
Statistical Variability in Nonlinear Spaces:
Application to Shape Analysis and DT-MRI

by
P. Thomas Fletcher

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Stephen M. Pizer, Advisor

Sarang Joshi, Advisor

Guido Gerig, Reader

J. S. Marron, Reader

Michael Kerckhove, Reader



ii



iii

c© 2004

P. Thomas Fletcher

ALL RIGHTS RESERVED



iv



v

TABLE OF CONTENTS

1 Introduction x

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis and Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Mathematical Background 7

2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Various Topological Properties . . . . . . . . . . . . . . . . . . . . 10

2.2 Differentiable Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Topological Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Differentiable Structures on Manifolds . . . . . . . . . . . . . . . 12

2.2.3 Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Riemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Lie Group Exponential and Log Maps . . . . . . . . . . . . . . . 22

2.4.2 Bi-invariant Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Lie Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Symmetric Spaces as Lie Group Quotients . . . . . . . . . . . . . 27



vi

3 Image Analysis Background 29

3.1 Statistical Shape Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Point Set Shape Spaces . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Procrustes Distance and Alignment . . . . . . . . . . . . . . . . . 32

3.1.3 Shape Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Nonlinear Statistical Analysis . . . . . . . . . . . . . . . . . . . . 38

3.2 Deformable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Probabilistic Deformable Models . . . . . . . . . . . . . . . . . . 41

3.3 Medial Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 The Medial Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 M-reps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Manifold Statistics 61

4.1 Means on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Intrinsic vs. Extrinsic Means . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Computing the Intrinsic Mean . . . . . . . . . . . . . . . . . . . . 63

4.2 Principal Geodesic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Geodesic Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Defining Principal Geodesic Analysis . . . . . . . . . . . . . . . . 67

4.2.5 An Alternative Definition of PGA . . . . . . . . . . . . . . . . . . 68

4.2.6 Approximating Principal Geodesic Analysis . . . . . . . . . . . . 69

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Statistics of M-reps 73

5.1 M-reps as Elements of a Symmetric Space . . . . . . . . . . . . . . . . . 73

5.1.1 The Exponential and Log Maps for M-reps . . . . . . . . . . . . . 75

5.1.2 The Hippocampus Data Set . . . . . . . . . . . . . . . . . . . . . 76

5.2 M-rep Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 M-rep Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 M-rep PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 PGA in Deformable M-reps Segmentation . . . . . . . . . . . . . . . . . 83

5.5.1 Principal Geodesic Deformations . . . . . . . . . . . . . . . . . . 84



vii

5.5.2 PGA-Based Geometric Prior . . . . . . . . . . . . . . . . . . . . . 84

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Statistics of Diffusion Tensors 88

6.1 The Space of Diffusion Tensors . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 The Geometry of PD(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 The Lie Group Action on PD(n) . . . . . . . . . . . . . . . . . . 92

6.2.2 The Invariant Metric on PD(n) . . . . . . . . . . . . . . . . . . . 93

6.2.3 Computing Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Statistics of Diffusion Tensors . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 Averages of Diffusion Tensors . . . . . . . . . . . . . . . . . . . . 96

6.3.2 Principal Geodesic Analysis of Diffusion Tensors . . . . . . . . . . 97

6.4 Properties of PGA on PD(n) . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 New Methods: Comparison Metric, Interpolation, and Anisotropy . . . . 100

6.5.1 Comparison Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.2 Diffusion Tensor Interpolation . . . . . . . . . . . . . . . . . . . . 101

6.5.3 Geodesic Anisotropy Measure . . . . . . . . . . . . . . . . . . . . 105

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Discussion and Future Work 109

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Theoretical Questions . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.2 M-rep Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.3 Future Diffusion Tensor Work . . . . . . . . . . . . . . . . . . . . 116

7.2.4 Other Application Areas . . . . . . . . . . . . . . . . . . . . . . . 117

BIBLIOGRAPHY 119



viii



ix

ABSTRACT
P. THOMAS FLETCHER: Statistical Variability in Nonlinear Spaces:

Application to Shape Analysis and DT-MRI.
(Under the direction of Stephen M. Pizer and Sarang Joshi.)

Statistical descriptions of anatomical geometry play an important role in many med-

ical image analysis applications. For instance, geometry statistics are useful in under-

standing the structural changes in anatomy that are caused by growth and disease.

Classical statistical techniques can be applied to study geometric data that are elements

of a linear space. However, the geometric entities relevant to medical image analysis

are often elements of a nonlinear manifold, in which case linear multivariate statistics

are not applicable. This dissertation presents a new technique called principal geodesic

analysis for describing the variability of data in nonlinear spaces. Principal geodesic

analysis is a generalization of a classical technique in linear statistics called principal

component analysis, which is a method for computing an efficient parameterization of

the variability of linear data. A key feature of principal geodesic analysis is that it is

based solely on intrinsic properties, such as the notion of distance, of the underlying

data space.

The principal geodesic analysis framework is applied to two driving problems in this

dissertation: (1) statistical shape analysis using medial representations of geometry,

which is applied within an image segmentation framework via posterior optimization of

deformable medial models, and (2) statistical analysis of diffusion tensor data intended

as a tool for studying white matter fiber connection structures within the brain imaged

by magnetic resonance diffusion tensor imaging. It is shown that both medial repre-

sentations and diffusion tensor data are best parameterized as Riemannian symmetric

spaces, which are a class of nonlinear manifolds that are particularly well-suited for

principal geodesic analysis. While the applications presented in this dissertation are in

the field of medical image analysis, the methods and theory should be widely applicable

to many scientific fields, including robotics, computer vision, and molecular biology.
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Chapter 1

Introduction

1.1 Motivation

Advances in medical imaging technology have provided the ability to acquire high-

resolution 3D images of the human body. Imaging technologies such as CT and MR

are non-invasive means for obtaining potentially life-saving information. The goal of

medical image analysis is to maximize the potential benefit of this data, expanding

its use beyond simple visualization of the raw data. Image analysis techniques pro-

vide more advanced visualizations and aid in disease diagnosis, radiotherapy treatment,

surgery planning, and tracking of anatomic growth. For example, automatic extrac-

tion of anatomical geometry from a medical image is useful in planning radiation beam

therapy to apply maximum radiation dose to a tumor while minimizing the exposure to

surrounding organs. Image analysis techniques have shown promise in diagnosing brain

disorders such as schizophrenia by distinguishing healthy brain structures from those

with disease. Analysis of diffusion tensor magnetic resonance images of neonatal brains

can give information about the early stages of development in brain connectivity.

These examples benefit from a particular tool from medical image analysis known

as statistical shape analysis, which describes the geometric variability of anatomy. A

probability distribution of the possible geometric configurations of an organ can be

used as prior information to help guide the process of automatic extraction of anatomy

geometry from medical images. Probability distributions of normal organ shape and of

diseased organ shape can be used to assign a probability that a patient has a particular

disease based on the shape of their anatomy. Statistics of diffusion tensor image data

can be used to explore what common changes occur in the connectivity of the brain

during development.
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Previous approaches to these problems have used linear models of anatomic shape,

and thus, linear statistical techniques to analyze the shape variability. Most models of

shape currently in use are based on linear representations of the boundary that can only

undergo linear variations in shape. However, richer models of shape and richer variations

of shape can be achieved with nonlinear models. For example, medial representations

of geometry, or m-reps, have shown promise in representing the interior of anatomic

structures and describing shape changes in intuitive terms such as local thickening,

bending, and twisting. The parameters of m-rep models are inherently nonlinear. Also,

previous statistical models of diffusion tensor data have been linear models. As shown in

this dissertation, diffusion tensors are more naturally modeled as elements of a nonlinear

space. The drawback of nonlinear models is that classical linear statistical methods

cannot be applied.

This dissertation presents a new technique called principal geodesic analysis for de-

scribing the variability of data in nonlinear spaces. Principal geodesic analysis is a

generalization of a classical technique in linear statistics called principal component

analysis, which is a method for computing an efficient parameterization of the variabil-

ity of linear data. Principal component analysis also allows the dimensionality of the

data to be reduced to only the true variables of change. This dissertation extends these

concepts to nonlinear spaces known as manifolds. The driving problems in this disser-

tation are two: (1) statistical shape analysis using medial representations of geometry,

which is applied within an image segmentation framework via posterior optimization of

deformable medial models, and (2) statistical analysis of diffusion tensor data intended

as a tool for studying white matter fiber connection structures within the brain imaged

by magnetic resonance diffusion tensor imaging.

While the applications presented in this dissertation are in the field of medical im-

age analysis, the methods and theory should be widely applicable to many scientific

fields, including mechanical engineering, robotics, computer vision, and molecular biol-

ogy. Many common geometric entities are elements of nonlinear spaces. These include

transformations such as rotations, scalings, and affine transformations, and primitives

such as lines, planes, and unit vectors. The statistical methods developed in this work

can be applied to all of these spaces. These other possible applications are mentioned

in the future work section in Chapter 7.

The remainder of this section continues the motivation for the two driving applica-

tions of this work: shape analysis and diffusion tensor imaging.
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1.1.1 Shape Analysis

Shape analysis concerns the statistical study of the geometry of objects that is invariant

to position, size, and orientation. An important aspect of shape theory is in studying

the geometric variability of objects. Anatomical shape analysis plays an important role

in several medical image analysis applications.

One motivation for statistical shape analysis is its use in segmentation of anatomical

structures in medical images. Segmentation is the process of distinguishing important

structures in an image from background. This is a fundamental task in medical image

analysis that is often a prerequisite for further analysis, visualization, disease diagnosis,

or planning of medical treatment. Knowledge of the geometric variability of the anatomy

can be used as prior information to help guide the segmentation process. This geometric

prior helps overcome difficulties inherent to segmentation, such as image noise, sampling

artifacts, and low contrast.

Statistical shape analysis may also be useful in educational atlases of anatomy. Cur-

rent anatomical atlases only present a single instance of the normal anatomy. A statis-

tical shape atlas can present a full range of geometric variabilities that occur in normal

anatomy.

Another application of statistical shape analysis is its potential to serve as a tool in

understanding and diagnosing disease. For instance, brain disorders such as Alzheimer’s

and schizophrenia are often accompanied by structural changes in the brain. Under-

standing the changes in organ shape that occur could be fundamental in furthering our

understanding of such diseases. Also, shape analysis can help in diagnosing disease by

detecting differences in the shape of an organ affected by disease.

