand-traced by an expert,
the reported average error was 0.65 pixels in both cases.

Although the approaches above give a statistical framework to the model fitting pro-
cess, the dimensionality of the problem remains the same as before. Optimization algo-
rithms used for energy minimization still have to handle as many parameters as the shape
description uses to represent the object of interest. Especially in case of complex 3-D
shapes high number of parameters are needed to describe the form with sufficient amount
of details. Energy minimization becomes a highly nonlinear multi-parametric optimization
problem requiring computationally very intensive techniques. The question arises, if and
how the dimensionality of the problem can be reduced. [Cootes et al. 1995a] describe an
elegant solution. Their approach makes the assumption that p(p) can be approximated by
a joint Gaussian distribution and reduces the number of parameters using decorrelation.

Point Distribution Models has been introduced by the authors to learn patterns of
variability from a training set of correctly annotated images. Image annotation is per-
formed manually by placing manually a set of points representing the boundary of an
object, internal features, or external ones. Points are placed in the same way on each of
a training set of examples of the object marking significant features such as (1) curvature
extrema along the boundary, (2) application-dependent landmarks, and (3) other points
which can be interpolated from points of type 1 or 2; for instance, points placed at equal
distances between two type 1 landmarks.

In order to be able to compare equivalent points from different shapes, they must be
aligned. The required alignment is achieved by scaling, rotating, and translating the train-
ing shapes so that they correspond as closely as possible. The authors use a modification
of the Procrustes method (see [Bookstein 1997]) to minimize a weighted sum of squares
of distances between equivalent points of different shapes.

The ith shape in the set is represented by a vector xi of n 2-D points:
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xi = (xi0, yi0, xi1, yi1, . . . , xik, yik, . . . , xin−1, yin−1)T (3.35)

A set of N example shapes can be represented by a cloud of N points in 2n dimensional
space. The authors assume that these point build an isolated region within the space,
which they call allowable shape domain. Making the assumption that the cloud is ap-
proximately ellipsoidal, the principal axes of a 2n-D ellipsoid fitted to the data can be
calculated by applying principal component analysis. Given a set of N aligned shapes,
the mean shape x̄ is calculated using

x̄ =
1
N

N∑
i=1

xi , (3.36)

and for each shape in the training set its deviation from the mean, dxi, is determined

dxi = xi − x̄ . (3.37)

Using the deviations a 2n× 2n covariance matrix can be calculated:

S =
1

N − 1

N∑
i=1

dxidx
T
i (3.38)

The principal axes of the ellipsoid, defining the modes of variation of the shape, are
described by pk, (k = 1, . . . , 2n), the unit eigenvectors of S such that

Spk = λkpk (3.39)

The eigenvectors of the covariance matrix corresponding to the largest eigenvalues describe
the longest axes of the ellipsoid, and so the most significant modes of variation in the
variables used to derive the covariance matrix. Most of the variation can usually be
explained by a small number of modes, t. A shape in the training set can be approximated
using the mean shape and a weighted sum of the largest t eigenmodes:

x = x̄+ Pb, (3.40)

where P = (p1p2 . . .pt) is the matrix of the first t eigenvectors, and b = (b1b2 . . . bt) is
a vector of weights. The above equation describe the way of generating new examples of
the shapes by varying the weights within suitable limits, typically of the order of

−3
√
λk ≤ bk ≤ 3

√
λk, (3.41)

since most of the population lies within three standard deviation of the mean.
Assuming a nearly Gaussian distribution of the single contour points, this method

reduces the information required to represent a class of similar shapes to a minimum.
The average shape and the eigenmodes can be thought of as basis vectors of a global
parametrization and the weights b as the actual shape descriptors.

Cootes et al. applied the technique of point distribution models to determine the modes
of variation in several man-made and biological objects, such as a set of resistor shape, a
set of heart ventricle shapes, and a set of hand shapes. These models has been embedded
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into a snake-like segmentation tool which iteratively enhances the initial model’s pose and
shape parameters while taking shape constraints into consideration. The authors call their
technique Active Shape Models to make a clear distinction to Active Contour Models or
Snakes without shape information behind them.

Although global optimization could also be applied to point distribution models, [Cootes
et al. 1994a] propose a technique based on local search near the contour. They extend
their contour model by information on its gray level environment using sampled profiles
normal to the boundary. For each of these profiles a local search is performed to find a
nearby position in the image which better matches with the sampled gray levels. Their
technique computes in each iteration step a set of adjustments to model points along a
normal to the boundary toward the strongest image edge within a certain distance. These
adjustments are not in general consistent with the shape model, thus the shape is updated
with respect to the model constraints, hereby preventing the model’s shape to leave the
allowable shape domain. The model is updated so that only deformations, being consis-
tent with the deformation modes represented in the original training set, are allowed. The
procedure is repeated iteratively until no significant changes result.

The transition, however, to 3-D Point Distribution Models of the same kind is ham-
pered by the way contour point has to be manually identified. While the manual anno-
tation of a 2-D contour can be carried out in a straightforward way, this procedure is
rather hard to perform for 3-D surfaces in order to establish correspondences between
them. Thus, to be able to build Active Shape Models in 3-D annotation has to be done
automatically. [Caunce and Taylor 1998] propose and compare methods, based on the It-
erative Closest Point Algorithm, to find corresponding points in sparse 3-D point sets. The
algorithm is similar to the Softassign Procrustes Matching Algorithm previously discussed
in this section. They generated point sets by determining the location of the sulci in 16
MRI volumes. Taken the sparsest one as a reference these point sets containing points
between 4000 and 6000 were corresponded. The authors performed the statistical analysis
described above to compute a Point Distribution Model of the cortical sulci and found the
resulting modes of variation represent meaningful shape distortions. This method has the
advantage that it makes no assumption about the topology of the shape the points belong
to.

A less general but, regarding segmentation applications, more beneficial solution to
the problem of establishing correspondence between 3-D shapes is provided by global
parametrization and will be outlined in chapter 6 of the present thesis.

3.5 Discussion

Summarizing the three techniques for statistical model-based segmentation introduced
above, Cootes and Taylor, provide a complete solution for 2-D with their Point Distribution
Models (PDM). However, the manual annotation of 2-D contours, they apply in order to
establish correspondence, prevents a straightforward generalization of their technique to
3-D. A recently published technique from [Caunce and Taylor 1998] is able to replace
the manual procedure by an automated one, which identifies correspondences between
arbitrary point sets in 3-D. Using this method, 3-D PDMs can be built. In absence of
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topology, however, these models are difficult used in segmentation processes. Furthermore,
to reduce variance caused by sampling and only capture variance in shape, the method
requires high number of points, uniformly distributed over the surface of objects of interest.
This requirement is hard to fulfill, especially in case of manually segmented voxel surfaces.

The techniques proposed by [Vemuri and Radisavljevic 1994] and [Staib and Duncan
1996] make use of the properties of globally parametrized surfaces in order to approximate
correspondence between them. The way, however, the two cited works obtain surface
parametrization by user interaction, suggests that the requirement of perfect alignment
cannot be fulfilled. In consequence of this, the statistics derived from them can represent
an average shape and deformation modes only in a limited way. Furthermore, the hybrid
model applied by Vemuri and Radisavljevic, combining global and local parametrizations,
is suboptimal for statistical modeling, since only its global part can be used for the com-
putations, which being a superquadrics does not allow of a detailed shape description.

Statistical modeling requires an adequate number of samples, to derive statistically ro-
bust estimations of distributions of model parameters. Therefore, a training set containing
as few as four samples, e.g., as used by Staib and Duncan to compute their model of a
dog’s heart, is certainly too small for this purpose. On the other hand, numerous medical
studies have been carried out lately, resulting in many high quality expert segmentations
of 3-dimensional organs. The results of these are usually stored as binary volume data,
and if they could be directly converted into parametric surface models, the problem of too
small training sets would be easily solved. That is, instead of developing a new and pro-
prietary interactive segmentation tools for each type of surface parametrization, existing
techniques could be used.

We aim at building a model based automatic segmentation tool to process 3-dimensional
medical data sets of healthy human neuroanatomy. In the first stage a statistical atlas of
neurology has to be set up. To model two- and three-dimensional organs we have chosen
global parametrizations by Fourier and spherical harmonics basis functions in place of
parametrizations by point sets. Since we do not intend to handle pathology and healthy
organs have high similarity over individuals, global parametrizations provide sufficiently
good homology among them. The spherical harmonics parametrization has been pre-
ferred as they, in contrast to superquadrics, imposes no predetermined symmetries upon
the object surface and has no preferred directions in space. It is complete; no additional
formalisms are needed to rotate, translate, taper, bend, twist or locally deform the model,
as the surface of any simply connected object can be represented to any degree of detail
in the simple yet comprehensive formalism. In the next two chapters we show that man-
ually segmented binary shapes of simple topology can be easily converted into Fourier
or spherical harmonics descriptors. To derive a statistical model, we estimate the dis-
tribution of shape descriptors and in order to reduce reduce the dimensionality of the
models, we borrow the technique of eigendeformations proposed by [Cootes et al. 1995a].
In a second stage the statistical atlas is matched to individual data sets, where the un-
derlying parametrization provides not only a binary voxel segmentation but also shape
characterization of organs.





4
Parametrization of closed curves

and surfaces

Parametrically deformable models give rise to the question of obtaining parametrical de-
scriptions of given pixel or voxel based object contours or surfaces, as they usually result
from manual segmentation.

In the following the term “parametrization” will be used in two different senses. On the
one hand, the process which maps one parameter value (s) to each point of a curve or two
parameter values (s, t) to each point of a surface is called curve or surface parametrization.

v(s) =
(
v1(s)
v2(s)

)
=
(
x(s)
y(s)

)
(4.1)

in 2-D, or

v(s, t) =

 v1(s, t)
v2(s, t)
v3(s, t)

 =

 x(s, t)
y(s, t)
z(s, t)

 (4.2)

in 3-D. On the other hand, these mappings can be used to give a mathematical represen-
tation of the contour by the coordinate functions in v(s) and v(s, t). As it has been shown
in the previous chapter, the coordinate functions also depend on parameters (descriptors),
e.g., the weights of some basis functions. Confusingly, the procedure to compute these de-
scriptors is also called parametrization. To make a clear distinction, in the following curve
or surface parametrization will refer to the mapping procedure and simply parametrization
to the computation of shape descriptors.

The computation of the parametrization of a given binary object usually obtained from
manual segmentation is a three-stage process. In the first stage, the contour or surface
of the object is converted into an abstract data structure called chain or crack code in
2-D and cuberille notion in 3-D describing the shape as a set of line segments or a set of
rectangular patches. Considering only the case of simply connected objects, in the second
stage, based on these notations, curves are mapped on the unit circle Ω2, while surfaces on
the unit sphere Ω3. Arc length parametrization guarantees constant speed for v(s) along
the curve, while the equivalent criteria of area preservation for surfaces can be at most
approximately fulfilled. In the third stage a mathematical representation of the object is
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computed by deriving the parameters (descriptors) of the chosen functions, e.g., Fourier
basis or superquadrics.

4.1 Fourier coefficients of a closed curve

Kuhl and Giardina in [Kuhl and Giardina 1982] presented an algorithm to efficiently
compute the Fourier coefficients of a 2-D contour. Their elegant approach does not require
integration or the use of fast Fourier transform techniques. The algorithm takes the
chain code of the contour as its input, which is easily obtained from a pixel-based image.
The resulting Fourier descriptors can be made invariant with rotation, dilatation and
translation of the contour, and also with the starting point of the parametrization on the
contour, without losing information about the shape.

4.1.1 Obtaining the code of a contour

The chain code first described by Freeman approximates a contour by a sequence of
piecewise linear fits that consist of eight standardized line segments. The code of a contour
is then the chain V of length K, V = a1a2a3 . . . aK , where each link ai is an integer between
0 and 7 oriented in the direction (π/4)ai and of length 1 or

√
2 depending, respectively,

on whether ai is even or odd. Figure 4.1b illustrates the chain code of the simple object
shown in Figure 4.1a. One can notice that per definition the chain coded contour lies
by half voxel inside the object introducing a systematic error of 0.5 voxel edge into the
description. To generate it the definition of “object” and “background” in the image is
required. Crack code has been introduced to overcome these limitations. It is defined
to lye exactly on the border of background and object (Figure 4.1, image c) and can be
simplified by replacing two segments building a corner by a diagonal one (image d). While
the simplification considerably shortens V (see Table 4.1), it also introduces error into the
representation. The choice of a coding technique depend on the application, chain codes
are most appropriate in case of area-quantized images. In our application to describe
hand segmented organs, we have used unsimplified crack codes since these are closest to
the original contour.

04

6

3 2 1

75

a b c d e

Figure 4.1: Different coding techniques of the simple object shown in a. The Freeman code (b)
is defined to connect the middle points of the border pixels of the object. Images c and d illustrate
the crack code and its simplification, respectively, while e shows the assignment of code numbers
to directions.
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Vchain = 0005676644422123
Vcrack = 000064660666444422202242
Vsimplecrack = 0075766544321231

Table 4.1: Code sequences corresponding to Figures 4.1(b,c, and d,)

4.1.2 Computing Fourier descriptors of a closed polygonal curve

The contour of a simply connected 2-D region is a closed curve which can be mapped onto
the parameter space defined by the unit circle Ω2. The contour is then parametrized by
the polar coordinate φ, such that the position v(u) on the contour becomes a periodic
function of φ. This suggests the harmonic Fourier basis being the preferred set of basis
functions for the object description. Curves are usually parametrized with their arclength
s measured from an arbitrarily chosen starting point on the contour. Thus, when the
whole curve has the length L, the point of arclength s from the starting point is assigned
to the parameter φ = 2πs

L . The mathematical treatment is simpler in the complex plane,
i.e. when the parameter space is the circle U = {u ∈ C | u∗u = 1} and the mapping
z : U 7→ C represents the curve. (A full deduction of the complex formulas presented here
can be found in Christian Brechbühler’s Phd. thesis [Brechbühler-Mǐskuv 1995].)

The relation between s, φ, and u is

u = u0 + ju1 = ejφ = e
2πjs
L (4.3)

Fourier expansion

In the complex notation the vector function given in equation 4.1 transforms to the complex
valued function z(u). z(u) is represented as a series of complex exponentials.

z(u) =
inf∑

n=− inf

znu
n (4.4)

where the complex coefficient zn can be expressed in polar notation, i.e.

zn = rne
jψn , (4.5)

with rn ∈ R, rn ≥ 0, and ψ ∈ R.