The goal of this work is to provide new methods for analyzing nonlinear shape

variability. The medial representation of object geometry provides a powerful frame-

work for describing shape variability in intuitive terms such as local thickness, bending,

and widening. However, the medial parameters are not elements of a Euclidean space.

Therefore, the standard linear techniques of shape analysis, namely linear averaging

and principal component analysis, do not apply. This work describes how the medial

parameters are in fact elements of a certain type of manifold known as a Riemannian

symmetric space. The theory of principal geodesic analysis developed in this disserta-

tion is applied to study the variability of medial representations of object shape. This

dissertation develops a segmentation strategy for 3D medical images using m-rep models

with a geometric prior based on principal geodesic analysis.
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1.1.2 Diffusion Tensor Imaging

Diffusion tensor magnetic resonance imaging (DT-MRI) is an imaging technique that

is used to obtain information about fiber structures such as the white matter fiber in

the brain or the fiber structure of muscles. It produces at every voxel in an imaging

volume a diffusion tensor, which is a model of the diffusivity properties of water in that

voxel. In fibrous structures, such as the white matter fiber in the brain, water tends to

diffuse more in the direction parallel to the fibers. This gives the ability to determine

the local direction of white matter fibers from diffusion tensor images. Furthermore,

algorithms for tracking these local fiber directions leads to global information about the

connectivity of various regions in the brain. In addition to connectivity information,

the diffusivity information has shown promise in understanding certain brain disorders.

Studies have shown that pathologies such as multiple sclerosis and stroke can affect the

diffusivity properties of the brain matter.

Statistical analysis of diffusion tensor images has the potential to further our un-

derstanding of the connectivity properties of the brain and the effects of disease on the

brain fiber structure. Probability distributions on diffusion tensors could be used to

generate statistical atlases of diffusion tensor data, describing the normal variation in

brain connectivity across individuals. Statistical methods on diffusion tensor data might

be used to quantify the variability of the brain matter that is caused by disease and to

study the normal variability in the geometry of white matter fiber bundles. In addition,

more fundamental processing of diffusion tensor data, such as smoothing, could benefit

from statistics.

Previous approaches to statistical analysis of diffusion tensor data have used linear

statistical models. However, such methods can assign nonzero probability to “illegal”

instances of diffusion tensors, i.e., tensors that do not model any possible diffusion

of water. In this dissertation it is shown that diffusion tensors are more naturally

modeled by a nonlinear space. Principal geodesic analysis is applied to the space of

diffusion tensors to parameterize the statistical variability of diffusion tensor data. It is

shown that, unlike linear techniques, principal geodesic analysis preserves the important

properties of diffusion tensors, including producing only legal models of water diffusion.

1.2 Thesis and Claims

Thesis: Principal geodesic analysis is a natural generalization of principal component

analysis for describing the statistical variability of geometric data that are parameter-
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ized as curved manifolds. Such manifolds include medial representations of shape and

diffusion tensors. Principal geodesic analysis can be used to parameterize the shape vari-

ability of a population of m-rep models. The resulting probabilities can be used effectively

as a statistical geometric prior in a deformable m-rep model segmentation of 3D medical

images.

The contributions of this dissertation are

1. A novel theory called principal geodesic analysis has been developed as a nat-

ural generalization of principal component analysis for describing the statistical

variability of geometric data that are parameterized as curved manifolds. This gen-

eralization is natural in the sense that it uses only intrinsic distances and geodesics

in the data space.

2. It has been shown that medial representations of shape, or m-reps, can be formu-

lated as elements of a Riemannian symmetric space and that the variability of a

population of m-rep objects can be efficiently computed using principal geodesic

analysis.

3. A new method for aligning m-reps to a common position, orientation and scale

has been developed and demonstrated. It generalizes the Procrustes alignment

method for aligning linear representations of shape. It proceeds by minimizing the

sum-of-square geodesic distances between corresponding atoms in medial models.

4. A method for maximum posterior segmentation of 3D medical images via de-

formable m-reps models using principal geodesic analysis has been developed.

The optimization of the objective function in the segmentation uses the princi-

pal geodesic modes of variation as a parameter space. A geometric prior based on

principal geodesic analysis has been developed and incorporated into a Bayesian

objective function.

5. It has been shown that diffusion tensors can be treated as data in a Riemannian

symmetric space and that the variability of diffusion tensor data can be described

using principal geodesic analysis.

6. New methods for interpolating diffusion tensors, comparing the similarity of dif-

fusion tensor images, and measuring the anisotropy of diffusion tensors have been

developed using the symmetric space formulation of the space of diffusion tensors.
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1.3 Overview of Chapters

The remainder of this dissertation is organized in the following chapters:

Chapter 2 provides an overview of the required mathematics used in this dissertation.

This includes differential geometry concepts such as Riemannian manifolds, Lie groups

and symmetric spaces.

Chapter 3 presents the background topics in medical image analysis that are related

to the applications treated in this dissertation. The topics include deformable models,

shape analysis, m-rep models and segmentation, and diffusion tensor imaging.

Chapter 4 presents the main theoretical contribution of this work, principal geodesic

analysis, which is a method for describing the statistical variability of data on a curved

manifold. A discussion of existing methods for computing averages on manifolds is also

included.

Chapter 5 applies the statistical methods from Chapter 4 to the space of 3D m-rep

models. This provides a method for describing the statistical variability of m-rep models

of anatomic shape. A generalization of the Procrustes alignment method is given for

m-rep models. Principal geodesic analysis is applied to a collection of m-rep models of

hippocampi, demonstrating the average and modes of variation. A geometric prior using

principal geodesic analysis is developed for deformable m-rep model segmentation.

Chapter 6 applies the statistical methods from Chapter 4 to the space of diffusion

tensors. Principal geodesic analysis is applied to synthetic diffusion tensor data to show

that the average and modes of variation produce legal instances of diffusion tensors,

while naive linear statistical analysis does not. A natural method for interpolating

diffusion tensors and describing their anisotropy is also discussed.

Chapter 7 concludes with a discussion of the contributions of this dissertation and

possible future work.



Chapter 2

Mathematical Background

The geometric entities studied in this thesis, namely m-rep shape models and diffusion

tensors, are elements of high-dimensional, curved manifolds. More precisely, they are

Riemannian symmetric spaces. It is useful to think of a point in a symmetric space as

a transformation from a fixed base point. For example, when constructing the space of

diffusion tensors, the base point is chosen to be the identity matrix, and any diffusion

tensor is treated as a transformation from the identity. The transformation spaces that

are being used are known as Lie groups, which are smooth manifolds themselves. It is

useful to study these Lie group transformations of symmetric spaces because they tend to

be algebraic in nature, and, therefore, certain computations on symmetric spaces, such as

distances and shortest paths between two points, often have closed-form solutions. The

same computations can require solving differential equations if the manifold in question

is not a symmetric space. Since distances and shortest paths will be essential in the

definitions of statistics for manifolds, symmetric spaces are particularly nice spaces for

doing statistics.

Many geometric entities are representable as Lie groups or symmetric spaces. Trans-

formations of Euclidean spaces such as translations, rotations, scalings, and affine trans-

formations all arise as elements of Lie groups. Geometric primitives such as unit vectors,

oriented planes, and symmetric, positive-definite matrices can be seen as points in sym-

metric spaces. This chapter is a review of the basic mathematical theory of Lie groups

and symmetric spaces. The study of such spaces first requires some background in basic

topology and manifold theory, which is provided in the first three sections. The reader

already familiar with these topics may skip the appropriate sections.

The various spaces that are described throughout this chapter are all generalizations,

in one way or the other, of Euclidean space, Rn. Euclidean space is a topological space,

a Riemannian manifold, a Lie group, and a symmetric space. Therefore, each section
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will use Rn as a motivating example. Also, since the study of geometric transformations

is stressed, the reader is encouraged to keep in mind that Rn can also be thought of as

a transformation space, that is, as the set of translations on Rn itself.

2.1 Topology

The study of a topological spaces arose from the desire to generalize the notion of

continuity on Euclidean spaces to more general spaces. Topology is a fundamental

building block for the theory of manifolds and function spaces. This section is a review

of the basic concepts needed for the study of differentiable manifolds. For a more

thorough introduction see [91]. For several examples of topological spaces, along with a

concise reference for definitions, see [118].

2.1.1 Basics

Remember that continuity of a function on the real line is phrased in terms of open

intervals, i.e., the usual ε-δ definition. A topology defines which subsets of a set X

are “open”, much in the same way an interval is open. As will be seen at the end

of this subsection, open sets in Rn are made up of unions of open balls of the form

B(x, r) = {y ∈ Rn : ‖x− y‖ < r}. For a general set X this concept of open sets can be

formalized by the following set of axioms.

Definition 2.1. A topology on a set X is a collection T of subsets of X such that

(1) ∅ and X are in T .

(2) The union of an arbitrary collection of elements of T is in T .

(3) The intersection of a finite collection of elements of T is in T .

The pair (X, T ) is called a topological space. However, it is a standard abuse

of notation to leave out the topology T and simply refer to the topological space X.

Elements of T are called open sets. A set C ⊂ X is a closed set if it’s complement,

X − C, is open. Unlike doors, a set can be both open and closed, and there can be

sets that are neither open nor closed. Notice that the sets ∅ and X are both open and

closed.

Example 2.1. Any set X can be given a topology consisting of only ∅ and X being

open sets. This topology is called the trivial topology on X. Another simple topology

is the discrete topology on X, where any subset of X is an open set.
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Definition 2.2. A basis for a topology on a set X is a collection B of subsets of X

such that

(1) For each x ∈ X there exists a B ∈ B containing x.

(2) If B1, B2 ∈ B and x ∈ B1∩B2, then there exists a B3 ⊂ B1∩B2 such that x ∈ B3.

The basis B generates a topology T by defining a set U ⊂ X to be open if for each

x ∈ U there exists a basis element B ∈ B with x ∈ B ⊂ O. The reader can check that

this does indeed define a topology. Also, the reader should check that the generated

topology T consists of all unions of elements of B.

Example 2.2. The motivating example of a topological space is Euclidean space Rn.

It is typically given the standard topological structure generated by the basis of open

balls B(x, r) = {y ∈ Rn : ‖x − y‖ < r} for all x ∈ Rn, r ∈ R. Therefore, a set in Rn is

open if and only if it is the union of a collection of open balls. Examples of closed sets

in Rn include sets of discrete points, vector subspaces, and closed balls, i.e., sets of the

form B̄(x, r) = {y ∈ Rn : ‖x− y‖ ≤ r}.

2.1.2 Metric spaces

Notice that the topology on Rn is defined entirely by the Euclidean distance between

points. This method for defining a topology can be generalized to any space where a

distance is defined.

Definition 2.3. A metric space is a set X with a function d : X × X → R that

satisfies

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(2) d(x, y) = d(y, x).

(3) d(x, y) + d(y, z) ≥ d(x, z).

The function d above is called a metric or distance function. Using the distance

function of a metric space, a basis for a topology on X can be defined as the collection

of open balls B(x, r) = {y ∈ X : d(x, y) < r} for all x ∈ X, r ∈ R. From now on when

a metric space is discussed, it is assumed that it is given this topology.

One special property of metric spaces will be important in the review of manifold

theory.

Definition 2.4. A metric d on a set X is called complete if every Cauchy sequence

converges in X. A Cauchy sequence is a sequence x1, x2, . . . ∈ X such that for any ε > 0

there exists an integer N such that d(xi, xj) < ε for all i, j > N .
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2.1.3 Continuity

As was mentioned at the beginning of this section, topology developed from the desire to

generalize the notion of continuity of mappings of Euclidean spaces. That generalization

is phrased as follows:

Definition 2.5. Let X and Y be topological spaces. A mapping f : X → Y is contin-

uous if for each open set U ⊂ Y , the set f−1(U) is open in X.

It is easy to check that for a mapping f : Rd → Rn the above definition is equivalent

to the standard ε-δ definition.

Definition 2.6. Again let X and Y be topological spaces. A mapping f : X → Y is a

homeomorphism if it is bijective and both f and f−1 are continuous. In this case X

and Y are said to be homeomorphic.

When X and Y are homeomorphic, there is a bijective correspondence between both

the points and the open sets of X and Y . Therefore, as topological spaces, X and Y are

indistinguishable. This means that any property or theorem that holds for the space X

that is based only on the topology of X also holds for Y .

2.1.4 Various Topological Properties

This section is a discussion of some special properties that a topological space may

possess. The particular properties that are of interest are the ones that are important

for the study of manifolds.

Definition 2.7. A topological space X is said to be Hausdorff if for any two distinct

points x, y ∈ X there exist disjoint open sets U and V with x ∈ U and y ∈ V .

Notice that any metric space is a Hausdorff space. Given any two distinct points x, y

in a metric space X, we have d(x, y) > 0. Then the two open balls B(x, r) and B(y, r),

where r = 1
2
d(x, y), are disjoint open sets containing x and y, respectively. However,

not all topological spaces are Hausdorff. For example, take any set X with more than

one point and give it the trivial topology, i.e., ∅ and X as the only open sets.

Definition 2.8. Let X be a topological space. A collection O of open subsets of X is

said to be an open cover if X =
⋃

U∈O U . A topological space X is said to be compact

if for any open cover O of X there exists a finite subcollection of sets from O that covers

X.
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The Heine-Borel theorem (see [106], Theorem 2.41) gives intuitive criteria for a

subset of Rn to be compact. It states that any closed and bounded subset of Rn is

compact. Thus, for example, a closed ball B̄(x, r) is compact as is the unit sphere

Sn−1 = {x ∈ Rn : ‖x‖ = 1}. The sphere, like Euclidean space, will be an important

example throughout this chapter. This is partly because it is a simple example of a

symmetric space, but also because it is an integral part of the medial representation

used later.

Definition 2.9. A separation of a topological space X is a pair of disjoint open sets

U, V such that X = U ∪ V . If no separation of X exists, it is said to be connected.

2.2 Differentiable Manifolds

Differentiable manifolds are spaces that locally behave like Euclidean space. Much in the

same way that topological spaces are natural for talking about continuity, differentiable

manifolds are a natural setting for calculus. Notions such as differentiation, integration,

vector fields, and differential equations make sense on differentiable manifolds. This

section gives a review of the basic formulations that will be needed later. A good

introduction to the subject may be found in [15]. For a comprehensive overview of

differential geometry see [111,112,113,114,115]. Other good references include [2,87,58].

2.2.1 Topological Manifolds

A manifold is a topological space that is locally equivalent to Euclidean space. More

precisely,

Definition 2.10. A manifold is a Hausdorff space M with a countable basis such that

for each point p ∈ M there is a neighborhood U of p that is homeomorphic to Rn for

some integer n.

At each point p ∈ M the dimension n of the Rn in Definition 2.10 is unique. If the

integer n is the same for every point in M , then M is called a n-dimensional manifold.

The simplest example of a manifold is Rn, since it is trivially homeomorphic to itself.

Likewise, any open set of Rn is also a manifold.
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M

U

x(U )

x

Figure 2.1: A local coordinate system (x, U) on a manifold M .

2.2.2 Differentiable Structures on Manifolds

The next step in the development of the theory of manifolds is to define a notion of

differentiation of manifold mappings. Differentiation of mappings in Euclidean space is

defined as a local property. Although a manifold is locally homeomorphic to Euclidean

space, more structure is required to make differentiation possible. First, recall that a

function on Euclidean space f : Rn → R is smooth or C∞ if all of its partial derivatives

exist. A mapping of Euclidean spaces f : Rm → Rn can be thought of as a n-tuple of

real-valued functions on Rm, f = (f 1, . . . , fn), and f is smooth if each f i is smooth.

Given two neighborhoods U, V in a manifold M , two homeomorphisms x : U → Rn

and y : V → Rn are said to be C∞-related if the mapping x ◦ y−1 : y(U ∩ V ) →
x(U ∩ V ) is C∞. The pair (x, U) is called a chart or coordinate system, and can

be thought of as assigning a set of coordinates to points in the neighborhood U (see

Figure 2.1). That is, any point p ∈ U is assigned the coordinates x1(p), . . . , xn(p). As

will become apparent later, coordinate charts are important for writing local expressions

for derivatives, tangent vectors, and Riemannian metrics on a manifold. A collection of

charts whose domains cover M is called an atlas.

Definition 2.11. An atlas A on a manifold M is said to be maximal if for any any

other atlas A′ on M any coordinate chart (x, U) ∈ A′ is also a member of A.

Definition 2.12. A smooth structure on a manifold M is a maximal atlas A on M .
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The manifold M along with such an atlas is termed a smooth manifold.

The next theorem demonstrates that it is not necessary to define every coordinate

chart in a maximal atlas, but rather, one can define enough compatible coordinate charts

to cover the manifold.

Theorem 2.1. Given a manifold M with an atlas A, there is a unique maximal atlas

A′ such that A ⊂ A′.

Example 2.3. Consider the sphere S2 as a subset of R3. The upper hemisphere

U = {(x, y, z) ∈ S2 : z > 0} is an open neighborhood in S2. Now consider the homeo-

morphism φ : S2 → R2 given by

φ : (x, y, z) 7→ (x, y).

This gives a coordinate chart (φ, U). Similar charts can be produced for the lower

hemisphere, and for hemispheres in the x and y dimensions. The reader may check

that these charts are C∞-related and cover S2. Therefore, these charts make up an

atlas on S2 and by Theorem 2.1 there is a unique maximal atlas containing these charts

that makes S2 a smooth manifold. A similar argument can be used to show that the

n-dimensional sphere, Sn, for any n ≥ 1 is also a smooth manifold.

Now consider a function f : M → R on the smooth manifold M . This function is

said to be a smooth function if for every coordinate chart (x, U) on M the function

f ◦x−1 : U → R is smooth. More generally, a mapping f : M → N of smooth manifolds

is said to be a smooth mapping if for each coordinate chart (x, U) on M and each

coordinate chart (y, V ) on N the mapping y ◦ f ◦ x−1 : x(U) → y(V ) is a smooth

mapping. Notice that the mapping of manifolds was converted locally to a mapping of

Euclidean spaces, where differentiability is easily defined.

As in the case of topological spaces, there is a desire to know when two smooth

manifolds are equivalent. This should mean that they are homeomorphic as topological

spaces and also that they have equivalent smooth structures. This notion of equivalence

is given by

Definition 2.13. Given two smooth manifolds M, N , a bijective mapping f : M → N

is called a diffeomorphism if both f and f−1 are smooth mappings.
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2.2.3 Tangent Spaces

Given a manifold M ⊂ Rd, it is possible to associate a linear subspace of Rd to each point

p ∈ M called the tangent space at p. This space is denoted TpM and is intuitively

thought of as the linear subspace that best approximates M in a neighborhood of the

point p. Vectors in this space are called tangent vectors at p.

Tangent vectors can be thought of as directional derivatives. Consider a smooth

curve γ : (−ε, ε) → M with γ(0) = p. Then given any smooth function1 f : M → R,

the composition f ◦ γ is a smooth function, and the following derivative exists:

d

dt
(f ◦ γ)(0).

This leads to an equivalence relation ∼ between smooth curves passing through p.

Namely, if γ1 and γ2 are two smooth curves passing through the point p at t = 0,

then γ1 ∼ γ2 if
d

dt
(f ◦ γ1)(0) =

d

dt
(f ◦ γ2)(0),

for any smooth function f : M → R. A tangent vector is now defined as one of these

equivalence classes of curves. It can be shown (see [2]) that these equivalence classes

form a vector space, i.e., the tangent space TpM , which has the same dimension as M .

Given a local coordinate system (x, U) containing p, a basis for the tangent space TpM is

given by the partial derivative operators ∂/∂xi, which are the tangent vectors associated

with the coordinate curves of x.

Example 2.4. Again, consider the sphere S2 as a subset of R3. The tangent space

at a point p ∈ S2 is the set of all vectors in R3 perpendicular to p, i.e., TpS
2 = {v ∈

R3 : 〈v, p〉 = 0}. This is of course a two-dimensional vector space, and it is the space

of all tangent vectors at the point p for smooth curves lying on the sphere and passing

through the point p.

A vector field on a manifold M is a function that smoothly assigns to each point

p ∈ M a tangent vector Xp ∈ TpM . This mapping is smooth in the sense that the

components of the vectors may be written as smooth functions in any local coordinate

system. A vector field may be seen as an operator X : C∞(M) → C∞(M) that maps

a smooth function f ∈ C∞(M) to the smooth function Xf : p 7→ Xpf . In other words,

the directional derivative is applied at each point on M .