Determining the coefficients

The calculation of zn for a given contour z(u) is of practical interest. This is given by the
formula:

zn =
1

2π

∮
z(u)−n|du| (4.6)
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In most applications, z(u) describes a polygon and often we are not interested in the center
of gravity of the contour. In this case, it is simplest to start from the derivative d

|du| of 4.4
and derive another formula for zn:

zn =
1
jn

∮
z′(u)−n|du| (4.7)

Computing the Fourier descriptor for a closed polygon

When the curve is given as a polygon (e.g. by its Freeman-code), it can be expressed as
a sum of straight line pieces. In the same way the integral 4.7 brakes up into a sum of
partial integrals. The M sample points z(uk), k = 0 . . .M of the Freeman curve define
the transitions between the partial integrals. The arclength parametrization of the curve
implies that the point z(u) traverses the curve with constant speed; on each individual
straight line piece this leads to

z′(u) =
∆z
|∆u|

=
L∆z

2π|∆u|
= const (4.8)

This relation significantly simplifies the expression for zn since the partial integrals of
straight line segments can be substituted for their solution.

zn = − 1
n2

M−1∑
k=0

z′[k]u−n |uk+1
uk (4.9)

To evaluate this sum, it is enough to calculate one complex exponential for each term. As
the lower bound of each term is equal to the upper bound of the previous term, the value
of u−n can be reused.

In the case of Freeman-code, ∆z can only take eight different values, namely 1, 1 + j,
j, −1 + j, −1, −1− j, −j, and 1− j. The same holds for z′: these as well are completely
determined by the code 0 . . . 7.

4.1.3 Normalization in object and parameter space

The normalization proposed by [Kuhl and Giardina 1982] is based on the ellipse defined by
the 1st order Fourier descriptors and is carried out both in object and in parameter space.
Normalization in object space effects the curve’s position, orientation and size, while that
in parameter space applies to the curve parametrization behind it. After normalization in
object space the center of the 1st order ellipse of a normalized contour concurs with the
coordinate origin, its main axis overlaps with the x -axis of the coordinate system has the
length of 1. In parameter space the starting point of the parametrization is moved to a
standard position defined by the crossing of the 1st order ellipse and its main axis.

The authors derive an error bound on the Fourier approximation which can be used
to determine the number of harmonics required by a desired accuracy. Furthermore, they
describe a classification and recognition procedure that is applicable to classes of objects
which may occur in different orientation, sizes and translation. The following section
briefly summarizes the mathematics of Fourier descriptors.
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Dependence on starting point

To make the descriptors independent on the starting point of the parametrization, this
can be shifted to a standard position, e.g. to the tip of the ellipse defined by the 1st order
Fourier descriptors. This can be thought of as a rotation in parameter space U given by
the unit circle. The transformation is defined by

zn |V = zne
jnθ , (4.10)

where the notation |V marks the coefficients resulting from shifting by angle θ.

Dependence on rotational position

In the complex notation, rotation in object space by angle ψ is simply a multiplication by
e−jψ. Applying it to 4.4 immediately reveals the coefficients of the rotated object.

zn |R= zne
jψ (4.11)

To achieve a standardized position of the curve, it is rotated in a way that its first ellipse’s
main axis matches the horizontal (real) coordinate axis.

Scale dependence

Scaling the objects by factor α leads to multiplying its coefficients by the same factor:

zn |S= αzn (4.12)

The scaling factor α is usually set to normalize the half major axis to unity, meaning

α =
1

|z1|+ |z−1|
=

1
r1 + r−1

(4.13)

Invariant Fourier descriptors

Ignoring z0, that is setting z0 |T= 0, achieves translation invariance. Summing up all
standardizations; the invariant coefficients are denoted z̃n:

zn |V,R,S,T= z̃n = zn
ej(nθ−ψ)

r1 + r−1
(4.14)

z̃0 = 0 (4.15)

4.1.4 Relations to real valued notation

In the complex notation of Fourier coefficients real and imaginary parts of zn correspond
to the x and y coordinates(

x

y

)
n

=
(
an bn
cn dn

)(
sin 2πns

L

cos 2πns
L

)
, (4.16)
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Im[z]

Re[z]

Starting point

Im[z]

Re[z]

Translation
Im[z]

Re[z]

Rotation

Im[z]

Re[z]
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a b c d

Figure 4.2: Normalization steps of Fourier coefficients; shifting of the starting point to the tip of
the ellipse (a), moving the center of gravity to the coordinate origin (b), rotating the main axis of
the ellipse to the real axis (c), and finally scaling the half major axis to unity (d).

where the real valued coefficients an, bn, cn, and dn are defined as follows.

an = Rezn + Rez−n (4.17)

bn = −Imzn + Imz−n (4.18)

cn = Imzn + Imz−n (4.19)

dn = Rezn − Rez−n (4.20)

(4.21)

4.2 Description of surfaces by spherical harmonic functions

The problem of finding a similarly homogeneous parametrization of arbitrarily shaped sur-
faces proved to be more difficult. [Brechbühler et al. 1995] introduced only recently a new
surface parametrization technique which can be considered as a complete generalization
of Kuhl and Giardina’s technique to three dimensions.

Earlier methods for mapping an object surface onto a sphere have been limited to
represent only star-shaped or convex objects, as they start from an initial radial surface
function r(θ, φ). [Staib and Duncan 1992b] discuss the use of a parameter space with
torus topology, which can be deformed into a tube by squeezing the torus cross-section to
a thin ribbon. Closed surfaces are obtained by considering tubes whose ends close up to
a point. This approach illustrates some principal difficulties which can also be found in
other parametrization techniques.

• Warping a torus to a closed surface poses the problem that the parameters have
different rules. One parameter defines a kind of spine along which cross-sections are
stacked up.

• Squeezing a circle to line results in a nonhomogeneous distribution of parameters on
the object surface.

• Warping a torus to a tube and finally to a closed surface causes the parametrization
does not result in a one-to-one mapping of surface points to parameters.
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The new method allows a uniform mapping of an object surface into a two-coordinate
space with spherical topology. As a mapping of convoluted surface structures onto the
surface of a sphere introduces distortions, optimization of the distribution of nodes in
parameter space becomes necessary. This problem is solved by nonlinear optimization.

Parametrized surfaces can be expanded into spherical harmonics, hierarchically de-
scribing shape properties by spatial frequency constituents. Similarly to Fourier descrip-
tors, spherical harmonic descriptors can also be made invariant to translation, rotation
and scaling.

A summary of the surface parametrization procedure follows which is described in
detail in [Brechbühler et al. 1992, Brechbühler et al. 1995].

4.2.1 The surface data structure

Medical CT or MRI images are examples of volumetric data. For each cuboidal cell
(volume element or voxel) in a certain volume there are one or more measurements. When
segmentation succeeds, one anatomical unit can be characterized by a binary data volume,
in which every voxel contains either 1, which means it belongs to the unit, or 0, meaning
it is in the background. The object is then the set of “1” voxels and can be pictured as a
collection of small cubes, adopting the cuberille notion [Herman and Liu 1979]. The surface
of a voxel object is a set of unit squares, all parallel to one of the three coordinate planes
yz, xz, or xy. The edges and vertices that bound the faces are also parts of the surface,
which is represented as a data structure that reflects geometry as well as neighborhood
relations.
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Figure 4.3: Left: A two-voxel example object illustrating the surface data structure, which
focuses on the vertices. The numbers of the vertices are shown in circles (vertices 3 and 4 are
hidden). The data structure entry for a vertex represents its Cartesian coordinates and a list of
neighboring nodes. The entry for vertex 7 is {{x0 =10, x1 =14, x2 =7}, neighbors= {6, 0,
1, 2, 8, 11, 10, 9}}. The table below lists the complete surface data structure of this object.
— Right: A flat diagram of the surface net for the same object. (courtesy of Ch. Brechbühler)
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node x0 x1 x2 neighbors
nr.
0 {{{ 9, 14, 6}, { 1, 7, 6, 9, 3, 4}},
1 {{ 10, 14, 6}, { 0, 3, 4, 5, 2, 8, 7, 6}},
2 {{ 11, 14, 6}, { 1, 4, 5, 11, 8, 7}},
3 {{ 9, 15, 6}, { 4, 1, 0, 6, 9, 10}},
4 {{ 10, 15, 6}, { 3, 9, 10, 11, 5, 2, 1, 0}},
5 {{ 11, 15, 6}, { 4, 10, 11, 8, 2, 1}},
6 {{ 9, 14, 7}, { 7, 10, 9, 3, 0, 1}},
7 {{ 10, 14, 7}, { 6, 0, 1, 2, 8, 11, 10, 9}},
8 {{ 11, 14, 7}, { 7, 1, 2, 5, 11, 10}},
9 {{ 9, 15, 7}, { 10, 4, 3, 0, 6, 7}},
10 {{ 10, 15, 7}, { 9, 6, 7, 8, 11, 5, 4, 3}},
11 {{ 11, 15, 7}, { 10, 7, 8, 2, 5, 4}}}

Table 4.2: The complete surface data structure of the two cube object.

4.2.2 Parametrization of closed surfaces

A key step in the shape description of a surface is its mapping to the parameter space,
the sphere Ω3. Any point on the surface must map to exactly one point on the sphere,
and vice versa. The location on the sphere corresponding to a surface point defines the
parameters of the point. It can be represented as two polar or three Cartesian coordinates,
related through the bijection u0

u1

u2

 =

sin θ cosφ
sin θ sinφ

cos θ

 .

Mapping a surface to the sphere assigns parameters to every surface point; therefore it is
called surface parametrization. The mapping must be continuous, i.e. neighboring points
in one space must map to neighbors in the other space. It is possible and desirable to
construct a mapping that preserves areas (see Figure 4.8). Narrowing to the cuberille
notion, Figure 4.4 symbolically illustrates this mapping of a selected facet from the object
surface to a portion of Ω3. It is not possible in general to map every surface facet to a
spherical square: distortions cannot be avoided, but they should be minimal.

The parametrization, i.e., the embedding of the object surface graph into the surface of
the unit sphere can be formulated as a constrained optimization problem. The following
paragraphs define the meaning of variables, objective (goal function), constraints and
starting values in this context.

Variables

The coordinates of all vertices vary in the optimization. Using two (e.g. spherical) co-
ordinates per vertex would be the most economic representation with respect to storage
space, but it would make the equal treatment of all spatial directions difficult and pose
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s0

s1

s2

s3α 0
α1

α 2

α 3

1

Figure 4.4: Every single face on the object’s surface is mapped to a spherical quadrilateral. The
sides of a spherical polygon are geodesic arcs on the sphere surface. As the sphere has unity radius,
the length of a side si is equal to the corresponding center angle (in radian). The quadrilateral in
this illustration is special in that its four sides s0 · · · s3 are equal and its four angles α0 · · ·α3 are
equal: it is the spherical analogue of a square. (courtesy of Ch. Brechbühler)

the problem of discontinuity and singularities in the parameter space. The authors prefer
Cartesian coordinates (u, v, w) for representing a location on the sphere, introducing one
virtual degree of freedom per vertex. The number of variables is three times the number
of vertices.

Constraints

Two kinds of equalities and one kind of inequality constrain the values that the variables
can take.

1. Every vertex must lie on the unit sphere in parameter space, i.e., u2
0 + u2

1 + u2
2 = 1.

This constraint compensates for the virtual degree of freedom and forces.

2. Ask for area preservation; any object surface region must map to a region of pro-
portional area on the sphere. There is one constraint included for each elementary
facet: the area of the spherical quadrilateral must be 4π divided by the total number
faces.

3. All quadrilaterals on the sphere must remain convex; no angle αk may become
negative or exceed π.

Objective

The objective is to minimize the distortion of the surface net in the mapping. It is
conceptually similar to angle preservation, and it must tend to make the shape of all
the mapped faces as similar to their original square form as possible. To fulfill this goal
perfectly, a facet should map to a “spherical square” (see Figure 4.4). This can never
be reached exactly for all faces and a trade off has to be made between the distortions
at different vertices. To achieve an optimum, the goal function maximizes

∑3
i=0 cos si
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summed over all spherical quadrilateral, which is the same as the sum of the cosines of
the lengths of all edges.

Starting values

a b

Figure 4.5: The simple object “duck” consisting of nine voxels is used for illustrating the initial
parametrization. The north pole is at the lower left, the south pole at the upper right. Co-
latitude is mapped on the object’s surface as a grey value in a; iso-latitude lines are drawn every
π
16 . Longitude is shown in b; iso-longitude lines (“meridians”) are π

8 apart. (courtesy of Ch.
Brechbühler)

The variables of the optimization are the positions on the unit sphere to which the
vertices are mapped. Therefore, starting values in this context means an initial mapping
of the object’s surface to the sphere. Two vertices are selected as the poles of the spherical
parameter space and a two step diffusion process is applied to assign latitude and longitude
coordinates to each vertex (see Figure 4.5).

Optimization method

The commonly available optimization routines can not be used for the resulting nonlinear
constrained minimization problem of such a large scale, as they do not exploit its sparsity
and information available about the constraints. A Newton-Lagrange algorithm has been
developed by the author to find the constrained minimum of the goal function.

The solution of the nonlinear program defines the optimal parametrization of the ob-
ject’s surface. Figure 4.6 shows the starting point for the optimization; the right diagram
is a combination of those in Figure 4.5. Figure 4.7 visualizes the result of the optimization
in different ways. The same vertex as in Figure 4.6 is marked. Figure 4.8 demonstrates
the importance of homogeneous surface parametrization.

4.2.3 Parametrization by spherical harmonics basis functions

The description of the surfaces of simply connected 3D objects in an arbitrary basis can
be performed similarly to the 2D case. The surface will be parametrized by two variables,
the θ and φ polar parameters, and will be defined by three explicit functions
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Figure 4.6: Diffusion yields the initial parametrization, which is plotted in the same three ways
as the final result in Figure 4.7. a The surface net is plotted on the spherical parameter space. The
thick lines depict the edges of the original square faces. The equidistance for both θ and φ is π

8 . b
φ and cos θ are interpreted as Cartesian coordinates. The monotonic cosine function is applied to
give a true-area cylindrical projection. The horizontal lines at ±1 are the poles. c Conversely, the
globe coordinate grid is drawn over the object. (courtesy of Ch. Brechbühler)
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Figure 4.7: The result of the optimization, plotted in the same ways as in the previous figure. The
areas of elementary facets in parameter space are now equal, and local distortions are minimized.
The rotational position of the net on the sphere is arbitrary. c After optimization, the former poles
have lost their prominent role. They have now the same importance as other point in parameter
space and could lie anywhere on the surface. Only the use of polar coordinates for visualization
gives them a conspicuous appearance. (courtesy of Ch. Brechbühler)

v(θ, φ) =

 x(θ, φ)
y(θ, φ)
z(θ, φ)

 . (4.22)

It has to be emphasized that this is not a radial function. Selecting the spherical
harmonic functions (Y m

l denotes the function of degree l and order m, see [Greiner and
Diehl 1986]) as a basis, the coordinate functions can be written as



38 Chapter 4. Parametrization of closed curves and surfaces

a b

Figure 4.8: Homogeneous parameter distribution is important for shape description. The “E”-
shaped object surface, indicated by a wireframe, is expanded into a series of spherical harmonics.
The initial, non-uniform parametrization yields a poor shape representation (a); its optimization
achieves a significant improvement (b). (courtesy of Ch. Brechbühler)

v(θ, φ,p) =
K∑
k=0

k∑
m=−k

c mk Y m
k (θ, φ) , (4.23)

where

c mk =

 cx
m
k

cy
m
k

cz
m
k

 . (4.24)

The expansion is restricted to the first K + 1 terms. When the free variables θ and φ run
over the whole sphere (e.g. θ = 0 . . . π, φ = 0 . . . 2π), the point v(θ, φ) runs over the whole
surface of the object. The sphere Ω3 is considered a perfectly symmetric surface without
any singular points or preferred directions.