1Strictly speaking, the tangent vectors at p are defined as directional derivatives of smooth germs
of functions at p, which are equivalence classes of functions that agree in some neighborhood of p.
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For two manifolds M and N a smooth mapping φ : M → N induces a linear mapping

of the tangent spaces φ∗ : TpM → Tφ(p)N called the differential of φ. It is given by

φ∗(Xp)f = Xp(f ◦ φ) for any vector Xp ∈ TpM and any smooth function f ∈ C∞(M).

A smooth mapping of manifolds does not always induce a mapping of vector fields (for

instance, when the mapping is not onto). However, a related concept is given in the

following definition.

Definition 2.14. Given a mapping of smooth manifolds φ : M → N , a vector field X

on M and a vector field Y on N are said to be φ-related if φ∗(X(p)) = Y (q) holds for

each q ∈ N and each p ∈ φ−1(q).

2.3 Riemannian Geometry

As mentioned at the beginning of this chapter, the idea of distances on a manifold will be

important in the definition of manifold statistics. The notion of distances on a manifold

falls into the realm of Riemannian geometry. This section briefly reviews the concepts

needed. A good crash course in Riemannian geometry can be found in [86]. Also, see

the books [15,111,112,77].

Recall the definition of length for a smooth curve in Euclidean space. Let γ : [a, b] →
Rd be a smooth curve segment. Then at any point t0 ∈ [a, b] the derivative of the curve

γ′(t0) gives the velocity of the curve at time t0. The length of the curve segment γ is

given by integrating the speed of the curve, i.e.,

L(γ) =

∫ b

a

‖γ′(t)‖dt.

The definition of the length functional thus requires the ability to take the norm of

tangent vectors. On manifolds this is handled by the definition of a Riemannian metric.

2.3.1 Riemannian Metrics

Definition 2.15. A Riemannian metric on a manifold M is a function that smoothly

assigns to each point p ∈ M an inner product 〈·, ·〉 on the tangent space TpM . A

Riemannian manifold is a smooth manifold equipped with such a Riemannian metric.

Now the norm of a tangent vector v ∈ TpM is defined as ‖v‖ = 〈v, v〉 1
2 . Given local

coordinates x1, . . . , xn in a neighborhood of p, the coordinate vectors vi = ∂/∂xi at p
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form a basis for the tangent space TpM . The Riemannian metric may be expressed in

this basis as an n× n matrix g, called the metric tensor, with entries given by

gij = 〈vi, vj〉.

The gij are smooth functions of the coordinates x1, . . . , xn.

Given a smooth curve segment γ : [a, b] → M , the length of γ can be defined just as

in the Euclidean case as

L(γ) =

∫ b

a

‖γ′(t)‖dt, (2.1)

where now the tangent vector γ′(t) is a vector in Tγ(t)M , and the norm is given by the

Riemannian metric at γ(t).

Given a manifolds M and a manifold N with Riemannian metric 〈·, ·〉, a mapping

φ : M → N induces a metric φ∗〈·, ·〉 on M defined as

φ∗〈Xp, Yp〉 = 〈φ∗(Xp), φ∗(Yp)〉.

This metric is called the pull-back metric induced by φ, as it maps the metric in the

opposite direction of the mapping φ.

2.3.2 Geodesics

In Euclidean space the shortest path between two points is a straight line, and the

distance between the points is measured as the length of that straight line segment.

This notion of shortest paths can be extended to Riemannian manifolds by considering

the problem of finding the shortest smooth curve segment between two points on the

manifold. If γ : [a, b] → M is a smooth curve on a Riemannian manifold M with

endpoints γ(a) = x and γ(b) = y, a variation of γ keeping endpoints fixed is a

family α of smooth curves:

α : (−ε, ε)× [a, b] → M,

such that

1. α(0, t) = γ(t),

2. α̃(s0) : t 7→ α(s0, t) is a smooth curve segment for fixed s0 ∈ (−ε, ε),

3. α(s, a) = x, and α(s, b) = y for all s ∈ (−ε, ε).

Now the shortest smooth path between the points x, y ∈ M can be seen as finding a

critical point for the length functional (2.1), where the length of α̃ is considered as a
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function of s. The path γ = α̃(0) is a critical path for L if

dL(α̃(s))

ds

∣∣∣
s=0

= 0.

It turns out to be easier to work with the critical paths of the energy functional,

which is given by

E(γ) =

∫ b

a

‖γ′(t)‖2dt.

It can be shown (see [111]) that a critical path for E is also a critical path for L.

Conversely, a critical path for L, once reparameterized proportional to arclength, is a

critical path for E. Thus, assuming curves are parameterized proportional to arclength,

there is no distinction between curves with minimal length and those with minimal

energy. A critical path of the functional E is called a geodesic.

Given a chart (x, U) a geodesic curve γ ⊂ U can be written in local coordinates as

γ(t) = (γ1(t), . . . , γn(t)). Using any such coordinate system, γ satisfies the following

differential equation (see [111] for details):

d2γk

dt2
= −

n∑
i,j=1

Γk
ij(γ(t))

dγi

dt

dγj

dt
. (2.2)

The symbols Γk
ij are called the Christoffel symbols and are defined as

Γk
ij =

1

2

n∑
l=1

gkl

(
∂gjl

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
,

where gij denotes the entries of the inverse matrix g−1 of the Riemannian metric.

Example 2.5. In Euclidean space Rn the Riemannian metric is given by the identity

matrix at each point p ∈ Rn. Since the metric is constant, the Christoffel symbols are

zero. Therefore, the geodesic equation (2.2) reduces to

d2γk

dt2
= 0.

The only solutions to this equation are straight lines, so geodesics in Rn must be straight

lines.

Given two points on a Riemannian manifold, there is no guarantee that a geodesic

exists between them. There may also be multiple geodesics connecting the two points,
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i.e., geodesics are not guaranteed to be unique. Moreover, a geodesic does not have to

be a global minimum of the length functional, i.e., there may exist geodesics of different

lengths between the same two points. The next two examples demonstrate these issues.

Example 2.6. Consider the plane with the origin removed, R2 − {0}, with the same

metric as R2. Geodesics are still given by straight lines. There does not exist a geodesic

between the two points (1, 0) and (−1, 0).

Example 2.7. Geodesics on the sphere S2 are given by great circles, i.e., circles on

the sphere with maximal diameter. This fact will be shown later in the section on

symmetric spaces. There are an infinite number of equal-length geodesics between the

north and south poles, i.e., the meridians. Also, given any two points on S2 that are not

antipodal, there is a unique great circle between them. This great circle is separated

into two geodesic segments between the two points. One geodesic segment is longer than

the other.

The idea of a global minimum of length leads to a definition of a distance metric

d : M ×M → R (not to be confused with the Riemannian metric). It is defined as

d(p, q) = inf{L(γ) : γ a smooth curve between p and q}.

If there is a geodesic γ between the points p and q that realizes this distance, i.e., if

L(γ) = d(p, q), then γ is called a minimal geodesic. Minimal geodesics are guaranteed

to exist under certain conditions, as described by the following definition and the Hopf-

Rinow Theorem below.

Definition 2.16. A Riemannian manifold M is said to be complete if every geodesic

segment γ : [a, b] → M can be extended to a geodesic from all of R to M .

The reason such manifolds are called “complete” is revealed in the next theorem.

Theorem 2.2 (Hopf-Rinow). If M is a complete, connected Riemannian manifold,

then the distance metric d(·, ·) induced on M is complete. Furthermore, between any

two points on M there exists a minimal geodesic.

Example 2.8. Both Euclidean space Rn and the sphere S2 are complete. A straight

line in Rn can extend in both directions indefinitely. Also, a great circle in S2 extends

indefinitely in both directions (even though it wraps around itself). As guaranteed by

the Hopf-Rinow Theorem, there is a minimal geodesic between any two points in Rn, i.e.,
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Figure 2.2: The Riemannian exponential map.

the unique straight line segment between the points. Also, between any two points on

the sphere there is a minimal geodesic, i.e., the shorter of the two great circle segments

between the two points. Of course, for antipodal points on S2 the minimal geodesic is

not unique.

Given initial conditions γ(0) = p and γ′(0) = v, the theory of second-order partial

differential equations guarantees the existence of a unique solution to the defining equa-

tion for γ (2.2) at least locally. Thus, there is a unique geodesic γ with γ(0) = p and

γ′(0) = v defined in some interval (−ε, ε). When the geodesic γ exists in the interval

[0, 1], the Riemannian exponential map at the point p (see Figure 2.2), denoted

Expp : TpM → M , is defined as

Expp(v) = γ(1).

If M is a complete manifold, the exponential map is defined for all vectors v ∈ TpM .

Theorem 2.3. Given a Riemannian manifold M and a point p ∈ M , the mapping Expp

is a diffeomorphism in some neighborhood U ⊂ TpM containing 0.

This theorem implies that the Expp has an inverse defined at least in the neigh-

borhood Expp(U) of p, where U is the same as in Theorem 2.3. Not surprisingly, this

inverse is called the Riemannian log map and denoted by Logp : Expp(U) → TpM .
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Definition 2.17. An isometry is a diffeomorphism φ : M → N of Riemannian mani-

folds that preserves the Riemannian metric. That is, if 〈·, ·〉M and 〈·, ·〉N are the metrics

for M and N , respectively, then φ∗〈·, ·〉N = 〈·, ·〉M .

It follows from the definitions that an isometry preserves the length of curves. That

is, if c is a smooth curve on M , then the curve φ ◦ c is a curve of the same length on N .

Also, the image of a geodesic under an isometry is again a geodesic.

2.4 Lie Groups

The set of all possible translations of Euclidean space Rn is again the space Rn. A point

p ∈ Rn is transformed by the vector v ∈ Rn by vector addition, p+v. This transformation

has a unique inverse transformation, namely, translation by the negated vector, −v.

The operation of translation is a smooth mapping of the space Rn. Composing two

translations (i.e., addition in Rn) and inverting a translation (i.e., negation in Rn) are

also smooth mappings. A set of transformations with these properties, i.e., a smooth

manifold with smooth group operations, is known as a Lie group. Many other interesting

transformations of Euclidean space are Lie groups, including rotations, reflections, and

magnifications. However, Lie groups also arise more generally as smooth transformations

of manifolds. This section is a brief introduction to Lie groups. More detailed treatments

may be found in [15,36,54,58,69,111].