The surface is then described by the parameters

p = (cx0
0, cy

0
0, cz

0
0, cx

−1
1 , cx

0
1, cx

1
1, cy

−1
1 , cy

0
1, cy

1
1,

cz
−1
1 , cz

0
1, cz

1
1, . . . cx

−K
K . . . cz

K
K)>

Y m
l denotes the spherical harmonic function of degree l and order m. The following

definitions agree with [Press et al. 1988], page 252. The variable w is a scalar and will
correspond to u2 below.

Legendre polynomials

Pl(w) =
1

2ll!
dl

dwl
(w2 − 1)l (4.25)

Associated Legendre polynomials

Pml (w) = (−1)m(1− w2)
m
2
dm

dwm
Pl(w) (4.26)

=
(−1)m

2ll!
(1− w2)

m
2
dm+l

dwm+l
(w2 − 1)l
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Y m
l m = 0 m = 1 m = 2

l = 0 1
2
√
π

l = 1
√

3
4π cos(θ) −

√
3

8π e
i φ sin(θ)

l = 2
√

5
16π

(
−1 + 3 cos(θ)2

)
−
√

15
8π e

i φ cos(θ) sin(θ)
√

15
2π e

2 i φ sin(θ)2

Table 4.3: Spherical harmonic basis functions up to degree 2.

Spherical harmonic functions

Y m
l (θ, φ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos θ) eimφ (4.27)

Y −ml (θ, φ) = (−1)mY m
l
∗(θ, φ) (4.28)

A list of the spherical harmonics up to degree 2 in table 4.3 exemplifies these definitions
in polar coordinates (θ, φ). For convinience, the real and imaginary parts of the complex
basis functions Y m

l can be used as independent real valued basis functions. There is the
same number of functions as in the complex basis, namely 2l + 1 for any non-negative l.

Figures 4.9 and 4.9 provide two different ways to visualize the basis functions. In
figure 4.9 function values of ReY m

l up to degree 3 are mapped onto the surface of a unit
sphere representing the parameter space in θ and φ, light areas corresponding to positive
values and dark to negative values. In physics spherical harmonics are often shown as in
figure4.9 where the radius of a unit sphere is modulated by the function values |ReY m

l |.
One has to realize that the parametrization by spherical harmonics is just one possi-

bility for the parametric description of contours. Alternative methods, as e.g. deformable
superquadrics have also been proposed in the literature (see previous chapter). The author
emphasizes that any reasonable parametric shape model can be used within the presented
formalism.

4.2.4 Invariant descriptors

The coefficients obtained so far still depend on the relative position of the parameter net
of the object surface, on the orientation of the object space, on the size of the object
and finally on its position in space. By transforming the object to canonical positions in
parameter space and object space, similarly as it has been done with Fourier parametrized
2-D contours, one can get rid of these dependencies.

Rotation independent descriptors

Rotation of the object to standard position in parameter space and object space needs
three rotations in each spaces, when rotations are described by Euler angles. We wish to
rotate the object in parameter space so that the north pole (θ = 0, on the u2 axis) will be
at one end of the shortest main axis of this first order ellipsoid and the point where the
Greenwich meridian (φ = 0) crosses the equator (θ = π

2 , on the u0 axis) is at one end of



40 Chapter 4. Parametrization of closed curves and surfaces

Figure 4.9: Real parts of spherical harmonic functions Y ml up to degree 3 are mapped onto the
surface of a unit sphere, light areas corresponding to positive values and dark to negative values.

the longest main axis. To define a standard position only the contribution of the spherical
harmonics of degree l = 1 in equation 4.23 are taken into consideration, these define an
ellipsoid.

v1(θ, φ,p) =
1∑

m=−1

c m1 Y m
1 (θ, φ) (4.29)
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Figure 4.10: Real parts of spherical harmonic functions Y ml up to degree 3. The radius of a unit
sphere is modulated by the function values |ReY ml |

Substituting the basis functions Y −1
1 =

√
3

2
√

2π
(u0 − iu1), Y 0

1 =
√

3
2
√
π
u2 and Y 1

1 = −
√

3
2
√

2π
(u0+

iu1) this sum can be written as

v1(u) = Au = A

u0

u1

u2

 = a1 u0 + a2 u1 + a3 u2 , (4.30)

where
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A = (a1,a2,a3) =
√

3
2
√

2π

(
c−1
1 − c

1
1, i(c

−1
1 + c1

1),
√

2c01
)

. (4.31)

The rotation matrix RT
u = (û1, û2, û3), where û1, û2, and û3 denote the unit eigenvectors

of A, can be then used to rotate the parameter net over the surface into the desired
location. The roots of the eigenvalues l21 > l22 > l23 represent half the length of the main
axes of the ellipsoid. The rotation matrix is applied to the parameters ui associated with
each vertex i:

ui |V = RT
u veui . (4.32)

This new parametrization results in new coefficients cml |V .
In the next step, the ellipsoid is rotated in the object space to make its main axes co-

incide with the coordinate axes, putting the longest ellipsoid axis along x and the shortest
along z. This requires only the matrix multiplication

cml |R= Rx c
m
l |V , (4.33)

where the rotation matrix is defined as Rx = diagonal( 1
l1
, 1
l2
, 1
l2

)ATRT
u .

Scale independence

Scaling invariance can be achieved by dividing all descriptors by l1, the length of the
longest main axis

cml |S= Rx c
m
l |R , (4.34)

Invariant spherical harmonic descriptors

Ignoring the coefficients of degree l = 0, that is setting c0
0 |T= (0, 0, 0)T achieves translation

invariance.

4.3 Ambiguous cases of normalization

The normalization techniques described here for the 2-D and 3-D cases require the precon-
dition that coefficients of degree 1 represent a real ellipse or a real ellipsoid, respectively.
If, however, the ellipse degenerates to a circle and the ellipsoid to an ellipsoid of revolution
or a sphere, the technique will fail to derive stabile main axes. Objects of higher symme-
tries, such as regular polygons and polyhedra are a good example for the limitations of
the normalization technique (see Figure 4.11). In general, the method will fall through
for shapes with properties which are not reflected in the first degree cofficients. In these
cases other features have to be incorporated into the normalization. These features can
involve, e.g., coefficients of higher degree or an external coordinate system. Wyskočil in
his diploma work [Wyskocil 199798] proposes a method which uses higher degree Fourier
coefficients to unambiguously normalize 2-D contours.
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Figure 4.11: Because of the limitations of the normalization technique based solely on the first
degree coefficients objects of higher symmetries, e.g. regular polygons and polyherda cannot be
unambiguously aligned, since their fitst ellipse or ellipsoid degenerates to a circle or sphere.

The symmetries of the ellipse and ellipsoid have also to be taken into consideration
while computing corresponding descriptors of similar objects. We will refer to this problem
in the next chapters when we describe the generation of average models of anatomical
organs.





5
Model-based segmentation of 2-D

images

In this chapter we first summarize how to apply modal analysis to outlines extracted from
2D images. Two shape examples are presented. In the first example closed contours of the
corpus callosum extracted from 2D mid-sagittal MR images are arc-length parametrized
to establish correspondence between them. The other example, based on open contours
of the femur obtained from X-ray images of the pelvis, illustrates the limitations of the
arc-length parametrization and proposes automatic reparetrization to achieve homology.

The second part of the chapter presents the development of the elastic matching pro-
cedure for the corpus callosum in a historical order. Our first implementation separated
shape deformation parameters from those of the similarity transform (translation, rota-
tion and scaling). The proposed procedure is a combination of an initialization using an
average model based on template matching technique followed by an elastic deformation
restricted to the major eigenmodes. We demonstrate that the separation of the similarity
transform from the elastic deformation often leads to unsatisfactory segmentation results,
calling for a modified segmentation process that provides a unified framework for initial-
ization and elastic model matching. Segmentation quality has been further improved by
augmenting the model with information about its average image intensity environment.
In the end of the chapter we present segmentation results and compare them to manual
segmentations.

5.1 Model building

The corpus callosum outline on the midsagittal plane of the brain had to be segmented and
parametrized for each image of the training set. To perform this task a reimplementation of
Staib and Duncan’s Fourier-snake program has been applied, with a manual initialization
of the optimization. For the minimization of the total energy function of the Snakes
the E04JBF routine of the NAGTM library has been used, which applies a quasi-Newton
algorithm. It is designed to find a minimum of a function of several variables which
are either subject to fixed upper and lower bounds on the variables or unconstrained.
No derivatives are needed, these are estimated with finite-differences. If the algorithm
suspects a local minima or saddle point, it carries out a local search to move away.

The segmentation results can be seen in Figure 5.1. Fourier coefficients up to degree
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25 have been used for the description. The resulting contours of the training set have been
normalized to be invariant to translation, rotation, scaling in object space, and the starting
point of the parametrization in parameter space. Moving the starting point to a canonical
position establishes an approximate correspondence between individual contours. While
this way of achieving correspondence cannot be as precise as manual annotation of contour
points, it is obtained rapidly and without any human interaction. Additionally, one can
think of very smooth contours which will not allow the natural placement of landmarks,
in which case curve parametrization will give a better solution to the correspondence
problem. The goodness of the correspondence is also illustrated in Figure 5.1, where along
each contour eight dots are placed, such that they divide the length of the contour into
eight equal intervals. Comparing the positions of these points among different individuals,
it is obvious that the proposed parametrization provides a reasonable alternative to manual
landmark placing.

Figure 5.1: Complete (N = 30) set of shapes in the corpus callosum training set reconstructed
from their Fourier descriptors. Along each contour eight points are marked which divide the length
of the contour into eight equal intervaldivide the length of the contour into eight equal intervals.

The mean model has been determined from the normalized outlines by simply averaging
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their parameters cj .

c̄ =
N∑
j=1

cj (5.1)

In order to determine the major deformation modes defined by the above training set,
we performed a principal component analysis of the covariance matrix of the normalized
Fourier coefficients.

deviation from mean: dcj = cj − c̄ (5.2)

covariance matrix: Σc =
1

N − 1

N∑
j=1

dcjdc
T
j (5.3)

PCA: ΣcP c = ΛcP c (5.4)

where the columns of P hold the eigenvectors and the diagonal matrix Λ the eigenvalues λj
of Σ. As after the first few eigenvectors the variance becomes very small, the first t largest
eigenmodes have been taken for building a flexible model that explains the biological
variability of the shape of the corpus callosum outline. Any shape in the training set can
be approximated using the mean shape and a weighted sum of the deviations obtained
from the first few modes

c = c̄+ P cb , (5.5)

where b is a vector of weights, one for each eigenvector, and since eigenvectors are orthog-
onal, P T

c P c = I, b of a given shape c can be computed using

b = P T
c (c− c̄) . (5.6)

The vector b can also be thought of as a new and more compact representation of the
shape in the new basis of the deformation modes instead of the Fourier harmonics. Eq. 5.6
describes how to generate new examples of the shapes by varying the parameters (b) within
suitable limits, so the new shapes will be similar to those in the training set. The limits
for each element of b are derived by examining the distributions of the parameter values
required to generate the training set. If Gaussian distributions are assumed the variances
of the elements of b are given by the corresponding eigenvalues.

To choose the appropriate number of eigenmodes for the shape representation the
followings has to be taken into consideration. Supposing, Fourier harmonics up to degree
K has been used, there will be 4K free parameters describing the shape, this results in
a covariance matrix of the size 4K × 4K and theoretically in 4K different eigenmodes.
However, if the training set only consists of N < 4K samples there will be only N − 1
linearly independent columns or rows in Σ and also that many eigenmodes in Pc. It follows
that the number of modes, t, should be smaller than both N and 4K:

t < min(N, 4K) . (5.7)
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Figure 5.2: Principal component analysis of the covariance matrix computed from the normal-
ized Fourier coefficients. The average contour is shown in a (thick line) together with the indi-
vidual contours (gray lines). Resulting eigenvalues are illustrated in b, while the first three major
deformation- or eigenmodes in c. The deformation range amounts from −

√
2 (light gray) to

√
2

(dark gray) eigenmodes.

One method for calculating t is to choose the smallest number of modes such that the sum
of their variances explain a sufficiently large proportion of λT , the total variance of all the
independent variables, where

λT =
min(N,4K)∑

k=1

λk (5.8)

and λk is the kth diagonal element of Λ.

5.1.1 Quality measure of the statistical model

In the example above 30 samples of corpus callosum have been used to derive a statistical
model. Applying equation 5.8 we find that the 10 largest eigenvalues express 99% of the
variation represented in the training set. This, however, only means that the 30 shapes
of the training set can be described with minor error using the model, and does not say
anything about shapes not included in the initial population.

The description error of a shape not included in the training set can be computed by
first projecting its descriptors c into the subspace of the major eigenvectors (eq. 5.6), then
approximating coefficients c̃ from the projection (eq. 5.5), and finally comparing c and c̃.
The difference between c and c̃ is given by the Euclidean distance of the two vectors:

ε = DEucl(c, c̃) . (5.9)
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To demonstrate how the quality of the model increases while incorporating more in-
dividuals, we first build a statistical model using a training set of 11 arbitrarily chosen
shapes out of the entire set of 30, as needed to be able to compute 10 deformation modes,
and determine the above measure for the remaining shapes not included in the training
set. Repeating the computations for all possible combinations of 11 out of a set of 30 and
averaging the errors, we obtain a measure of the 11-shape model as shown in Figure 5.3 by
the first data point. The model is increased one-by-one and the average error is computed
based on the largest 10 eigenmodes to obtain the rest of the data points in the same figure.
One can observe that the average error decreases as the model grows, however, the decline
becomes less and less significant. Later on in this chapter in Figure 5.14 we can recognize
the asymptotic behavior of the curve which implies that the model becomes saturated and
after a certain number of adding new shapes to the model does not increase its information
content.

29272523211917151311
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Figure 5.3: Quality measure curve computed for the 30 corpura callosa training set. It displays
the average representation error ε for shapes not included in the training set when using the 10
largest eigenmodes while incresing the number of shapes involved in the computation from n = 11
to n = 29.

The model, however, shown in Figure 5.3 does not reach saturation after incorporating
all shapes of the training set, which means that the amount of information currently
included in the model could be further augmented by adding more individual shapes.

5.1.2 Modal analysis of the femur

In many cases, however, arc-length parametrization does not provide sufficient correspon-
dence between contours. In a student project, Peter Wepf investigated shapes of the upper
part of the femur. The training set has been obtained by manual segmentation of 41 X-ray
images of the human pelvis and by subsequent B-spline parametrization of the open curves
(see figure 5.5 a). The original X-ray images only show the upper head of the femur while
its lower part has been cut away at an arbitrary position by the imaging system. This
causes a high variation of the length of the femur’s stem which prevents from establishing
correspondence by arc length parametrization.

To solve the correspondence problem between the contours their tangential direction
has been coded along the curve by Ψ-functions as illustrated in figure 5.4. Differential
properties of the individual Ψ-functions have been used to reparametrize the contours by
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Figure 5.4: Ψ-function of one individual shape. It is used to code the contours tangential direction
as a function of their arc-length s. The two most abrupt changes at s ≈ 100 and s ≈ 400 correspond
to positions where the femur’s lower part has been cut away.

assigning the same amount of parameter space to homologous intervals of the functions.
This procedure is carried out fully automatically. After reparametrization deformation
modes of the training set can be obtained. Figures 5.5 b and c show the resulting eigenval-
ues and eigenmodes. As expected, the largest deformation captured by the first eigenmode
reflects the variation of the length of the femur’s stem.

5.2 Initial placement of model contour by template match-

ing

A segmentation of the corpus callosum from grey-valued images based on the deformation
of the mean model requires a suitable initialization. Due to the normalization of the
Fourier coefficients, the average model only expresses shape deformations up to a similarity
transformation. Therefore, the initial placement has to provide a sufficiently good match
between the model and the edges in the grey-valued image. A standard template matching
procedure, which can be considered as a generalization of the Hough-transformation to
arbitrary curves, was chosen to solve this first optimization problem by equidistantly
sampling the possible parameters of the similarity transformation within a reasonable
range. The goodness of fit was calculated for a Canny edge map on a relatively large scale,
since the rigid transformation does not allow for elastic shape deformations. The objective
function simply sums up the intensity values of the edge map along the contour, given
by the averaged Fourier descriptors and the 4 parameters of the similarity transformation
(x- and y-translation, rotation, and scale). To obtain the position of the best match the
resulting 4-dimensional space has been searched at a reasonably fine grid of the parameters
for a global maximum. Figure 5.6 illustrates the result of the initialization by template
matching. Pictures a, b, and c show the original image, the Gaussian smoothed image
(σ = 5 pixel), and the Canny gradient magnitude, respectively. Figure d presents an
overlay of the optimal fit between model curve and gradient image.
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Figure 5.5: Principal component analysis of the femur shape. The average contour is shown in a
(thick line) together with the individual contours (gray lines). Resulting eigenvalues are illustrated
in b, while the first three major deformation- or eigenmodes in c. The deformation range amounts
from −

√
2 (light gray) to

√
2 (dark gray) eigenmodes.

5.3 Segmentation by restricted elastic deformation

After initialization a modified version of the Fourier-snake program has been applied.
Instead of optimizing in the complete space of the normalized Fourier coefficients, the
optimization has been restricted in order to allow only deformations which are prominently
represented in the training sample. In the first step the eigenvectors of the parameter
covariance matrix are selected as a different set of basis functions in place of the harmonics.
The restricted variation is achieved by choosing a subset of eigenmodes, usually the n

largest ones, and calculating the optimization in this linear subspace. Starting with the
result of the template matching, the model is elastically deformed until it fits (in a local
optimum) the edges along object contour.

The procedure described above provided in many cases satisfactory segmentation re-
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a b

c d

Figure 5.6: Template matching procedure. Pictures a, b, and c show the original image, the
Gaussian smoothed image (σ = 5 pixel), and the Canny gradient magnitude, respectively. Figure
d presents an overlay of the optimal fit between model curve and gradient image.

Figure 5.7: Iteration steps of the optimization procedure on an image not included in the training
set. Starting with the best rigid match (left image), the model is elastically deformed until it
matches the object contour (right image).

sults. In other cases, however, we met difficulties to find the correct contour. Figure
5.8 shows a few examples of unsuccessful segmentations. The analysis of the results has
shown that the separation of the similarity transform (in the initialization step) from the
elastic deformation is mainly responsible for this failure. As the models have been nor-
malized before the statistical analysis, translation, rotation, and scaling has been actually
excluded from the elastic deformation step, forbidding minor corrections of the similarity
transform determined by the template matching in the initialization step. Restricting the
deformations to the subspace of the dominant eigenmodes made this situation even worse
by not allowing corrections through free elastic deformations. This has lead to the large
segmentation errors demonstrated in Fig. 5.8.

To be able to refine the position of the contour during the elastic matching, the 4
parameters of the similarity transformation has also been added to the parameters which
have to be optimized. Thus, the elastic model finally had n+ 4 total degrees of freedom.
This, however, only marginally improved the quality of the segmentation. We found two
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a b c

Figure 5.8: Segmentation examples illustrating segmentation failures. Images in the top row
illustrate the initial placement of the model curves (using template matching), the bottom row
shows the segmentation results. The same initial model curve is used for the different images.

major reasons for the failure:

• The separation of the parameters for the similarity transform (translation, rotation
and scaling) and the Fourier coefficients in the model (small elastic deformation) is
somewhat artificial, as the elastic deformation of normalized contours does not fully
express the biological variations.

• The quasi-Newton algorithm used by the NAG library routine determines the local
optimum nearest to the initialization. This makes the optimization extremely sensi-
tive to the initialization, which is unsatisfactory since the Hough transform results
in only a rough rigid match.

The following section describes how these problems can be solved by incorporating
the similarity transform into the analysis of biological variability. This way all covaria-
tion of the pose and elastic deformation parameters can be handled in a consistent way,
too. The selected solution also avoids the separation of the image analysis process into
an initialization and elastic matching, leading to a two-step coarse-to-fine segmentation
procedure.

5.4 Improving Fourier-snake segmentation

Alternative initialization techniques: One could try different ways to avoid the seg-
mentation problems analyzed in the previous section.

• The desirable mixing of the effects of similarity transform and elastic deformation
could be achieved by the incorporation of eigenvalues belonging to the largest eigen-
vectors into the initialization (template matching) procedure. However, the dimen-
sionality of the sampled search space space would become by far too high and would
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create, especially in view of a generalization to 3D, an unacceptable computational
burden.

• One could also try to extend the parameters of the elastic deformation with transla-
tion, rotation, and scaling. This would lead to a higher dimensional local optimiza-
tion problem without allowing the handling of the optimization of the parameters
in one coherent framework.

• The selected optimization procedure finds the nearest local optimum on a high-
dimensional strongly non-convex goal function. This makes the procedure highly
sensitive to non-desired local optima. However, one should realize that the major
problem does not lie in the initialization procedure. The template matching usually
provides a reasonable first approximation using the mean model, which still leads
to unsatisfactory results due to the separation of the similarity transform and the
elastic deformation described by the principal modes of the Fourier coefficients. This
problem is addressed in the next paragraph.

Figure 5.9: Position of the anterior commissure (AC) and the posterior commissure on a post
mortem mid-sagittal brain slice. The connecting line represents the unit vector ex of the external
anatomical coordinate system.

5.4.1 Model incorporating full biological variability

We expect for images representing anatomy that the relative position, rotation, and size
of healthy organs is restricted in a similar way as their elastic deformation. If we could
define a coordinate system fixed to the anatomy, there would be no reason for a unrestricted
similarity transform which precedes the elastic matching. The Fourier descriptors of the
organ outlines originally contain this information, but we eliminate it by normalizing the
coefficients. In the case of the corpus callosum, the AC/PC line is a generally accepted, well
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detectable geometric feature of the mid-sagittal images, which represents such a standard
coordinate system. The line from the anterior to the posterior commissure (AC/PC line)
as illustrated on Figure 5.9 has been manually extracted for each image of the training set.
After determination of the Fourier coefficients, we apply normalization only for fixing the
starting point of the curve parametrization. The standardization of the images, necessary
for the determination of the deformation modes, is based on a normalization of the AC/PC
line to a ex unit vector. After that, the same statistical analysis of the test set can be
performed as previously explained, providing a mean model (now including its relative
position and size to the AC/PC line), and the deformation modes which incorporate
the parameters of the similarity transform, too. The resulting eigenvalues are plotted in
decreasing order in Figure 5.10 b. One can see that the remaining variation after the 10th

eigenvalue becomes negligible. Accordingly, all deformations have been restricted to the
10 largest eigenvectors.
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Figure 5.10: Principal component analysis of the covariance matrix computed from the AC/PC
normalized Fourier coefficients. The average contour is shown in a (thick line) together with the
individual contours (gray lines). Resulting eigenvalues are illustrated in b, while the first three
major deformation- or eigenmodes in c. The deformation range amounts from −

√
2 (light gray)

to
√

2 (dark gray) eigenmodes.

Figure 5.10 a illustrates the determination of the mean model. Figure 5.10 c presents
the deformations according to the first three eigenmodes, with deformations in the range
of ±
√

2 eigenvalues. It shows how the pose and elastic deformation parameters are mixed
together in the dominant eigendeformations.

Comparing the results using the normalized outlines as described in the previous sec-
tion (Figure 5.2 a) and the average model resulting without normalization presented in
the anatomical reference frame, it can be seen that the variance of the outlines became
larger. This can be explained by the fact that the new normalization also keeps the con-
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tour’s position relative to the anatomical coordinate system and not only its shape. The
higher variation is also expressed by the more significant deviations represented by the
eigenmodes (Figure 5.10 c) and the bigger eigenvalues (Figure 5.10 b) . At the same time,
more characteristic shape features are retained in the average outline if no normalization
is performed before the training.

5.4.2 Segmentation

The determination of the AC/PC line now becomes part of the segmentation, since the
model is built based on a normalization to these landmarks. The AC/PC line is deter-
mined manually for the image under analysis. The flexible model, characterized by the
mean contour and the eigenmodes, now incorporates changes of the position and local de-
formations of the generic model, which makes the initialization step obsolete. In order to
make the optimization robust against local extrema we applied a two-step coarse to fine
strategy.

Figure 5.11: Segmentation of the corpus callosum using the manually determined AC/PC line
as a reference coordinate system for model building and segmentation. The first image shows the
initialization, resulting from a coarse match in the subspace of the largest four deformation modes.
Images in the middle illustrate single steps of the optimization in the subspace of the largest 9
deformation modes (allowing fine adjustments). Finally the last image depicts the result of the
segmentation

In the first step on the coarse level we use a procedure similar to the template matching,
as described previously. However, we now use a small set of a few dominant modes and
calculate the best match in this linear subspace of major deformations by equidistantly
sampling the weights of the selected deformation modes in a reasonable range. This way
the complete parameter space is explored, and the result of this coarse segmentation can
be used as a reliable initialization for the following local optimization step. One should
realize that the larger the number of eigenmodes participating in this coarse step is, the
better the initial fit will be in the following step. On the other side, the computational
burden is exponentially growing with the dimensionality of the sampled parameter space.
The number of eigenmodes considered in this step can be selected by trading the fit quality
and the computational requirements.

On the fine level the segmentation is performed in the homogeneous parameter space
of the eigenvectors corresponding to the largest eigenvalues, now choosing a larger number
of eigenvectors than on the coarse level. Due to the full incorporation of the parameters
of the similarity transform into the eigendeformations, the fine tuning of the model pose
can be performed within the variability determined by the training set. Figure 5.11 shows
the results of the modified segmentation procedure, which achieved very good results in
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almost all cases.
For the sake of simplicity, our implementation uses a two-stage relaxation method as

described above. However, the shape representation by deformation modes also allows for
a gradient transition from course to fine levels, since course deformations are represented
by eigenvectors corresponding to larger eigenvalues and smaller eigenvalues correspond to
more subtle deformation modes. Thus, a gradual relaxation strategy can be achieved by
starting the fit with the largest deformation mode and sequentially incorporating weaker
modes as the fit converged on the previous level.

One should mention, that in some applications the identification of the small individual
variations of the contour outline, which is not represented by even the whole set of the
eigenmodes, is desirable. In this case our strategy can be extended with an additional
finer level by applying an unrestricted deformation of the parametrized snake using the
result of the previous two levels as initialization.

5.5 Modeling image intensity environment of contours

Shapes of boundaries are certainly not the only characteristic features of organs in medical
images, their environment is usually also uniquely representative for a particular type of
object. Objects’ environment can be characterized by changes in image intensity along
their boundary within a given zone inside and outside of the object. As it was shown by
[Cootes et al. 1995a], incorporating this additional information into the statistical shape
model and taking it into account during the segmentation process will further increase
performance and provide better results. Following their suggestion, image intensity is
sampled along profiles orthogonal to the boundary.

a b c

Figure 5.12: Extracting intensity profiles. The original image (a) is at first smoothed for reg-
ularization with a Gaussian of σ = 1pixel (b). Regular sampling of the contour is enabled by
the parametric representation. Intensity profiles normal to the curve has been extracted at 80
equally distributed contour points. Along the profiles sampling points are placed at a distance of
1pixel − edge (c).

Figure 5.12 illustrates the process of extracting intensity profiles from one of the corpus
callosum images (a). In a first step the image is smoothed with a Gaussian filter of
σ = 1pixel to make the latter optimization procedure less sensitive to noise and other
disturbances in the image (b). Since the Fourier parametrization keeps proportions of
distances in parameter and object space equal, thus, subdividing the parameter space into
equal intervals profiles can be placed equidistantly along the contour. For every contour



58 Chapter 5. Model-based segmentation of 2-D images

point i in each data set j we can extract a profile wij of np sample points. Sampling
distances are designed to be smaller along the profiles than along the object contour
to reflect the fact that abrupt changes in intensity are only expected orthogonal to the
boundary. Profiles are sampled at one pixel distance in a stripe of ±5 pixels while the
distance between adjacent profiles is chosen to be about 2 pixels.

The profiles are oriented normal to the object boundary and centered at the contour
points xij , as illustrated in Figure 5.12 c. For each sample point i we can obtain a mean
profile by averaging over the sample objects N :

wi =
1
N

N∑
j=1

wij . (5.10)

We calculate a np × np covariance matrix Σwi which gives us a statistical description
of the expected profiles at each sample point.

5.5.1 Deformation modes of the contour points

The points of the sampled contour can be considered as a new representation of the same
object which can be obtained from the Fourier descriptors by a linear transformation:

x = Ac , (5.11)

where x represents the coordinates in object space and c the Fourier descriptors. A con-
sists of the function values ([sin(kt), cos(kt)], k = 0 . . .K) of the Fourier parametrization,
one for each dimension, and describes the mapping between shape description space and
object space coordinates.

Deformation modes have been previously derived based on the Fourier coefficients. To
examine how the modes can be converted to the contours’ description in object space, we
investigate the covariance matrix. In parameter space it is defined by

Σc = Cov[dc] = E[dc dcT ] . (5.12)

Writing the same equation in object space and substituting the transformation matrix A
we get

Σx = Cov[dx] = E[dx dxT ] = E[Adc dcTAT ] = AΣcA
T , (5.13)

where dx denotes the deviation of an individual x from the average x over the whole
population. Performing principal component analysis on Σx

ΣxP x = ΛxP x , (5.14)

and substituting Eq. 5.11 and Eq. 5.13 into Eq. 5.14 and multiplying both sides by AT ,
we obtain

ATAΣcA
TAP c = ΛxA

TAP c . (5.15)

Comparing Eq.5.15 with Eq. 5.2, it can be seen that P c and P x describe the same defor-
mation modes if, and only if ATA = αI, where α is a scalar and I the identity matrix.