It is assumed that the reader knows the basics of group theory (see [59] for an

introduction), but the definition of a group is listed here for reference.

Definition 2.18. A group is a set G with a binary operation, denoted here by con-

catenation, such that

1. (xy)z = x(yz), for all x, y, z ∈ G,

2. there is an identity, e ∈ G, satisfying xe = ex = x, for all x ∈ G,

3. each x ∈ G has an inverse, x−1 ∈ G, satisfying xx−1 = x−1x = e.

As stated at the beginning of this section, a Lie group adds a smooth manifold

structure to a group.

Definition 2.19. A Lie group G is a smooth manifold that also forms a group, where

the two group operations,

(x, y) 7→ xy : G×G → G Multiplication

x 7→ x−1 : G → G Inverse
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are smooth mappings of manifolds.

Example 2.9. The space of all n×n non-singular matrices forms a Lie group called the

general linear group, denoted GL(n). The group operation is matrix multiplication,

and GL(n) can be given a smooth manifold structure as an open subset of Rn2
. The

equations for matrix multiplication and inverse are smooth operations in the entries of

the matrices. Thus, GL(n) satisfies the requirements of a Lie group in Definition 2.19.

A matrix group is any closed subgroup of GL(n). Matrix groups inherit the smooth

structure of GL(n) as a subset of Rn2
and are thus also Lie groups. The books [30, 54]

focus on the theory of matrix groups.

Example 2.10. The n × n rotation matrices are a closed matrix subgroup of GL(n)

and thus form a Lie group. This group is called the special orthogonal group and is

defined as SO(n) = {R ∈ GL(n) : RT R = I and det(R) = 1}. This space is a closed

and bounded subset of Rn2
, so it is compact by the Heine-Borel theorem.

Given a point y in a Lie group G, it is possible to define the following two diffeomor-

phisms:

Ly : x 7→ yx (Left multiplication)

Ry : x 7→ xy (Right multiplication)

A vector field X on a Lie group G is called left-invariant if it is invariant under

left multiplication, i.e.,  Ly∗X = X for every y ∈ G. Right-invariant vector fields are

defined similarly. A left-invariant (or right-invariant) vector field is uniquely defined by

its value on the tangent space at the identity, TeG.

Recall that vector fields on G can be seen as operators on the space of smooth

functions, C∞(G). Thus two vector fields X and Y can be composed to form another

operator XY on C∞(G). However, the operator XY is not necessarily vector field.

Surprisingly, however, the operator XY − Y X is a vector field on G. This leads to a

definition of the Lie bracket of vector fields X,Y on G, defined as

[X, Y ] = XY − Y X. (2.3)

Definition 2.20. A Lie algebra is a vector space V equipped with a bilinear product

[·, ·] : V × V → V , called a Lie bracket, that satisfies

(1) [X, Y ] = −[Y,X],



22

(2) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

for all X, Y, Z ∈ V.

The tangent space of a Lie group G, typically denoted g (a German Fraktur font),

forms a Lie algebra. The Lie bracket on g is induced by the Lie bracket on the cor-

responding left-invariant vector fields. If X, Y are two vectors in g, then let X̃, Ỹ be

the corresponding unique left-invariant vector fields on G. Then the Lie bracket on g is

given by

[X, Y ] = [X̃, Ỹ ](e).

The Lie bracket provides a test for whether the Lie group G is commutative. A Lie

group G is commutative if and only if the Lie bracket on the corresponding Lie algebra

g is zero, i.e., [X, Y ] = 0 for all X,Y ∈ g.

Example 2.11. The Lie algebra for Euclidean space Rn is again Rn. The Lie bracket

is zero, i.e., [X, Y ] = 0 for all X, Y ∈ Rn. In fact, the Lie bracket for the Lie algebra of

any commutative Lie group is always zero.

Example 2.12. The Lie algebra for GL(n) is gl(n), the space of all real n×n matrices.

The Lie bracket operation for X, Y ∈ gl(n) is given by

[X, Y ] = XY − Y X.

Here the product XY denotes actual matrix multiplication, which turns out to be the

same as composition of the vector field operators (compare to (2.3)). All Lie algebras

corresponding to matrix groups are subalgebras of gl(n).

Example 2.13. The Lie algebra for the rotation group SO(n) is so(n), the space of

skew-symmetric matrices. A matrix A is skew-symmetric if A = −AT .

The following theorem will be important later.

Theorem 2.4. A direct product G1 × · · · ×Gn of Lie groups is also a Lie group.

2.4.1 Lie Group Exponential and Log Maps

Definition 2.21. A mapping of Lie groups φ : G1 → G2 is called a Lie group homo-

morphism if it is a smooth mapping and a homomorphism of groups, i.e., φ(e1) = e2,

where e1, e2 are the respective identity elements of G1, G2, and φ(gh) = φ(g)φ(h) for all

g, h ∈ G1.
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The image of a Lie group homomorphism h : R → G is called a one-parameter

subgroup. A one-parameter subgroup is both a smooth curve and a subgroup of G.

This does not mean, however, that any one-parameter subgroup is a Lie subgroup of G

(it can fail to be an imbedded submanifold of G, which is required to be a Lie subgroup

of G). As the next theorem shows, there is a bijective correspondence between the Lie

algebra and the one-parameter subgroups.

Theorem 2.5. Let g be the Lie algebra of a Lie group G. Given any vector X ∈ g there

is a unique Lie group homomorphism hX : R → G such that h′X(0) = X.

The Lie group exponential map, exp : g → G, not to be confused with the

Riemannian exponential map, is defined by

exp(X) = hX(1).

Example 2.14. For the Lie group Rn the unique Lie group homomorphism hX : R → Rn

in Theorem 2.5 is given by hX(t) = tX. Therefore, one-parameter subgroups are given

by straight lines at the origin. The Lie group exponential map is the identity. In this

case the Lie group exponential map is the same as the Riemannian exponential map at

the origin. This is not always the case, however, as will be shown later.

For matrix groups the Lie group exponential map of a matrix X ∈ gl(n) is computed

by the formula

exp(X) =
∞∑

k=0

1

k!
Xk. (2.4)

This series converges absolutely for all X ∈ gl(n).

Example 2.15. For the Lie group of 3D rotations, SO(3), the matrix exponential map

takes a simpler form. For a matrix X ∈ so(3) the following identity holds:

X3 = −θX, where θ =

√
1

2
tr(XT X).

Substituting this identity into the infinite series (2.4), the exponential map for so(3) can

now be reduced to

exp(X) =

I, θ = 0,

I +
sin θ

θ
X +

1− cos θ

θ2
X2, θ ∈ (0, π).
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The Lie group log map for a rotation matrix R ∈ SO(3) is given by

log(R) =

I, θ = 0,
θ

2 sin θ
(R−RT ), |θ| ∈ (0, π),

where tr(R) = 2 cos θ + 1.

The exponential map for 3D rotations has an intuitive meaning. Any vector X ∈
so(3), i.e., a skew-symmetric matrix, may be written in the form

X =

 0 −z y

z 0 −x

−y x 0

 .

If v = (x, y, z) ∈ R3, then the rotation matrix given by the exponential map exp(X) is

a 3D rotation by angle θ = ‖v‖ about the unit axis v/‖v‖.

2.4.2 Bi-invariant Metrics

Definition 2.22. A Riemannian metric 〈·, ·〉 on a Lie group G is said to be a bi-

invariant metric if it is invariant under both right and left multiplication, that is,

R∗
g〈·, ·〉 = L∗

g〈·, ·〉 = 〈·, ·〉 for all g ∈ G.

Theorem 2.6. For a Lie group G with bi-invariant metric the Lie group exponential

map agrees with the Riemannian exponential map at the identity, that is, for any tangent

vector X ∈ g

exp(X) = Expe(X).

Using the left-invariance of the Riemannian metric, any geodesic at a point g ∈ G

may be written as the left multiplication of a geodesic at the identity. That is, the

geodesic γ with initial conditions γ(0) = g and γ′(0) = Lg∗(X) is given by

γ(t) = g exp(tX).

Theorem 2.7. A compact Lie group G has a unique bi-invariant metric (up to scale).
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2.5 Symmetric Spaces

Briefly, a Riemannian symmetric space is a connected manifold M such that at each

point the mapping that reverses geodesics through that point is an isometry. For a de-

tailed treatment of symmetric spaces see the standard texts [15,58]. Common examples

of symmetric spaces are Euclidean spaces, Rn, spheres, Sn, and hyperbolic spaces, Hn.

Symmetric spaces, and the methods for computing geodesics and distances on them,

arise naturally from certain Lie group actions on manifolds.

A few preliminary definitions about mappings of sets are needed before symmetric

spaces can be defined. Let X be a set and φ be any mapping of X into itself. A point

x ∈ X is called a fixed point of φ if φ(x) = x. The mapping φ is called involutive if

φ is not the identity mapping, but it’s square is, i.e., φ ◦ φ = id.

Definition 2.23. A symmetric space is a connected Riemannian manifold M such

that at each point p ∈ M there is an involutive isometry φp : M → M that has p as an

isolated fixed point.

The term isolated means that there is a neighborhood U of p such that p is the only

point in U that is a fixed point of φp. This definition is somewhat illusive in that it is hard

to get an intuitive feel for what kinds of manifolds are symmetric spaces. Fortunately,

this definition is sufficient to imply very nice properties of symmetric spaces. These

properties are explained below, and the interested reader is referred to the appropriate

references for derivations.

The next theorem (see [15], Lemma 8.2 and Theorem 8.4) shows that the involutive

isometry φp in Definition 2.23 is more easily seen as the map that reverses geodesics

through the point p.

Theorem 2.8. A Riemannian symmetric space is complete, and if φp is an involutive

isometry of M , then φp∗ is a reflection of the tangent space TpM , i.e., φp∗(X) = −X,

and φp reverses geodesics through p, i.e., φp(Expp(X)) = Expp(−X) for all X ∈ TpM

such that those geodesics exist.

As will be shown later, symmetric spaces arise naturally from certain Lie group

transformations of a manifold M . This formulation requires a background to Lie group

actions.
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2.5.1 Lie Group Actions

Definition 2.24. Given a smooth manifold M and a Lie group G, a smooth group

action of G on M is a smooth mapping G×M → M , written (g, p) 7→ g · p, such that

for all g, h ∈ G and all p ∈ M

1. e · p = p,

2. (gh) · p = (g · (h · p)).