5.5. Modeling image intensity environment of contours 59

This requirement is fulfilled if A is an orthogonal matrix, furthermore if A is orthonormal
then α = 1. In our case, the columns of A are regularly sampled versions of cos(kt) and
sin(kt) functions (with k = 0 . . .K, and 0 ≤ t < 2π) which are known to be orthogonal,
since they also build the orthogonal basis vectors of the discrete Fourier-transformation.
It follows that eigenvectors P x and eigenvalues Λx in object space can be easily computed
from those defined in parameter space using the following equations:

P x = AP c (5.16)

Λx = αΛc . (5.17)

Figure 5.13 explains the relationships between contour parametrizations introduced
above. In the following the vector c will be referred to as Fourier descriptors and vector
x as Contour points. The latter can either be thought of as a local parametrization of the
shape or as its reconstruction from the Fourier descriptors. On the right side in figure 5.13
the actual shape descriptors are the elements of vector b, while the average shape and the
eigenvectors of the covariance matrix build the basis of the parametrization and can be
expressed either in c or x. This will be referred to as Statistical shape model and vector
b as Shape parameters.
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Figure 5.13: Overview of contour descriptions and how they are obtained from each other.
Starting with a Fourier representation c, contour points x can be computed at equally sampled
parameter values. Having a set of similar contours, a more compact statistical description can be
derived using principal component analysis.

5.5.2 New optimization strategy

The initialization step of the elastic fitting process remains the same as before while
the optimization strategy has been changed to better accommodate with the augmented
model. To give an initial estimate of the model contour in a new image the user has to
specify the location of the AC/PC coordinate system by selecting the positions of the
anterior commissure (AC) and posterior commissure (PC). Having the average location
of the average shape, the position of the curve is iteratively refined until no significant
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changes result. Instead of using a multidimensional optimization which simultaneously
modified all global shape parameters the new position of each contour point is determined
individually based on its intensity profile before the global shape gets updated. Each
iteration step can be divided into two stages:

• At each point of the model contour the image intensity environment is examined to
find a displacement which moves the point to a better position.

• From these local displacements a global deformation of the shape is calculated which
tries to satisfy all local adjustments without violating the shape constraints.

5.5.3 Calculating a set of displacements for the contour points

Starting with the average contour and given a profile model for each model point the search
involves finding a nearby region which better matches the profile model. At a particular
model point the algorithm extracts a profile, w, from the processed image of some length,
larger than that of the profile model, centered at the point and normal to the boundary.
The profile model (w̄) is shifted along the extracted profile to find the point at which the
model matches best. The fit of the model at a position s along the extracted profile can
be calculated as follows;

f(s) = (w(s)− w̄)T (w(s)− w̄) , (5.18)

or

f(s) = (w(s)− w̄)TΣ−1
w (w(s)− w̄) , (5.19)

where w(s) is a sub-interval of w of length np centered at s, and Σw denotes the covariance
matrix of the extracted profile. f(s) in eq. 5.19 is the Mahalanobis distance of the sample
from the mean intensity model and for normally distributed data it is proportional to the
probability of obtaining w(s) from the measured distribution of image intensities. Using
the latter equation to compute the fit has the advantage that values in the profile model
having higher variances over the training set (being more unreliable) get weaker weights
and hereby have less influence on the fit.

5.5.4 Calculating the adjustments to the shape parameters

Using the method described above a set of suggested displacements (dx) can be calculated,
one for each contour point. The word “suggested” implies that the statistical shape model
cannot fulfill all displacements since there are only a limited number of deformation modes
available and dx can move the contour points in as many different degrees of freedom as
many contour points the shape model consists of. In other words, the dimensionality of
x is larger than the dimensionality of b, such that the suggested displacements are not
in general consistent with the statistical shape model and only an approximation to the
required deformation can be achieved.

The segmentation procedure starts with bn=0 = 0 at iteration step n = 0, setting the
shape to the average model:
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x = x̄+ bPx = x̄ . (5.20)

In each iteration step an adjustment vector to the shape parameters, db, is computed which
will best match the model to the suggested new positions. This is achieved by minimizing
the differences between model points (xn−1 + dx′n) and desired points (xn−1 + dxn) in a
least squares manner, such that

xn−1 + dx′n = x̄+ (bn−1 + dbn)Px . (5.21)

In the special case when Px is orthogonal dbn can be obtained from dxn by

dbn = Px
Tdxn . (5.22)

5.5.5 Applying constraints to the shape parameters

There are two ways to constrain the resulting shape. On the one hand, taking only the
first few largest deformation modes and truncating weaker eigenvectors from the shape
representation limits the range of possible deformations to those strongly present in the
training set. On the other hand, a shape can be considered acceptable if its Mahalanobis
distance from the average shape Dm is less than a suitable constant Dmax

D2
m =

t∑
k=1

b2k
λk
≤ D2

max , (5.23)

where t is the number of modes in the shape representation and λk are the corresponding
eigenmodes. Equation 5.23 defines a hyper ellipsoid that the vector b should lie within.
In case, updating b leads to an implausible shape, ie. Dm > Dmax, b can be rescaled to
lie on the closest point of the allowed hyper ellipsoid’s surface using

bnew = bold
Dmax

Dm
. (5.24)

However, projecting b back to the surface of the allowable shape domain can be con-
sidered as a hard constraint which often leads to oscillation instead of stable convergence.
This can be avoided using soft constraints by adding the term αDm to the goal function
of the optimization. Thus, the difference of model and extracted profiles are minimized
together with the shape’s Mahalanobis distance.

5.5.6 Results and Validation

Within the confines of the BIOMORPH project, 71 new cases of corpora callosa have been
manually segmented by a medical expert. Since these new segmentations are of better
quality than our previous non-expert models, the original 30 cases have been replaced by
the new ones, to build new shape and profile models.

Figure 5.14a illustrates the previously introduced (in section 5.1.1) quality measure
curve for the new larger training set. It depicts the average description error ε for shapes
not included in the training set when using the 10 largest eigenmodes while incresing
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Figure 5.14: Quality measure curve computed for the 71 corpura callosa training set. It displays
the average representation error ε for shapes not included in the training set when using the 10
largest eigenmodes while incresing the number of shapes involved in the computation from n = 11
to n = 70 on the left, and using the 5 largest eigenmodes from n = 6 to n = 70 on the right.

the number of shapes involved in the computation from n = 11 to n = 70. We can
observe that incorporating more then about 50-55 shapes into the model does not lower
considerably the average representation error. It follows that all linear variations expressed
by 10 eigenmodes can be obtaind from a limited number of training shapes. Figure 5.14b
shows the curve if we settle for only the largest 5 deformation modes. In this case the
final representation error which the curve converges to is about twice as high as for the
10-eigenmodes model, on the other hand, only a smaller training set is needed to reach
saturation. This points to the fact that larger deformation modes can be reliably predicted
from smaller number of sample shapes, while more traning data is needed to obtail less
significant deformation modes.
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Figure 5.15: Average distances of corresponding contour points in pixels between manually and
automatically segmented contours expressed in pixels. Bars in light grey illustrate the measure at
initialization and in dark grey after deformation.

The new profile based segmentation technique has been applied to the 71 new mid-
sagittal brain images. In the initialization step the location of the AC and PC landmarks
has been determined by an expert manually. Having the AC/PC positions, all images
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Figure 5.16: Average distances of corresponding contour points in pixels between manually and
automatically segmented contours expressed in the length of a pixel edge for the 11 images not
included in the training set. Bars in light grey illustrate the measure at initialization and in dark
grey after deformation.

have been automatically segmented using 9 deformation modes and ±2
√
λi bounds on the

weights in b. The method converged within 20 iterations steps for all of the cases taking
less then one second on a Sun Ultra 1 workstation. To visualize the results the average
distance of corresponding points has been determined between manual segmented contours
and initial average, respectively fitted models. These distances are shown in Figure 6.17
for all 71 cases measured in pixels. Light gray bars correspond to the distance measure at
initialization, while dark bars to the fitted model.

Consulting Figure 6.17 and visually comparing results achieved by manual and au-
tomatic segmentation, we found that the method succeeds in 64 of the 71 cases (90 %).
Successful segmentation results are illustrated in Figure 5.17 and five segmentation failures
in Figure 5.18. Images in the left column show initial average models (white lines) along
with manually segmented contours (black lines). Images on the right depict the results of
the fit (white lines) and also manually segmented contours (black lines).

Analyzing segmentation failures, we observed two reasons for the process going wrong.
Firstly, if the contour of the object lies too far from the average (as in case 8), we can
increase the number of deformation modes and relax the constraints to get closer to the
object. Secondly, if the image is of low contrast (as in cases 35, 39, 40, and 52) one
could include textural information about the object of interest and its background into
the objective function to achieve better selectivity.

In order to test the robustness of the statistical model, we applied the technique to
images not included in the training set. To do so, only the first 60 cases have been used
to build the model. This model has then been used to segment the remaining 11 cases.
Comparing the results shown in figure 5.16 we can see that excluding these cases from the
model building stage does not seem to affect their segmentation.
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case 7

case 38

case 53

case 62

case 67

Figure 5.17: Successful segmentations. Images in the left column show initial average models
(white lines) together with manually segmented contours (black lines). Images on the right depict
the results of the fit (white lines) and also manually segmented contours (black lines).
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case 8

case 35

case 39

case 40

case 52

Figure 5.18: Segmentation failures. Images in the left column show initial average models (white
lines) together with manually segmented contours (black lines). Images on the right depict the
results of the fit (white lines) and also manually segmented contours (black lines).
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Model-based segmentation of

volumetric data

In the previous chapter we have seen that global parametrization can in certain cases
successfully replace the tedious task of manual annotation of contour points in establishing
correspondences between 2-D contours. It has also been shown that global parametrization
techniques are not limited to 2-D contours but has recently been extended to surfaces of
spherical topology as well. Since the only 2-D specific part of the proposed segmentation
method is the Fourier parametrization, replacing it by an equivalent 3-D technique provides
the straightforward generalization of the segmentation method to three dimensions. While
the fact that the used surface parametrization technique can only be applied to simply
connected objects is a true limitation, there is still a vast variety of applications, such as
segmentation of anatomy, where objects of spherical topology are typical.

The 3-D segmentation discussed here is based on a statistical model, generated from a
collection of manually segmented volumetric brain MR images of different subjects. The
process can be divided into two major phases; a model-building stage, and the automatic
segmentation of large series of data sets.

• In the training phase, the results of interactive segmentation of sample data sets are
used to create a statistical shape model which describes the average as well as the
major linear variation modes.

• The model is placed into new, unknown data sets and is elastically deformed to
optimally fit the measured data.

By means of 3-D brain regions, the generation of the statistical model will be discussed
in detail in the following section. Similarly to the 2-D method the purely geometrical
statistical model has been extended by incorporating gray-valued profiles across the organ
surface, implementing the concept proposed by [Cootes et al. 1994a, Cootes et al. 1995a]
to the third dimension.

The matching process is initialized using the average geometrical model resulting from
this training phase. A two-stage algorithm, described in section 6.2, is used to deform this
model to optimally fit the features of a new data set, while still restricting the deformations
to the variability allowed by the statistical model. This algorithm makes full use of the
gray-value profiles perpendicular to the surface, which can be calculated in an elegant way
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by using a dual representation of the object both as a collection of sample points and as
a parametrized surface.

6.1 Generation of 3-D statistical model

The concept proposed here results in an automatic selection of a large set of labeled surface
points. This is done using a uniform parametrization of closed surfaces and by calculat-
ing an invariant object centered description ([Brechbühler et al. 1992, Brechbühler et al.
1995]) as reviewed in chapter 4. The alignment of parametrized object surfaces approxi-
mates a correspondence of surface points. The training set consists of a series of segmented
volumetric objects obtained by experts using interactive segmentation.

In the medical field brain regions usually fulfill the requirement for sphere topology.
On the other hand, because of the poor contrast conditions deep gray brain regions show,
they represent a real challenge to human experts.

6.1.1 Interactive expert segmentation

a d

c b e f

Figure 6.1: Preprocessing of the segmented volume in order to obtain smoother surfaces. Image
a illustrates the raw volume reconstructed from its 2-D segmentation slices, while images b and c
show two slices across the volume, one in the segmentation plane and the other one orthogonal to
it. On the right the same representations can be seen, now taken from the preprocessed volume.



6.1. Generation of 3-D statistical model 69

Today’s routine practice for 3-D segmentation involves slice-by-slice processing of high-
resolution volume data. Working on large series of similar scans, human observers knowl-
edgeable in anatomy become experts and produce highly reliable segmentation results,
although at the cost of a considerable amount of time per data set. Realistic figures are
several hours to one day per volume data set for only a small set of structures. Regions in
2-D image slices corresponding to cross-sections of 3-D objects are outlined and painted
by an interactive tool called ”slice editor”. The series of binary regions segmented from
consecutive slices form volumetric voxel objects.

Our initial training set consisting of 30 age matched male brain MR volumes, a cour-
tesy of Ron Kikinis and Martha Shenton at Harward Medical School in Boston, has also
been processed this way. In each volume six brain regions has been manually labeled in
both hemispheres, these regions include the amigdala/hippocampus complex, the parahip-
pocampual gyrus, thalamus, caudate nucleus, putamen, and globus pallidus.

Figure 6.1 a illustrates the result of an expert segmentation of the left hippocampus.
Images b and c display two orthogonal slices through the segmented volume and illustrate
a typical effect usually seen in volumes created from 2-D slices. While b parallel to the seg-
mentation plane shows a continuous contour, the slice parallel to it (c) illustrates the high
variation between adjacent segmentation slices. Since the surface parametrization tech-
nique converges faster for smooth surfaces, all segmented volumes have been preprocessed
to correct for the high inter-slice variability. To smoothen the surface a Gaussian filter of
σ = 0.5voxel has been applied to the original binary image followed by thresholding to
re-binarize the volume. The result is shown in Figure 6.1 d, e, and f.

6.1.2 Surface parametrization

The surface of a closed voxel object is most often stored as a mesh based on vertices having
three spatial coordinates, although presenting two degrees of freedom. [Brechbühler et al.
1995] developed a surface parametrization of arbitrary simply connected objects based on
those two parameters as it has been reviewed in chapter 4.

6.1.3 Surface correspondence and object alignment

The surface parametrization, i.e., the representation of the surface by a parameter net with
homogeneous cells, is only determined up to a 3-D rotation in parameter space. However,
a point to point correspondence of surfaces of different objects would require parameters
which do not depend on the relative position of the parameter net.

The position and orientation of objects in original coordinate space has to be normal-
ized before starting a comparison. For example, parameters for aligning objects can be
obtained by calculating an object-centered coordinate system. The segmentation method
described in this paper can incorporate small deviations of translation and orientation
into the shape statistics. This allows us to reproducibly define a global coordinate system
based on a small set of significant landmarks.
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Object-centered invariant surface parametrization

The object can be rotated to a canonical position in parameter space by making use of the
hierarchical shape description provided by spherical harmonic descriptors. The coefficients
of the spherical harmonic function of different degrees provide a measure of the spatial
frequency constituents that compose the structure. As higher frequency components are
included, more detailed features of the object appear. To define a standard position
we only consider the contribution of the spherical harmonics of degree one, which is an
ellipsoid representing the coarse elongation of the object in 3-D space. We rotate the
parameter space so that the north pole (θ = 0) will be at one end of the shortest main
axis, and the point where the zero meridian (φ = 0) crosses the equator (θ = π/2) is at
one end of the longest main axis. Fig. 6.2(b,c) illustrates the location of the middle main
axis on the reconstruction up to degree one and ten respectively.

a b c

Figure 6.2: Model building: Reconstruction from shape descriptors up to degree one (a), recon-
struction up to degree ten (b) and normalization in object space (c).

The symmetry of the first degree ellipsoid allows for eight different standard orientation
of the object. Four of them can be explained by rotating the ellipsoid by π with respect
to one of the three main axes. The other four arise from the rotated versions by mirroring
them with respect to one of the three symmetry planes of the ellipsoid. The concatenation
of two rotations or two mirrorings result in identity if they are done with respect to the
same axis or symmetry plane. Further, two consecutive rotations in different axes give the
same as one rotation in the third axis. Similarly, two mirrorings about different planes
result in one rotation in the axis given by the intersection of the planes. This gives rise to
eight different combinations. In the comparison of two descriptors, the minimal distance
resulting from any of the eight flips is relevant. One reference parametrization has been
chosen and the rest of the training set has been aligned to it. To achieve the alignment of
one particular shape, the descriptors of all eight standard orientations has been compared
with the reference descriptors by computing the Euclidean distance of the two description
vectors and taking the one where this is minimum.

Objects of similar shape will get a standard parametrization which becomes compa-
rable, i.e., parameter coordinates (θ, φ) are located in similar regions of the object shape
across the set of objects (see Figure 6.3). Corresponding points on different object surfaces
are therefore found by calculating a canonical parametrization rather than by interactive
selection of labeled sets of 3-D points. The assessment of the quality of point correspon-
dences, with a view to potential improvements, are research questions of current interest
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([Kotcheff and Taylor 1997, Tagare 1997, Rangarajan et al. 1997]).

a b

c d

Figure 6.3: Corresponding parameter values for θ = π/2, φ = 0, π, and φ = π/2, 3π/2 (thick
lines) illustrated on an ellipsoid (a) and on three individual left-hippocampi.

Alignment in object space

Our driving application is the automatic segmentation of brain objects. We begin by
choosing the standard stereotactic coordinate system proposed by [Talairach and Tournoux
1988] for global alignment of the head image data sets. This can be seen as an extension
of the coordinate system we have used for the corpus callosum. To be consistent with the
literature the coordinate origin has been moved to the middle of the AC and PC points.
Axis y traverses the brain from back (negative values) to front crossing the two feature
points. Lying also in the midsagittal plane axis z is perpendicular to y and points from
bottom to top. The third axis x, pointing from left to right, is defined to be orthogonal
to the other two such that they build a right handed coordinate system. Basic features
used for alignment are the approximation of the inter-hemispheric fissure by a midsagittal
plane and the definition of the anterior and posterior commissure (AC-PC) (see Fig. 6.4).
Each data set is transformed into canonical coordinates by 3-D rotation and scaling.
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Figure 6.4: Stereotactic coordinate system used for object space normalization.

6.1.4 Shape statistics

After transformation to canonical coordinates, the object descriptors are related to the
same reference system and can be directly compared. An established procedure for de-
scribing a class of objects follows our 2-D method as described in the previous chapter,
where the calculation are carried out in the domain of shape descriptors rather than the
Cartesian coordinates of points in object space. This computation of deformation modes
is basically identical to that of the 2-D case and is repeated here briefly for the sake of
completeness. The mean model is determined by averaging the descriptors cj of the N
individual shapes (see Fig. 6.5).

c̄ =
1
N

N∑
j=1

cj (6.1)

Eigenanalysis of the covariance matrix Σ results in eigenvalues and eigenvectors repre-
senting the significant modes of shape variation.

Σ =
1

N − 1

∑
j

(cj − c̄) · (cj − c̄)T (6.2)

Σ = PcΛPc
T = (PcΛ1/2)(PcΛ1/2)T , (6.3)
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Figure 6.5: Illustration of all 22 left hippocampal structures of the training sets, normalized and
reconstructed from their descriptors.

Figure 6.6: Largest two modes of variation for bj = −2
√
λj . . . 2

√
λj . In the middle column,

bj = 0 represents the mean model.

where the columns of Pc hold the eigenvectors and the diagonal matrix Λ the eigen-
values λj of Σ. Vectors bj describe the deviation of individual shapes cj from the mean
shape using weights in eigenvector space, and are given below
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a b

Figure 6.7: Left and right thalamus, globus pallidus, putamen and hippocampus in one individual
case (a) and their average models computed from all 30 cases (b).

cj = c̄+ Pcbj (6.4)

Figure 6.6 illustrates the largest two eigenmodes of the hippocampus training set. Trun-
cating the number of eigenmodes, corresponding to the eigenvalues sorted by size, restricts
deformations to the major modes of variation. Figure 6.8 illustrates the square root of
eigenvalues sorted by size (dotted line) and the components of one individual vector bj .
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Figure 6.8: Statistics of shape deformation. The dotted line represents the square root of eigenval-
ues

√
λj sorted by decreasing size. The continuous line illustrates the components of an individual

vector bj , which describes the deviation of the shape cj from the mean shape c̄.

6.1.5 Quality measure of the 3-D statistical models

Figure 6.9a illustrates the previously introduced (in section 5.1.1) quality measure curves
for the available 3-D training sets of left and right hippocampus, putamen, globus pallidus,
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and thalamus. As it can be seen, non of the eight models has reached the optimal error
minimum. This means that adding new individuals could further increase the models’
information content and thus, their ability to describe unseen shapes of the same kind. It
also explains the difference in segmentation quality for shapes included and not included
in the training set, which will be discussed in section 6.3.

6.1.6 Modeling the gray level environment of surface models

The geometric shape models are augmented by incorporating information about the gray
level environment of the model surface. We examine the statistics of the image intensity
along 1-D profiles orthogonal to the object surface at a discrete set of sampling points.
Equal processing of each part of the model surface is ensured by choosing a homogeneous
distribution of sampling points and profiles over the 3-D surface. Because the objects are
parametrized by the two spherical coordinates (θ, φ), the straightforward method would
be to use a regular mesh of these parameters. This, however, would result in a highly
irregular mesh on a spherical surface giving a dense sampling at the poles and a sparse
sampling along the equator (see Figure 6.10(a) and Figure 6.2(b,c)). A perfectly regular
sampling of a spherical surface does not exist, but we can find a good approximation
by icosahedron subdivision, a technique often used in computer graphics to triangulate
and display spheres at different scales. The algorithm takes an icosahedron inscribed in a
sphere, and subdivides its faces as shown in Figure 6.10(b). The newly introduced vertices
lie slightly inside the sphere, so we push them to the surface by properly normalizing their
distance to the center to unity.

We have chosen a subdivision of k = 10 which gives us n = 12 + 30(k − 1) +
20 (k−1)(k−2)

2 = 1002 vertices. Computing the θi and φi values at each vertex coordinate i
of the subdivided icosahedron and substituting them into

xi =

 xi
yi
zi

 =
K∑
l=0

l∑
m=−l

cml Y
m
l (θi, φi), (6.5)

i = 1 . . . 1002 (6.6)

we obtain a dual description of the object surface by the coordinates of a set of surface
points xi. The equation above can be written in a more compact matrix form as

x = Ac, (6.7)

where x represents the coordinates in object space and c the spherical harmonics descrip-
tors. A consists of the function values of Y m

l (θi, φi), one for each dimension, and describes
the mapping between shape description space and object space coordinates.

For every surface point i in each data set j we can extract a profile wij of np sample
points. The distance between sample points is the length of one voxel. The profiles are
oriented normal to the object surface and centered at the surface points xij , as illustrated
in Figure 6.11. For each sample point i we can obtain a mean profile by averaging over
the sample objects N :
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Figure 6.9: Quality measure curve computed for the training sets of left and right hippocampus
(a,b), putamen (c,d), globus pallidus (e,f), and thalamus (g,h). It displays the average represen-
tation error ε for shapes not included in the training set when using the 10 largest eigenmodes
while incresing the number of shapes involved in the computation from n = 11 to n = N−1, where
N is the number of available shapes for the organ in question.
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Figure 6.10: Sampling methods of spherical surfaces: regular mesh in spherical coordinates (a),
icosahedron subdivision (b).

w̄i =
1
N

N∑
j=1

wij . (6.8)

We calculate a np × np covariance matrix Σwi which gives us a statistical description of
the expected profiles at each sample point:

Σwi =
1

N − 1

N∑
j=1

(wij − w̄i)(wij − w̄i)T . (6.9)

Cootes et al. in [Cootes et al. 1995a] propose normalized derivative profiles giving
invariance to uniform scaling of gray levels and constant shift. For our applications,
however, we achieved best results using unnormalized original gray level profiles, as all
our data sets have been acquired under the same imaging conditions. This allows us to
avoid the information loss caused by any normalization procedure.

6.2 Segmentation by model fitting

Until now we have only described the creation of a flexible 3D model including geometric
shape, gray level environment and statistics about normal shape variability. We now
perform the segmentation step by elastically fitting this model to new 3D data sets. This
is achieved with the following two steps:

• Initialization is done by transforming the model’s coordinate system into that of the
new data set.
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Figure 6.11: Illustration of an individual left hippocampal shape with its profile vectors shown
from the left side of the brain.

• The elastic deformation of the surface until it best matches the new gray value
environment.

6.2.1 Initialization of segmentation

Since the model has been built based on a normalization to the Talairach coordinate
system, the determination of the symmetry plane of the brain and the position of the
AC/PC line becomes an integral part of the initialization. Currently this is done manually
but the determination of the symmetry plane and the AC/PC line by can be replaced in
future by an automatic method [Minoshima et al. 1993, Marais et al. 1996, Thirion et
al. 1997, Kruggel and Lohmann 1997]. To derive the position of the midsagittal plane
the user specifies the position of 3 or more points lying on the inter-hemispheric tissue.
The program computes the parameters of a plane which have the best least squares fit
to the given points. The more points are specified, the more robust is the fit. Having
determined the plane the user finally marks the location of the AC and PC in the same
way it happened for the segmentation of the the corpus callosum. A translation vector
and a rotation matrix are computed to transform the model’s coordinate system into the
image space of the new data set.

6.2.2 Elastic deformation of model shape

We introduced two different representations of a surface, one based on the spherical har-
monic descriptors and a second one based on the subdivided icosahedron. We attempt to
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use the advantages of both representations in our procedure. Spherical harmonic descrip-
tors were necessary to find a correspondence between similar surfaces and they also allow
the exact analytical computation of surface normals by

ni =
K∑
l=0

l∑
m=−l

cml
∂Y m

l

∂θ
×

K∑
l=0

l∑
m=−l

cml
∂Y m

l

∂φ
. (6.10)

However, they only represent a global description of an object shape. The surface points,
on the other hand, give a local representation, which is essential to carry out an iterative
refinement of the model, as will be described in the next section. Thus, we decided to
keep both representations during the matching process, the relation between the two being
tractable via the matrix A.

Calculating displacements for surface points

After initialization of the surface model we calculate the displacement vector at each
surface sample point which would move that point to a new position closer to the sought
object. Since there is a model of a gray level profile for each point, the search tries to
find an adjacent region which better matches this profile. A profile w of length l(> np)
normal to the surface is extracted at each model point. This new profile is shifted along
the model profile in discrete steps s to find the position of the best match. This is given
as the square of the Mahalanobis distance:

d

s

w

w

2

a b

Figure 6.12: Illustration of the surface matching process. Image a shows part of the model’s
triangulated surface with longer extracted (in black) and shorter model profiles (in grey). Image
b visualizes the computation of a suggested movement for a single surface point.

d2
Maha(s) = (w(s)− w̄)Σw

−1(w(s)− w̄) (6.11)

where w(s) represents the sub-interval of the extracted profile at step s having a length
of np. The location of the best fit is thus the one with minimal d2

Maha(s). Suppose sbest is
the shift between the two profiles providing the best fit. We choose a displacement vector
dx for each model point which is parallel to the profile, in the direction of the best fit and
has magnitude sbest . Figure 6.12 illustrates this process.
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Adjusting the shape parameters

Having generated 3-D displacement vectors for each of the n model points

dx = (dx1, dy1, dz1, . . . , dzn), (6.12)

we then adjust the shape parameters to move the model surface towards a new position.
Since rotation, translation and scale are already incorporated in the model statistics, we do
not have to deal with them separately. Of more concern are calculated displacements dx,
as these could freely deform the shape of the object. In order to keep their resulting shape
consistent with the statistical model, we restrict possible deformations by considering only
the first few modes of variation. This will be solved by minimizing a sum of squares of
differences between actual model point locations and the suggested new positions.

The shape statistics, as described in section 6.1.4, can be expressed by

c = c̄+ Pcb . (6.13)

Multiplying both sides of the above equation by A we get the dual surface description by
a set of surface points:

Ac = Ac̄+APcb (6.14)

x = x̄+ Px
′b , (6.15)

where Px
′ denotes the product APc which represents the matrix of modes of shape varia-

tion expressed in object coordinate space. Recall that Pc is the matrix of eigenvectors in
the shape descriptor space defined by the components of the elliptic harmonic descriptors
c. Contrary to 2-D, matrix A is non-orthogonal because of the unequal sampling of the
spherical surface (compare Figures 5.13 and 6.13). Thus, Px

′ is not a real matrix of eigen-
vectors since its column vectors are also non-orthogonal, although they still represent the
same shape deformations as eigenvectors in Pc. Therefore, weight vectors bi of individual
shapes, which express the deviation from the mean model, remain the same in both shape
representation schemes.

We seek an adjustment db to b which causes a deformation in eigenspace which matches
the optimal deformation x as closely as possible.

(x+ dx) = x̄+ Px
′(b + db) . (6.16)

Subtracting eq.(6.15) from eq.(6.16) we get

dx = Px
′db . (6.17)

This is an over-determined set of linear equations where the number of equations (3n) is
much larger than the number of variables (the number of modes is usually restricted from
around 5 to 10). Therefore a least squares approximation to the solution can be obtained
using standard linear algebra. Because of the orthogonality of Px in 2-D, the least squares
solution could be obtained by db = Px

Tdx. In 3-D, the non-orthogonality of Px
′ does

not allow of solving eq. 6.17 this simple way. With this object, the general purpose least
squares routine F04JAF from the NAGTM Fortran library has been applied to obtain db.
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Figure 6.13: Overview of contour descriptions and how they are obtained from each other.
Starting with a spherical harmonics representation c, contour points x can be computed at sampled
parameter values. Contrary to 2-D, reversing the order of multiplying by A and computing PCA
yields different representations.