The group action should be thought of as a transformation of the manifold M , just

as matrices are transformations of Euclidean space.

The orbit of a point p ∈ M is defined as G(p) = {g · p : g ∈ G}. In the case that

M consists of a single orbit, we call M a homogeneous space and say that the group

action is transitive. The isotropy subgroup of p is defined as Gp = {g ∈ G : g·p = p},
i.e., Gp is the subgroup of G that leaves the point p fixed.

Let H be a closed Lie subgroup of the Lie group G. Then the left coset of an

element g ∈ G is defined as gH = {gh : h ∈ H}. The space of all such cosets is denoted

G/H and is a smooth manifold. There is a natural bijection G(p) ∼= G/Gp given by the

mapping g · p 7→ gGp. Now let M be a symmetric space and choose an arbitrary base

point p ∈ M . We can always write M as a homogeneous space M = G/Gp, where G is

a connected group of isometries of M , and the isotropy subgroup Gp is compact. The

fact that G is a group of isometries means that d(p, q) = d(g · p, g · q), for all p, q ∈ M ,

g ∈ G.

An element g ∈ G induces a smooth mapping φg : M → M via the group action,

defined as φg(p) = g·p. Also, this mapping has a smooth inverse, namely φg−1 . Therefore,

φg is a diffeomorphism.

Definition 2.25. Given a Lie group action of G on a manifold M , a G-invariant

Riemannian metric 〈·, ·〉 on M is a metric such that the mapping φg is an isometry for

all g ∈ G, i.e., φ∗g〈·, ·〉.

Example 2.16. The standard Euclidean metric on Rn is invariant under the SO(n)

group action. In other words, a rotation of Euclidean space is an isometry. The action

of Rn on itself by translations is another example of a group of isometries. These two

groups can be combined to form the special Euclidean group, SE(n) = SO(n) n Rn.

The semi-direct product n means that SE(n) as a set is the direct product of SO(n)

and Rn, but multiplication is given by the formula

(R1, v1) ∗ (R2, v2) = (R1R2, R1 · v2 + v1).



27

2.5.2 Symmetric Spaces as Lie Group Quotients

The following theorem (see [15], Theorem 9.1) provides criteria for a manifold to possess

a G-invariant metric.

Theorem 2.9. Consider a Lie group G acting transitively on a manifold M . If for

some point p ∈ M the isotropy subgroup Gp is a connected, compact Lie subgroup of G,

then M has a G-invariant metric.

Symmetric spaces arise naturally from homogeneous spaces with G-invariant metrics,

as the next theorem shows (see [15], Theorem 9.2 and Corollary 9.3).

Theorem 2.10. Suppose that G, M , and p satisfy the conditions of Theorem 2.9. If

α : G → G is an involutive automorphism2 with fixed set Gp, then M is a symmetric

space.

The converse to Theorem 2.10 is also true, as shown in the next theorem (see [58],

Theorem 3.3).

Theorem 2.11. If M is a symmetric space and p any point in M , then M is diffeo-

morphic to the Lie group quotient G/Gp, where G = I0(M) is the connected component

of the Lie group of isometries of M and Gp is the compact Lie subgroup of G that leaves

the point p fixed. Furthermore, there is an involutive automorphism α : G → G that

leaves Gp fixed.

Theorem 2.12. A connected Lie group G with bi-invariant metric is a symmetric space.

Example 2.17. Euclidean space Rn is a symmetric space, as can be seen by Theorem

2.12. The involutive isometry φp is given by reflection about p, i.e., φp reverses lines

through p by the equation

φp(q) = 2p− q.

Geodesics on a symmetric space M = G/Gp are computed through the group action.

Since G is a group of isometries acting transitively on M , it suffices to consider only

geodesics starting at the base point p. For an arbitrary point q ∈ M , geodesics starting

at q are of the form g · γ, where q = g · p and γ is a geodesic with γ(0) = p. Geodesics

are the image of the action of a one-parameter subgroup of G acting on the base point

p, as the next theorem shows.

2Recall that an automorphism of a group G is an isomorphism of G onto itself.
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Theorem 2.13. If M is a symmetric space with G-invariant metric, as in Theorem

2.10, then a geodesic γ starting at the point p ∈ M is of the form

γ(t) = exp(tX) · p,

where X is a vector in the Lie algebra g.

Example 2.18. The sphere S2 is a symmetric space. The rotation group SO(3) acts

transitively on S2, that is, for any two unit vectors x, y there is a rotation R such that

Rx = y. The north pole p = (0, 0, 1) is left fixed by any rotation of the x-y plane.

Therefore, the isotropy subgroup for p is equivalent to SO(2). The sphere can thus be

written as the homogeneous space S2 = SO(3)/SO(2). The involutive isometry φp is

given by reflection about p, i.e., a rotation of the sphere about the axis p by an angle of

π.

The geodesics at the base point p = (0, 0, 1) are the great circles through p, i.e.,

the meridians. Geodesics at an arbitrary point in S2 are also great circles, i.e., rotated

versions of the meridians. As Theorem 2.13 shows, these geodesics are realized by the

group action of a one-parameter subgroup of SO(3). Such a subgroup consists of all

rotations about a fixed axis in R3 perpendicular to p. We consider a tangent vector in

TpS
2 as a vector v = (v1, v2, 0) in the x-y plane. Then the exponential map is given by

Expp(v) =

(
v1 ·

sin ‖v‖
‖v‖

, v2 ·
sin ‖v‖
‖v‖

, cos ‖v‖
)

, (2.5)

where ‖v‖ =
√

v2
1 + v2

2. This equation can be derived as a sequence of two rotations that

rotate the base point p = (0, 0, 1) to the point Expp(v). The first is a rotation about

the y-axis by an angle of φy = ‖v‖. The second, aligning the geodesic with the tangent

vector v, is a rotation about the z-axis by an angle of φz, where cos(φz) = v1/‖v‖ and

sin(φz) = v2/‖v‖.
The corresponding log map for a point x = (x1, x2, x3) ∈ S2 is given by

Logp(x) =

(
x1 ·

θ

sin θ
, x2 ·

θ

sin θ

)
, (2.6)

where θ = arccos(x3) is the spherical distance from the base point p to the point x.

Notice that the antipodal point −p is not in the domain of the log map.



Chapter 3

Image Analysis Background

This chapter provides the necessary background to the aspects of image analysis that are

relevant to this dissertation. It begins in Section 3.1 with an overview of the statistical

theory of shape. This theory is an important tool in deformable models, which are

discussed in Section 3.2. Medial representations, the particular type of deformable

model used in this work, are presented in Section 3.3.2. Finally, in Section 3.4 the

necessary background for diffusion tensor imaging is covered.

3.1 Statistical Shape Theory

Statistical shape analysis is emerging as an important tool for understanding anatomical

structures from medical images. Given a set of training images, the goal is to model the

geometric variability of the anatomical structures within a class of images. Statistical

models give an efficient parameterization of the geometric variability of anatomy. These

models can provide shape constraints during image segmentation [27]. Also, statistical

descriptions of shape are useful in understanding the processes behind growth and disease

[29]. The study of anatomical shape and its relation to biological growth and function

dates back to the landmark work of D’Arcy W. Thompson in 1917 [125]. This section is

a review of several key concepts in statistical shape theory. Subsection 3.1.1 is a review

of the shape theory of point sets introduced by David G. Kendall in a brief note in

1977 [71] and detailed in his 1984 paper [72]. Similar ideas in the theory of shape were

independently developed by Fred L. Bookstein [12, 13]. In the Kendall and Bookstein

theories of shape an object is represented by a finite set of points in Euclidean space

Rn. In medical image analysis these points may represent a sampling of the boundary

of an organ or important landmarks in a medical image. Subsection 3.1.2 is an overview
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of methods for aligning geometric objects to a common position, orientation, and scale.

Alignment is an important preprocessing step that is necessary for analyzing the shape

differences between objects. Subsection 3.1.3 discusses the common linear methods used

to analyze the statistical variability of shape. Subsection 3.1.4 reviews several methods

that have been proposed for the statistical analysis of nonlinear geometric data. For

a more in-depth overview of shape theory, including applications beyond the realm

of medical image analysis, see the books [14, 35, 109] and the review article [73]. Of

these references the book by Dryden and Mardia [35] is the easiest to digest. Readers

interested in more of the mathematical details of shape theory are encouraged to read

Small’s book [109].

3.1.1 Point Set Shape Spaces

Shape is often defined as the geometry of objects that is invariant under translation,

rotation, and scaling. This definition of shape provides an equivalence relation between

objects, that is, two objects have the same shape if one can be transformed into the

other by only a translation, rotation, and scaling (see Fig. 3.1). A shape space is a

space in which each point represents an entire equivalence class of objects under this

relation. This subsection is a review of Kendall’s shape spaces of point sets in Rn [72].

The first step in the construction of these shape spaces is to define the transformation

group of combined translations, rotations, and scalings. This group leads to an action

on point sets in Rn. Shape spaces will be defined as the orbit spaces under this action;

that is, point sets that can be transformed into each other under this action will be

associated with the same point in shape space.

A similarity transform of Rn is a combined translation, rotation, and scale of

Rn. The space of all such transformations can be written as the Lie group Sim(n) =

(SO(n) × R+) n Rn (recall the definition of the special Euclidean group in Example

2.16). An element S ∈ Sim(n) can be written as an (n+ 1)× (n+ 1) matrix in the block

form

S =

[
sR v

0T 1

]
,

where v ∈ Rn, s ∈ R+, and R ∈ SO(3). Composition of two similarity transformations

is now achieved by multiplying their representative matrices. Writing a vector x ∈ Rn

in homogeneous coordinates, i.e., as the column vector (x, 1)T , a similarity transform
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Figure 3.1: Three objects that have the same shape, yet have different positions, orien-
tations, and scales.

matrix acts on x by

S · x =

[
sR v

0T 1

][
x

1

]
.

Now consider a collection of k points x1, . . . , xk in n-dimensional Euclidean space.

This collection should be thought of as the vector x = (x1, . . . , xn) in Rnk. The con-

figuration where all points are equal is not allowed. That is, the n-dimensional linear

subspace V = {(x1, . . . , xk) ∈ Rnk : x1 = x2 = . . . = xk} is subtracted from the set

Rnk to form the space of legal point configurations, Rnk\V . A similarity transformation

S ∈ Sim(n) acts on Rnk\V by applying S to each of the points in the collection:

S · x = (S · x1, . . . , S · xk).

The shape space Σk
n of k points in Rn is defined as the set of orbits under this ac-

tion. Recall that two points x and y are in the same orbit if there exists a similarity

transformation S such that S · x = y.

The shape space Σk
n can be constructed by removing the translation, scale, and

rotation effects from the space Rnk\V . Consider the point set x = (x1, . . . , xk). The

center of mass of these points is given by x̄ = (1/k)
∑k

i=1 xk. Then x is determined up

to translation by the point set x̃ = (x1− x̄, . . . , xk − x̄). The space of all such point sets
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with zero centroid can be identified with the space Rn(k−1)\{0}. The scale effects can be

removed by dividing the point x̃ by its Euclidean norm in Rnk. Therefore, the space of

all scale-normalized point sets with zero centroid is a sphere of dimension n(k − 1)− 1.

This is called the preshape space Sk
n. Finally, the shape space Σk

n is the set of orbits

under the action of the rotation group SO(n), that is, Σk
n
∼= Sk

n/SO(n). Recall that this

quotient of spaces means that points in Sk
n that can be transformed into each other by a

rotation in SO(n) are associated with the same point in the quotient space Sk
n/SO(n).

The topology of the shape space Σk
n is somewhat harder to understand. For data

on the real line, i.e., n = 1, the rotation group SO(1) consists of only the identity

transformation. Thus, Σk
1 is identical to the preshape space, which is the sphere Sk−2.

For planar data, n = 2, it helps to consider the plane R2 as the set of complex numbers

C. In this case it can be shown (see [109]) that the shape space Σk
2 is equivalent to the

complex projective space CP(k − 2). Complex projective space CP(n) is the manifold

of all one-dimensional complex subspaces of Cn+1. The picture gets more difficult for

higher dimensions, n ≥ 3. Here the shape space Σk
n, with k > n, is a singular manifold.

The singularities arise from the configurations of points that are invariant to certain

rotations. For example, given a preshape of points in R3 that are collinear, the rotations

about that common line leave all the points fixed. This is a failure of SO(3) to act freely

on preshape space Sk
3 . In the smooth parts of Σk

n, that is, where SO(n) acts freely, the

dimension will be reduced by the dimension of SO(n), which is 1
2
n(n − 1). Therefore,

the dimension of the smooth parts of Σk
n is n(k − 1) − 1

2
n(n − 1) − 1. The dimension

of the singularities of Σk
n is the same as the dimension of the lower-dimensional shape

space Σn−2
k . For example, in the shape space of 3D objects, Σk

3, the singularities have

dimension k − 2. For more information on the structure of the shape space manifolds,

including the Riemannian metric and curvature properties, see the paper [76].

3.1.2 Procrustes Distance and Alignment

Consider the problem of defining a distance metric on the shape space Σk
n. Given two

sets of landmarks, x = (x1, . . . , xk) and y = (y1, . . . , yk), whose points are in one-to-

one correspondence with each other, the problem is to define a distance d(x,y) that

is invariant to translation, rotation, and scaling of either x or y. The Procrustes

distance [47] is one such metric. It is based on a sum-of-squares Euclidean distance
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between the corresponding points,

d(x,y) =

(
k∑

i=1

‖xi − yi‖2

) 1
2

. (3.1)

This is of course equivalent to the Euclidean norm ‖x−y‖ if the point sets are considered

as elements of Rnk. Now the Procrustes distance is the distance induced on Σk
n by this

Euclidean distance. This is typically approximated by using the distance in (3.1) after

first aligning the two point sets to a common position, orientation, and scale in the

following manner:

1. Translate each point set so that its centroid is located at zero.

2. Scale both point sets to norm one (considering them as points in Rnk).

3. Rotate one point set to minimize the sum-of-square distances given in (3.1).

This alignment process is known as ordinary Procrustes analysis (OPA). The

rotation necessary in the last step may be computed using a singular value decomposition

(SVD) of the n × n matrix xTy, where x and y are considered as k × n matrices, i.e.,

matrices with the landmarks as rows. Let UΛV be the corresponding SVD. Then the

rotation matrix needed in step 3 to rotate y in alignment with x is UV T . This is the

rotation matrix that maximizes the correlation between the two point sets.

Alignment of more than two objects is achieved by a process called generalized Pro-

crustes analysis (GPA) [48]. The GPA algorithm for a collection of objects x1, . . . ,xN

is given by

1. Translate each object to a centroid at zero.

2. Compute the linear average of the objects, i.e., µ =
∑N

i=1 xi. Normalize the mean

to norm one.

3. Align each object xi to the mean µ with respect to orientation and scale using

OPA.

4. Repeat steps 2 and 3 until the mean does not change.

In addition to aligning all objects into a common coordinate system, generalized

Procrustes analysis also results in the production of a mean shape µ. In essence GPA
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Figure 3.2: Projection of an object onto the tangent space of the shape space Σk
n.

maps each object onto the shape space Σk
n, which is a curved manifold. However, one

would like to use linear statistics to analyze the variability of these shapes. Therefore,

it is necessary to linearize the data in some fashion. This is achieved by projecting

the shapes onto the tangent space at the mean, i.e., TµΣk
n. Since the shape space Σk

n

has spherical curvature, the tangent space at µ is the set of vectors perpendicular to

µ. The projection is accomplished by scaling the vector xi, producing a x̂ such that

the difference x̂− µ is perpendicular to µ (see Figure 3.2). Given one of the objects xi

aligned using GPA, its projection onto the tangent space TµΣk
n is given by

x̂i =
1

〈xi, µ〉
xi,

where µ is again the normalized mean, i.e., ‖µ‖ = 1, resulting from GPA.

3.1.3 Shape Variability

The standard technique for describing the variability of linear shape data is princi-

pal component analysis (PCA), a method whose origins go back to Pearson [99] and

Hotelling [60]. Its use in shape analysis and deformable models was introduced by

Cootes and Taylor [26]. See the book [63] for a comprehensive review of PCA. The ob-

jectives of principal component analysis are (1) to efficiently parameterize the variability
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of data and (2) to decrease the dimensionality of the data parameters. This section de-

scribes PCA of multivariate data x1, . . . , xN ∈ Rn with mean µ. The reader may think

of this data as a set of shapes represented as projections onto the linear tangent space

TµΣk
n.

The goal of PCA is to find a sequence of linear subspaces, V1, . . . , Vn, through the

mean that best approximate the data. This may be formulated in two ways, both

resulting in the same answer. The first is a least-squares approach, where the objective

is to find the linear subspaces such that the sum-of-squares of the residuals to the data

are minimized. More precisely, the linear subspace Vk is defined by a basis of orthonormal

vectors, i.e., Vk = span({v1, . . . , vk}), which are given by

vk = arg min
‖v‖=1

N∑
i=1

‖xk
i − 〈xk

i , v〉 v‖2, (3.2)

where the xk
i are defined recursively by

x1
i = xi − µ,

xk
i = xk−1

i − 〈xk−1
i , vk−1〉 vk−1

Simply put, the point xk
i is obtained by removing from (xi − µ) the contributions of

the previous directions, v1, . . . , vk−1. In other words, the point xk
i is the projection of

(xi − µ) onto the subspace perpendicular to Vk−1.

The other way of defining principal component analysis is as the subspaces through

the mean that maximize the total variance of the projected data. The total variance for

a set of points y1, . . . , yN is defined as

σ2 =
1

N

N∑
i=1

‖yi − µ‖2.

Then the linear subspaces Vk = span({v1, . . . , vk}) are given by the vectors

vk = arg max
‖v‖=1

N∑
i=1

〈xk
i , v〉2, (3.3)

where the xk
i are defined as above. It can be shown (see [63]) that both definitions of

PCA, i.e., (3.2) and (3.3), give the same results thanks to the Pythagorean theorem.

The computation of the spanning vectors vk proceeds as follows. First, the linear
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average of the data is computed as

µ̂ =
1

N

N∑
i=1

xi.

Next, the sample covariance matrix of the data is computed as

S =
1

N − 1

N∑
i=1

(xi − µ̂)(xi − µ̂)T .

This is the unbiased estimate of the covariance matrix, that is, N − 1 is used in the

denominator instead of N . The covariance matrix is a symmetric, positive-semidefinite

quadratic form, that is, S = ST , and for any x ∈ Rn the inequality xT Sx ≥ 0 holds.

Therefore, the eigenvalues of S are all real and nonnegative. Let λ1, . . . , λn be the eigen-

values of S ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn, and let v1, . . . , vn be the correspondingly

ordered eigenvectors 1. These directions are the solutions to the defining PCA equations,

(3.2) and (3.3), and are called the principal directions or modes of variation.

Any data point xi can be decomposed as

xi = µ +
n∑

k=1

αikvk,

for real coefficients αik = 〈xi − µ, vk〉. The αik for fixed i are called the principal

components of xi. The total variation of the data is given by the sum of the eigenval-

ues, σ2 =
∑n

k=1 λk. The dimensionality of the data can be reduced by discarding the

principal directions that contribute little to the variation, that is, choosing an m < n

and projecting the data onto Vm, giving the approximation

x̃i = µ +
m∑

k=1

αikvk.

Typically the cut-off value m is chosen based on the percentage of total variation that

should be preserved.

The mean µ and covariance matrix S can be considered as the maximum likeli-

hood estimates of the parameters of a Gaussian probability distribution. The resulting

1When repeated eigenvalues occur, there is an ambiguity in the corresponding eigenvectors, i.e.,
there is a hyperplane from which to choose the corresponding eigenvectors. This does not present a
problem as any orthonormal set of eigenvectors may be chosen.
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Figure 3.3: A set of points in Rn showing the resulting principal directions weighted by
the corresponding variances and the level sets of Mahalanobis distance d.

Gaussian distribution is given by the density

p(x) =
1

(2π)
n
2 |S| 12

exp

(
−1

2
(x− µ)T S−1(x− µ)

)
.

This defines a probability distribution on the space of shapes that can be used as a geo-

metric prior in a deformable models framework (described in the next section). However,

PCA is a valid operation even if the data cannot be assumed to come from a Gaussian

process. It can give reasonable resulting modes of variation for data that is “Gaussian-

like”, i.e., densities that are unimodal and fall off rapidly away from the mean. As an

alternative to using the full Gaussian probability density, a useful measure of the geo-

metric typicality of an object is given by the squared Mahalanobis distance from the

mean,

d(x, µ)2 = (x− µ)T S−1(x− µ).