This more general algorithm can also be used in the special case of orthogonal Px and
would provide the same solution as equation 5.22.

The entire procedure is repeated iteratively and starts with the average model such
that bt=0 = 0. At each iteration step, we compute a new set of displacements from the
match of profiles and update the shape deviation vector b until the shape stops to vary.

Shape constraints

There are two different kind of constraints we apply to keep the resulting shape consistent
with the shape model. On the one hand, there is a limited number of eigenmodes due to
the small number of individuals and the restriction of the number of modes. And on the
other hand, after the weights have been updated by

bt+1 = bt + dbt, (6.18)

we constrain the components bi of b using the standard deviation defined by the statistical
model, which is given by the eigenvalues

√
λi (see Fig. 6.8). Thus, each component of

bi,t+1 lying outside of the interval ±a
√
λi will be truncated, where the constant a is set

to 2.

6.2.3 Quality of gray level profiles

Cootes and Taylor propose to introduce weights into the calculation of the adjustments
to shape parameters, (db). This results in modifying equation 6.17 to

Px
TQdx = (Px

TQPx)db , (6.19)

where Q is a diagonal matrix of weights, one for each surface point in x. Weights can
indicate the confidence we have in the suggested new position for the point. In their
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implementation weights in Q are inversely proportional to the length of dxi, the suggested
displacement at surface point i:

qi =
1

2 + |dxi|2
. (6.20)

The idea behind it is to give less weight for points which are found to be further away
from the current model points than average, and may be outliers.

We developed a different weight model based on the quality of model profiles. For a
successful segmentation model profiles have to fulfill the following two requirements:

• they have to be selective, meaning that they cross a strong edge or across several
strong edges in the image, and

• reliable, meaning that wi at a certain surface point i show low variability over indi-
viduals.

That is, model profiles w̄i of high selectivity and low variance are of better quality than
ones with low selectivity and high variance. Selectivity is related to the derivative of the
profile, dwi, while reliability can be expressed by the inverse of the covariance matrix Σwi

(see equation 6.9) of the profile. The two can be combined into the quality measure

qi = dwT
i Σ−1

wi
dwi . (6.21)

Visualizing this measure over the surface of the object, as shown in Figure 6.14 for the left
hippocampus example, provides us information about the segmentation quality, we can
expect at different locations.

6.3 Results

Figure 6.15(a) shows the initial placement of the left hippocampus model (white line)
together with the hand-segmented contour (gray line) on a sagittal 2D slice (top) and as
a 3D scene (bottom) viewed from the right side of the head. Images (b), (c), and (d)
show the iterative progress of the fit. After 100 iterations the model gives a sufficiently
close fit to the data. The model used in this example had 5 degrees of freedom, and the
model profiles had total length of 11 sample points while the extracted profiles had a total
length of 19 sample points. The whole segmentation process takes about 2 minutes on a
Sun Ultra 1 workstation and runs fully automatically after initializing the model with a
new data set.

The above procedure has been applied to all 22 data sets where the hippocampus
had been manually segmented, and additionally to 8 data sets where it had not. The
performance of the automatic segmentation has been tested by comparisons with manually
segmented object shapes, which are well recognized as a gold standard given the lack of
ground truth. A represents the model shape obtained by human experts, B the result of
the new model-based segmentation.

The overlap measure (A ∪B)/(A ∩B) shown in Figure 6.16 is calculated on binary
voxel maps, created by intersection of the object surfaces with the voxel grid. We therefore
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Figure 6.14: Quality measure of model profiles visualized in spherical coordinates φ and θ in
image a, as well as over the surface of the left hippocampus model in image b. Darker dots
correspond to higher profile quality.

avoid the discretization errors by projecting the surfaces back to a voxel grid. The resulting
measure is very sensitive to even small differences in overlap, both inside and outside of
the object model, and therefore a strong test for segmentation accuracy. For example,
two voxel cubes of a volume of 10× 10× 10 shifted by one voxel along the space diagonal
direction results in only a 57% overlap (729/1271), although the mean distance of surfaces
is roughly one voxel.

The calculation of the mean distance of surfaces can be determined in an elegant way
directly from the coefficients of the spherical harmonic expansion using Parseval’s theorem.
Parseval’s theorem says that the energy of the one-dimensional continuous signal f(t) can
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Figure 6.15: Segmentation results of a left hippocampus on sagittal 2D slices and 3D views from
the left hand side. The images a-d were taken after 0, 30, 60 and 100 iterations.

be expressed by its Fourier coefficients (an, bn) in the following way:

1
T

∫ T

−T
[f(t)]2dt =

a2
0

2
+
∞∑
1

(a2
n + b2n) (6.22)

The equation also applies to other orthogonal basis functions, such as spherical harmonics,
and to higher dimensions as well. Eq. 6.22 explains the computation of the average distance
of a closed surface from the coordinate origin from the continuous coordinate functions
x(u) and their descriptors cml .
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Figure 6.16: Overlap measure (A∪B)/(A∩B) in percentage calculated between manually (A)
and automatic (B) segmented left hippocampi of 21 individuals. Bars in light grey illustrate the
measure at initialization and in dark grey after deformation.

∮
‖ x(u) ‖2 du =

∞∑
l=0

l∑
m=−l

| cml |2= 4π ·MSD , (6.23)

where MSD stands for mean squared distance measured from the origin of the coordinate
system. Similarly, the distance between two surfaces given by x1(u) and x2(u) or cml1 and
cml2 can be written as

∮
‖ x1(u)− x2(u) ‖2 du =

∞∑
l=0

l∑
m=−l

| cml1 − cml2 |2 . (6.24)

1 2 3 4 5 6 7 8 9101112131415161718192021

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9101112131415161718192021

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a b

Figure 6.17: Average distances in mm calculated between manually and automatic segmented
left hippocampi of 21 individuals. The bars in light grey illustrate the mean distance of the
initialization of the model in a new data set and the dark bars the final mean distance of surfaces
to the model surface. The length of the hippocampus is about 40 mm.

Figure 6.17 nicely illustrates how the mean distance of surfaces is reduced by the itera-
tive elastic deformation of the model. Again, we take the human expert’s segmentation as
ground truth and compare its surface with the result of the automatic segmentation. The
bars in light grey illustrate the mean distance of the initialization of the model in a new
data set, and the dark bars the final mean distance of surfaces to the model surface. The
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horizontal axis lists the series of 21 normal controls and schizophrenics that were used in
this study.

6.4 Multi-shape models

We are particularly interested in building an atlas of neuroanatomy based on statistical
surface models of brain regions. An atlas can be built by collecting single shapes into
one model. To mathematically represent several organs as one model, their spherical
harmonics shape descriptors can be concatenated into one single vector

cjmulti
=


cj1
...
cjk
...
cjK

 , (6.25)

where cjk the parameter vector of shape k in individual j. Covariance matrix and defor-
mation modes based on cimulti

can be then similarly computed as for single shape models.
The above formulation requires that a complete segmentation exists for all individuals,

in other words, it assumes that all organs have been segmented in all data sets. This,
however, is not always the case, hence, we seek an alternative solution to compute the
covariance matrix which can deal with incomplete data.

One can observe that the multi-shape covariance matrix Σmulti is a block matrix and
can be divided into single- or double-shape covariance matrices

Σmulti =


Σ11 · · · Σ1k · · · Σ1K

...
. . .

Σk1 Σkk
...

. . .
ΣK1 ΣKK

 . (6.26)

Single covariance matrices, Σ11, · · · ,Σkk, · · ·ΣKK , build the diagonal of Σmulti and are
computed using equation 6.2. On the other hand, mixed covariance matrices of two
objects and their transposed pairs can be found in the upper and lower triangle of the
block matrix, respectively. These are given by the following formula:

Σk1k2 =
1

Nk1k2 − 1

∑
j

(cjk1 − c̄k1) · (cjk2 − c̄k2)T ,with k1 6= k2 , (6.27)

where Nk1k2 is the number of cases where both objects, k1 and k2, exist. The advantage
of dividing up Σmulti is that for the computation of each partial Σk1k2 as many examples
can be used as there are in the data set, without respect to other objects’ existence.

To derive a statistical multi-shape model of the four organs hippocampus (H), thalamus
(T), putamen (P), and globus pallidus (G) in the left hemisphere of the brain we had to
deal with the incomplete data set of 30 patients shown in table 6.1.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H x x x x x x x x x x x x x x
T x x x x x x x x x x x x x x x
P x x x x x x x x x x x x x x x
G x x x x x x x x x x x x x x

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
H x x x x x x x x
T x x x x x x x x x x x x x x
P x x x x x x x x x x x x x
G x x x x x x x x x x x x x

Table 6.1: Data set of 30 manually segmented MR volumes. Existing segmentations of the organs
hippocampus (H), thalamus (T), putamen (P), and globus pallidus (G) are marked by ’x’.

There are only Ncompl = 18 complete segmentations, while the number of single- and
dual-objects is given in table 6.2. This example illustrates the advantage of separately
computing the elements of the multi-shape covariance matrix. Since the number of single-
and dual-shape models is always higher than Ncompl, the assembled covariance matrix

Σleft brain =


ΣHH ΣHT ΣHP ΣHG

ΣTH ΣTT ΣTP ΣTG

ΣPH ΣPT ΣPP ΣPG

ΣGH ΣGT ΣGP ΣGG

 (6.28)

is likely to represent a more representative statistic than the one obtained from the 18
complete cases only.

NH = 22 NHT = 21 NTP = 27 NPG = 27
NT = 29 NHP = 20 NTG = 26
NP = 28 NHG = 19
NG = 27

Table 6.2: Number of single- and dual-shape models in the data set shown above.

Figure 6.18 illustrates the resulting eigendeformation corresponding to the largest
eigenvalue of Σleft brain from three orthogonal views. From top to bottom the weight
of the deformation varies from −2

√
λ1 to 2

√
λ1, where λ1 is the largest eigenmode. The

scene is shown from left in the first, from back in the second and from above in the third
column of the figure. For comparison, Fig. 6.19 shows first deformation modes separately
computed for each of the four organs. It can be seen, how mixed mode covariance matrices
couple the deformation of neighboring shapes, while separate models allow for uncorre-
lated deformations which can form anatomically meaningless constellations where adjacent
organs get separated or come into intersection.

It is interesting to compare major eigenvalues of the coupled and the decoupled shapes.
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Figure 6.18: Resulting eigendeformation corresponding to the largest eigenvalue of Σleft brain

from three orthogonal views. From top to bottom the weight of the deformation varies from
−2
√
λ1 to 2

√
λ1, where λ1 is the largest eigenmode. The scene is shown from left in the first, from

back in the second and from above in the third column of the figure.
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Figure 6.19: Eigendeformations corresponding to the largest eigenvalues of the separate covari-
ance matrices ΣHH , ΣTT , ΣPP , and ΣGG, shown from three orthogonal views. From top to bottom
the weight of the deformation varies from −2

√
λ1 to 2

√
λ1, where λ1 is the largest eigenmode. The

scene is shown from the same directions as in Fig 6.18.
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The angles

α = arccos(pTcipdi) (6.29)

of corresponding eigenvectors pci and pdi are illustrated in Fig. 6.20, where the indexes c
and d denote coupled and decoupled cases, respectively. It can be shown (see Appendix A)
that the expected angle of two independent random vectors is π/2 with approximate
standard deviation 1/

√
n, where n is the length of the vectors. In other words, they are

orthogonal with high probbility. An angle different from π/2 indicates that the two vectors
are correlated. In Fig. 6.20 we can observe that there is a larger correlation between the
first eigenmodes in each object and smaller eigenmodes describe independent deformations.

1 2 3 4 5 6 7 8 9101112131415161718
i

30

60

90

120

150

180

�

Hippocampus

1 2 3 4 5 6 7 8 9101112131415161718
i

30

60

90

120

150

180

�

Thalamus

1 2 3 4 5 6 7 8 9101112131415161718
i

30

60

90

120

150

180

�

Putamen

1 2 3 4 5 6 7 8 9101112131415161718
i

30

60

90

120

150

180

�

Globus pallidus

Figure 6.20: Correlation of corresponding eigenvectors between coupled and separated multi-
shape models. The correlation is given by the angle α of two vectors, where values different from
α = 90◦ indicate correlation.

6.5 Robustness of the multivariate statistics

The fact that our training set only consists of as few as n =22 to 30 shapes arises the
question of how robust is the estimation of average shape and covariance matrix. The
robustness of the estimation can be characterized by the expected variance of the estimated
values, in our case the entries σij in the covariance matrix Σ. σij can be thought of as the
expectation of the random variable Sij . We wish to compute the variance of Sij in order
to approximate the confidence we can have in the estimation of σij . This is given as
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Var[Sij ] =
σiiσjj + σij

n− 1
. (6.30)

A full deduction of this expression can be found in Appendix B. It says that the variance
of the estimated covariance σij from n observations is proportional to the values σii, σjj ,
σij , and inversely proportional to (n− 1).

6.5.1 Experiment

To visualize the result given in equation 6.30 we do an experiment with simulated data.
We generate n = 22 samples of a 4-dimensional random vector with normal distribution
of known mean µ and covariance matrix Σ,

µ =


0
1

20
0

 , Σ =


5 2 −6 0
2 14 −2 2
−6 −2 8 0

0 2 0 1

 (6.31)

Applying equation 6.30 the expected standard deviation of each entries in Σ can be deter-
mined, assuming they are estimated from 22 samples (note: in a normal case, these values
are not available, since Σ is unknown),

√
Var[S] =


5
√

2
21

√
74
21 2

√
19
21

√
5
21√

74
21 2

√
14
3 2

√
29
21

√
6
7

2
√

19
21 2

√
29
21 8

√
2
21 2

√
2
21√

5
21

√
6
7 2

√
2
21

√
2
21



=


1.54303 1.87718 1.90238 0.48795
1.87718 4.32049 2.35028 0.92582
1.90238 2.35028 2.46885 0.61721
0.48795 0.92582 0.61721 0.30860

 . (6.32)

Figure 6.21 illustrates the covariance matrix Σ as a 3-D mesh together with the standard
deviation of

√
Var[S] of each entry in Σ as error bars.

Similarly to the procedure applied in computing shape variances, mean values and the
covariance matrix of the simulated distribution has been estimated from the 22 cases using
equations B.4 and B.5,

Σest =


4.85289 1.77946 −5.90276 −0.00761884
1.77946 14.273 −1.72847 2.01807
−5.90276 −1.72847 7.93759 0.034534

−0.00761884 2.01807 0.034534 0.925122

 . (6.33)

In a real case, in which the covariance matrix is not known in advance, expected standard
deviations

√
Var[S] can only be approximated based on the estimated covariance matrix,
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Figure 6.21: Covariance matrix Σ and its standard deviation if estimated from n = 22 samples.
The covariance matrix is illustrated as a 3-D mesh while standard deviations are shown as error
bars.

√
Var[S]est =


1.49764 1.85718 1.86908 0.462374
1.85718 4.40473 2.35312 0.907031
1.86908 2.35312 2.44959 0.591384

0.462374 0.907031 0.591384 0.285499

 . (6.34)
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Figure 6.22: Absolute differences of computed and estimated covariance matrices (a) and their
standard deviations (b).

In our experiment, empirical and estimated values can be compared. Absolute differ-
ences of computed and estimated covariance matrices and their standard deviations are
shown in Figure 6.22 a and b, respectively. These images show that differences for the
covariance matrix remain within the range of ±0.2, while errors of standard deviations are
within the range of ±0.05.

The experiment indicates that estimations for Σ and
√

Var[S] based on as few as 22
samples are reliable and come close to the the computed values. Since estimations does
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not depend on the dimensionality of the problem, these remain reliable and robust in
multi-variate cases, such as 2- or 3-dimensional shape descriptors.





7
Conclusions

Automated, robust segmentation of medical images most often needs a priori anatomical
knowledge. Typical cases are the segmentation of healthy organs, which present restricted
anatomical variability, or the segmentation of organs if only incomplete evidence for bound-
aries is given by the grey-valued images, requiring an ‘intelligent guess’ about the position
of the object boundary.

Geometric organ models and the statistics of their normal (expected) variation seem to
offer a promising solution to this problem. We proposed the use of the Fourier parametriza-
tion of our models, followed by a statistical analysis of a training set, providing mean or-
gan models and their eigendeformations. Elastic fit of the mean model in the subspace of
eigenmodes restricts possible deformations and finds an optimal match between the model
surface and boundary candidates.

In computing a statistical model for a set of similar shapes, correspondence between
individuals is essential. We tried to solve the correspondence problem with respect to a
possible extension to 3-D. Therefore we by design avoided to incorporate procedures which
can be carried out only in 2-D such as manual annotation of contour points. We have shown
that Fourier parametrization in 2-D provides a good approximation to the correspondence
in many cases, and that its 3-D extension achieves similarly sufficient results. We also
demonstrated the limitations of establishing correspondence by arc-length parametrization
and presented a reparametrization technique based on Ψ-functions to overcome these.

The complete procedure has been demonstrated with the determination of the outline
of the corpus callosum on a 2-D MRI slice of the human brain. We have shown that
the selection of an anatomically defined reference coordinate system allows the inclusion
of the variation of the spatial position and orientation into the description of the model
variation. This procedure provides a homogeneous framework for the complete analysis,
while adding only minimal, well defined user interaction to the procedure.

Segmentation quality and speed has been further improved by incorporating informa-
tion about the objects image environment in form of one-dimensional intensity profiles.
The procedure has been validated by comparing the results achieved by automatic seg-
mentation to manual ones. Comparisons made for a statistically significant number of
data sets have shown that our method performed well in 90% of the cases.

The initial placement of the average model is performed by a coarse elastic deformation
defined by only the largest eigenmodes, helping to drive the following optimization into
the “correct” local optimum. We noticed that the convergence is faster if only a small
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number of modes are involved, while a larger number of modes is required to find the
exact contour. Thus, we apply a relaxation method which gradually increases the number
of modes. The convergence criteria is set by the size of the deformation of a surface.

Based on the 2-D procedure we presented a new 3-D segmentation technique that pro-
vides fully automatic segmentation of objects from volumetric image data. Tests with a
large series of image data demonstrated that the method was robust and provides repro-
ducible results.

The new technique uses elastic deformation of surface models, which carry statistical
information of normal geometric shape variation and statistics about gray levels near the
object surface. Our model has been derived from a series of training data sets. Thereby, the
model represents a realistic shape rather than an artificial geometric model. Furthermore,
information about the statistics of a normal shape deformation helps to constrain a new
solution. This is an important advantage since 3-D snake and balloon techniques are
known to be prone to elastically deform to any smooth object shape.

The modeling of gray level information near the object boundaries provides valuable
additional information for a model placement and improves the robustness and stability
of the optimization scheme. Early implementations were very sensitive to the quality of
the initialization, and prone to be trapped by local energy minima. The additional use
of gray-level profile information represents a strong restriction to the number of possible
solutions and was demonstrated to be robust even in the presence of considerable mismatch
between initialization and a new object.

Our approach is based on the research work of [Cootes et al. 1994a]. However, the
extension of their 2-D method to a true 3-D volumetric segmentation technique required
various new solutions to single steps of the procedure:

Statistical shape models: To overcome the problem of getting a reproducible interac-
tive definition of a set of key points in 3-D space, the approach presented herein
proposes an automatic definition of surface meshes with homogeneous distribution
of nodes defined in a standard, canonical position.

Object alignment: We define the position and orientation of objects in a global coordi-
nate system which is is defined by the type of application. Small translations and
rotations of objects with respect to this coordinate system are part of the statistical
model. Therefore, we do not separate a similarity transform for alignment and an
elastic transform for remaining shape deformations.

Dual shape representations: Our approach makes use of two shape representations
which are used in an alternating fashion, taking advantages of shape descriptors
holding a compact global object characterization and of a set of surface points giving
access to local shape properties.

A new quality measure for intensity profiles has been proposed which expresses the
combination of their selectivity and reliability. This can be included into the segmentation
process by giving larger weight and hereby more confidence to suggested movements at
more reliable boundary information.
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Validation has been done by quantitatively comparing the automatic segmentation
with the results of interactive outlining by experts, which is a common “gold standard”
for comparisons. Two different measures has been computed, one based on the average
distance between surfaces, and another one based on the intersection and union of two
volumes. We have demonstrated that our results come close to the expert’s segmentations,
although there were much less samples available for comparison than for the validation of
the 2-D segmentations.

Application of multi-shape statistical models has also been investigated. By dividing
the covariance matrix of multiple shapes into partial covariances only dependent on one
or two objects, we are able to handle incomplete data sets without loss of information.
Importance of multi-shape models has been demonstrated by an example using four nearby
brain regions. If deformation modes are computed individually, the four shapes can deform
into anatomically meaningless constellations where adjacent organs get separated or come
into intersection. As presented, this can be avoided using coupled deformations derived
from the multi-shape covariance matrix.

We also addressed the problem of small training sets by deriving a measure of reliability
for the estimation of the covariance matrix. It has been shown that the variance of the
estimated values is easy to compute and represents well the confidence we can have in the
estimation. An example based on known distribution has been presented to show that
even as small training sets as we had to deal with can provide a reliable estimation.

The set of statistical models and the automatic and efficient segmentation technique
(only a few minutes per data set) open new possibilities for the processing a large number
of data sets as collected in clinical studies, for example in schizophrenia studies. This will
provide new statistical models with increased number of samples for normal controls and
for different patient categories.

These statistical models represent the first step in building an anatomical atlas based
on a set of surfaces of anatomical shapes. Whereas the current segmentation technique
would segment a series of objects independently, a future development could provide a
combined model of several anatomical structures. The representation of anatomical objects
by normalized shape descriptors makes access to explicite morphometric parameters. After
segmenting a new set of image data, morphological properties of objects are available for
comparative studies.

7.1 Outlook

There are still many issues especially in the 3-D part which could not be investigated
further within the confines of the presented work. Our relatively small training sets did
not allow an extensive testing of the proposed methods. Thus, the advantage of including
the quality measure of profiles into the segmentation process has to be still validated on
more cases. Similarly, to test the quality of the segmentation itself requires a larger set of
expert segmentations.

The new segmentation framework gave impulse to new applications. New cases of
hippocampi are currently under manual segmentation within the frames of the European
Union’s BIOMORPH project. The data set available for the participants consists of 70 high
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resolution brain MRI-s, out of which 20 cases has already been processed. Expectedly,
the statistical model derived from the 70 cases will considerably improve segmentation
quality.

Another work, also carried out within the BIOMORPH Consortium, aims at building
a brain mask and to fit it onto individual MR volumes using the technique described here.
Automatic definition of a region of interest of the brain would help low level segmenta-
tion techniques such as statistical classification to concentrate only to that part of the
volumetric data which holds the information.

The European Union’s CONQUEST-project aims at providing quality assurance tools
for cancer treatment resulting in better standardization eliminating the large variations in
recurrence and survival rates between and within countries. The new 3-D segmentation
technique is being applied within the project to speed up delineation of healthy tissues,
in this specific case of the male abdomen, so that it can be done on a routine basis. The
results of the segmentation can be used in treatment planning optimization to record dose
distributions in healthy organs on a routine basis which is necessary get reliable statistical
data on dose-response relationship of these subjects.
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Angle between two random

vectors

Given two normalized random vectors

X =

 X0
...
Xn−1

 (A.1)

Y =

 Y0
...
Yn−1

 ,

whith

X,Y 7→ Ωn , (A.2)

where all components have 0 mean and equal variance σ2. For large n components can be
considered as approximately independent. 1. Per definition

E[XTX] = E[Y TY ] = 1 , (A.3)

and from the approximate independence of components follows

E[XTX] = E[Y TY ] = nσ2 . (A.4)

Thus, variance of components can be approximated by

σ2 ≈ 1
n
. (A.5)

The cosine of the angle between the two random vectors is then also a random variable.
This is defined as

C = cosα = XTY . (A.6)
1Since X and Y are normalized, their components cannot be completely independent. If n− 1 compo-

nents are given, the nth component can be determined by Xn =
√

1− (X2
0 + . . . + X2

n−1)
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Expectation and variance of C can be computed by

E[C] = E[XTY ] = nE[Xi]E[Yi] = 0 , (A.7)

and

Var[C] = Var[XTY ] ≈ nVar[Xi]Var[Yi] = nσ4 ≈ n 1
n2

=
1
n
. (A.8)

Thus, two independent random vectors are expectedly orthogonal, since

arccos E[C] = arccos 0 =
π

2
. (A.9)
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Variance of the estimated

covariance matrix

In section 6.5 we address the problem of finding a measure for the robustness relating to
the estimation of the covariance matrix computed from n observations. The robustness
of the estimation can be characterized by the expected variance of the estimated values,
in our case the elements σij in the covariance matrix Σ. σij can be thought of as the
expectation of the random variable Sij . We wish to compute the variance of Sij in order to
approximate the confidence we can have in the estimation of σij . For the sake of simplicity
the computation will be done for a bi-variate covariance matrix and then generalized for
the multi-variate case.

We define a 2-dimensional random vector of bivariate standard normal distribution

X =
(
X0

X1

)
∼ N

((
0
0

)
,

(
1 0
0 1

))
. (B.1)

Based on X we create the arbitrary 2-dimensional random vector Y

Y = AX + µ =
(
a00X0 + a01X1

a10X0 + a11X1

)
+
(
µ0

µ1

)
, (B.2)

with expectation µ and covariance matrix

Σ = AAT =
(
σ00 σ01

σ10 σ11

)
=
(
a2

00 + a2
01 a00a10 + a01a11

a00a10 + a01a11 a2
10 + a2

11

)
. (B.3)

Supposing, there are n observations available for Y means in µ can be estimated by

Ȳ0 =
1
n

n−1∑
i=0

Y0i (B.4)

Ȳ1 =
1
n

n−1∑
i=0

Y1i ,

and the covariance σ01 can be estimated using
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S01 =
1

n− 1

n−1∑
i=0

(Y0−Ȳ0)(Y1−Ȳ1) =
1

n− 1

(
n−1∑
i=0

Y0Y1 −
n−1∑
i=0

Y0Ȳ1 −
n−1∑
i=0

Y0Ȳ1 +
n−1∑
i=0

Ȳ0Ȳ1

)
.

(B.5)
Multiplying both sides by (n−1) and substituting first equations B.4 and then equation B.2
we obtain the following expressions (

∑n−1
i=0 is replaced by

∑
for brevity)

(n− 1)S01 =
∑

Y0Y1 −
∑

Y0Ȳ1 −
∑

Y0Ȳ1 +
∑

Ȳ0Ȳ1

=
∑
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1
n

∑
Y0

∑
Y1 −

1
n

∑
Y0Ȳ1 +

1
n

∑
Y0

1
n

∑
Y1n

=
∑

Y0Y1 −
1
n

∑
Y0

∑
Y1

=
∑

(a00X0 + a01X1 + µ0)(a10X0 + a11X1 + µ1)−
1
n

∑
(a00X0 + a01X1 + µ0)

∑
(a10X0 + a11X1 + µ1) , (B.6)

and after simplification we end up with

(n− 1)S01 = a00a10

(∑
X2

0 −
1
n

(∑
X0

)2
)

+

(a00a11 + a01a10)
(∑

X0X1 −
1
n

∑
X0 ·

∑
X1

)
+

a01a11

(∑
X2

1 −
1
n

(∑
X1

)2
)
. (B.7)

For the expression S01, being itself a random variable, we can compute expectation E[S01]
and variance Var[S01]. Starting with E[S01] we can write

E[(n− 1)S01] = a00a10

(
n− 1

n
· n
)

+

(a00a11 + a01a10)
(

0− 1
n
· 0 · 0

)
+ a01a11

(
n− 1

n
· n
)

= (n− 1) · (a00a10 + a01a11) , (B.8)

and finally dividing eq. B.8 by (n− 1) we obtain

E[S01] = a00a10 + a01a11 = σ01 (B.9)

as expected. To compute Var[S01] we first reformulate the expression
∑
X2

0 − 1
n (
∑
X0)2

from equation B.7 as follows:

exp1 =
n−1∑
i=0

X2
0i −

1
n

n−1∑
i=0

X0i

n∑
j=1

X0j
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=
n−1∑
i=0
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1
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X2
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i=0
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j=i+1

2X0iX0j
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i=0

X2
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1
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i=0
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j=i+1
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Similarly, the expression
∑
X0X1 − 1

n

∑
X0 ·

∑
X1 can be written as

exp2 =
n− 1
n

n−1∑
i=0

X0iX1i −
1
n

n−1∑
i=0

n−1∑
i=0,i 6=j

X0iX1j (B.11)

Applying the rule for the variance of the product of two random values A and B

Var[AB] = Var[A] Var[B] + Var[A] E[B]2 + Var[B] E[A]2 , (B.12)

and the rule to compute the variance of the sum αA+ βB

Var[αA+ βB] = α2Var[A] + 2αβCov[A,B] + β2Var[B] , (B.13)

the variances of exp1 and exp2 result as

Var[exp1] =
n− 1
n

2n+
1
n

2(n− 1)n

= 2(n− 1) (B.14)

Var[exp2] = (n− 1) (B.15)

Putting it all together, the variance of expression B.7 can be written as

Var[(n− 1)S01] = (n− 1)
(
2a2

00a
2
10 + a2

01a
2
11 + (a00a11 + a01a10)2

)
= (n− 1) (σ00σ11 + σ01) , (B.16)

and multiplying eq. B.16 by (n − 1) we obtain the expression for the variance of the
estimation of covariance σ01 based on n observations

Var[S01] =
σ00σ11 + σ01

n− 1
. (B.17)

This can be generalized from the bi-variate to the multivariate case:

Var[Sij ] =
σiiσjj + σij

n− 1
, (B.18)

saying that the variance of the estimated covariance σij from n observations is proportinal
to the values σii, σjj , σij , and inversely proportional to (n− 1).
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