The Mahalanobis distance function uses the covariance matrix as a quadratic form

to create an inner product on Rn. This gives hyperelliptical level sets of distance ema-

nating from the mean, where the axes of the hyperellipsoids are the principal directions
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from PCA (see Fig. 3.3). The Mahalanobis distance skews Euclidean distance so that

directions with higher variance become closer to the mean. Points nearer to the mean

in Mahalanobis distance represent more probable shapes.

3.1.4 Nonlinear Statistical Analysis

While most work on the statistical analysis of shape has focused on linear methods,

there has been some work on statistical methods for nonlinear geometric data. Hunt [61]

describes probability measures on Lie groups that satisfy the semigroup property under

convolution. This leads to a natural definition of a Gaussian distribution on a Lie group

as a fundamental solution to the heat equation

∂f

∂t
= ∆f = div(gradf)

= gij(
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
),

where gij are the components of the inverse of the Riemannian metric, and Γk
ij are the

Christoffel symbols. Wehn [128,129] shows that such distributions satisfy a law of large

numbers as in the Euclidean Gaussian case. Grenander’s book [49] on probabilities on

algebraic structures includes a review of these works on Gaussian distributions on Lie

groups.

Pennec [100] defines Gaussian distributions on a manifold as probability densities

that minimize information. Bhattacharya [5] develops nonparametric statistics of the

mean and dispersion values for data on a manifold. Mardia [81] describes several meth-

ods for the statistical analysis of directional data, i.e., data on spheres and projective

spaces. Kendall [72] and also Mardia and Dryden [82] have studied the probability dis-

tributions induced on shape space Σk
n by independent identically distributed Gaussian

distributions on the landmarks. Olsen [96,95]and Swann [121] describe Lie group actions

on shape space Σk
n that result in nonlinear variations of shape. Klassen et al. [75] develop

an infinite-dimensional shape space representing smooth curves in the plane. The space

of diffeomorphisms is an infinite dimensional and curved Lie group, and statistical anal-

ysis of diffeomorphisms has found interest recently. Davis et al. [32] describe a method

for estimating a minimum mean squared error diffeomorphism from a set of images.

Nielsen et al. [94] and Markussen [83] use Brownian motion warps as a least-committed

prior on the space of diffeomorphisms.
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3.2 Deformable Models

Segmentation is the process of distinguishing important structures in an image from

background. This is a fundamental task in medical image analysis that is often a pre-

requisite for further analysis, visualization, disease diagnosis, or planning of medical

treatment. Medical images can be very large, especially 3D images, time sequence im-

ages, or images with multi-dimensional values, such as diffusion tensor images. Finding

complex geometric objects in such a vast amount of data can be a challenge. Segmenta-

tion is further complicated by the wide range of variability in the geometry and image

intensities of the anatomy. Image noise, sampling artifacts, and the confusion of other

nearby structures add to the difficulty of the task. Deformable models is a powerful

image analysis method that overcomes many of the difficulties of segmentation by in-

corporating prior information of the objects to be segmented. A survey of deformable

models methods can be found in [85].

The deformable models approach to segmentation involves the deformation of a ge-

ometric model into an image by optimizing an objective function. Deformable model

approaches differ in the way they represent object geometry, how they deform objects,

and in the objective functions they use to fit into an image.

3.2.1 Active Contours

The first deformable models to gain popularity in image analysis were the active contours

or snakes [68]. Snakes represent an object in a 2D image as a parametric contour

c(s) = (x(s), y(s)), for s ∈ [0, 1]. In the early papers on deformable models such

a contour is fit to an object in an image I(x, y) by minimizing the following energy

functional:

Esnake(c) =

∫ 1

0

α‖c′(s)‖2 + β‖c′′(s)‖2ds +

∫ 1

0

P (c(s))ds. (3.4)

The first integrand in the above equation is called the internal energy. The weights α

and β specify the elasticity and stiffness of the contour. The second integrand in the

above equation is known as the external energy. It measures how well the contour

fits the image data. The function P (x, y) is a potential function in the image plane that

typically measures the desired image features, such as specific intensities or edges. A
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common potential function is the edge-based potential

P (x, y) = λg(‖∇I(x, y)‖)2,

which attracts the contour to edges in the image, i.e., places with high gradient values.

Here g : [0,∞) → R+ is a monotonic decreasing function, and the weight λ is chosen

to balance the strength of the image attraction with the internal energy constraints. It

is also common in this approach to first convolve the image with a Gaussian kernel to

remove noise and extend the capture range of the local minima.

One drawback of the active contour method is that the snakes energy functional

(3.4) is not intrinsic in the sense that it contains the term

E(c) =

∫ 1

0

‖c′(s)‖2ds,

which depends on the parameterization of the curve. This can be remedied by choosing

an arclength parameterization for c. Caselles et al. [21] go a step further and phrase the

active contour minimization as finding a geodesic curve under a particular Riemannian

metric, resulting in a method called geodesic active contours. The metric is chosen

in the image plane so that the resulting geodesics minimize the snakes energy functional

(3.4) with the term β = 0. Instead of using a parameterized curve model for the

snake, geodesic active contours use a level-set approach based on the work of Osher

and Sethian [97, 107]. This can be phrased as finding a smooth function f : R2 → R
in the image plane whose zero set is the desired contour. Following a steepest-descent

approach, the geodesic active contours solve the evolution equation

dc

dt
= g(I)κN − 〈∇g,N〉 N,

where N is the curve normal, κ is the curvature, and g is a monotonic decreasing function

as above.

A distinguishing characteristic of active contours is that they are inherently a local

approach. The components of the energy functional (3.4) are all local properties: first

and second derivatives of the contour and local image properties. In addition the search

methods for active contours proceed by local searches along the normal direction at a

point on the curve. This locality is an advantage in the sense that it is typically very fast

because computations need only be made in local neighborhoods. However, it is also a

disadvantage in the sense that active contours are unable to describe global aspects of
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shape change and they do not take into account any correlations of image information

at different points on an object. As a result, active contours have a tendency to be

attracted to local spurious features in an image and can “leak”, i.e., continue searching

for an edge when the desired boundary in an image has low contrast.

3.2.2 Probabilistic Deformable Models

An alternative to the energy minimization formulation of deformable models is based

on a probabilistic point of view.2 The probabilistic framework is based on Grenander’s

pattern theory [50, 51, 52, 90]. Pattern theory encompasses a wide variety of meth-

ods for analyzing signals generated by the world. These signals may include images,

audio, DNA sequences, or weather measurements. Pattern theory holds that the real

world cannot be modeled deterministically because it is too complex and the sensors

used to observe it are too limited. Therefore, observations must be modeled partly

stochastically and partly deterministically in order to make analysis of the observations

computationally practical.

In a stochastic model of observations, the world may be in one of many different

states, and each state w in the set Ω of possible states occurs with probability p(w).

The probability p(w) is called a prior and must be learned from past experience. For

example, a radiologist uses prior training in anatomy when segmenting a new CT image.

An observation f of the world has conditional probability p(f |w), which is the likeli-

hood of the observation f given that the world is in state w. The likelihood is often

computed by generating a synthetic signal fw from a given model w and comparing it

to the signal f . The goal is to infer the true state w given an observation f . This may

be done by maximizing the a posteriori probability p(w|f) with respect to w, that is,

find the state w that has maximum probability given the observation f . The posterior

probability is computed using Bayes’ formula

p(w|f) =
p(f |w)p(w)

p(f)
. (3.5)

Now the most probable estimate for the state w, called the maximum a posteriori

2The energy minimization snakes can actually be phrased in the probabilistic setting as well. This
approach involves using Gibbs probability distributions for a smoothness prior term and an image
likelihood term. Such a formulation can be shown to be equivalent to the energy minimization (3.4)
from the previous section. See [85] for more details.
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(MAP) estimate, is given by

ŵ = arg max
w∈Ω

p(w|f) = arg max
w∈Ω

p(f |w)p(w). (3.6)

The term p(f) in the denominator of Bayes’ formula (3.5) is dropped from the MAP

equation because it does not alter which state maximizes the posterior probability.

In the deformable models setting, the observations f are images and the states w are

geometric models of the objects in the images. Thus, the MAP estimate can be phrased

as the most probable configuration of a geometric model with respect to a given par-

ticular image. In practice the posterior maximization cannot be solved analytically due

to the large number of variables and the complexity of the deformable model problem.

Therefore, the following procedure is used:

1. Begin with an initial estimate for the model w.

2. Generate a synthetic image fw from w.

3. Evaluate the posterior probability, comparing fw to f .

4. Update (deform) the model w according to the method used to search for the

optimum w.

5. Repeat steps 2 through 5 until maximum is achieved.

The search method used in step 4 may be one of several optimization strategies

(see [104], Chp. 10). Local methods such as the simplex method, gradient descent,

or conjugate gradient can find optimum solutions quickly but can get stuck in local

optima. Thus, local methods work well for problems where the initial estimate (step 1)

can be placed near the correct answer. Global optimization strategies such as simulated

annealing and genetic algorithms do a better job of avoiding local optima but are also

much slower, even when near the correct solution.

Several different geometric representations have been used to model anatomy in

deformable models approaches. The active shape model (ASM) of Cootes and Taylor [26,

27] represents an object’s geometry as a dense collection of boundary points. Cootes et.

al. [25] have augmented their models to include the variability of the image information

as well as shape. Delingette [33, 34] uses a simplex mesh to represent the boundary

of objects. Staib and Duncan [117] use Fourier decompositions of contours. Székely,

Kelemen, et. al. [70, 122] also use Fourier representations in 2D and use a spherical
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harmonic (SPHARM) decomposition of the object geometry in 3D. Joshi [64, 65] and

Christensen [24] use volumetric representations of anatomy along with diffeomorphic

transformations of that anatomy.

In all of these approaches the underlying geometry is parameterized as a Euclidean

vector space. The prior probability density must be inferred from a training sample of

known instances of the object. The training data is given as a set of vectors x1, . . . , xN in

a vector space V . For active shape models each vector is constructed by concatenation

of the boundary points in an object. This is followed by a general Procrustes analysis

and a tangent space projection as described in the previous section. For Fourier and

spherical harmonics each vector is constructed as the concatenation of the coefficients of

a harmonic representation of the object boundary. Although diffeomorphisms themselves

are not a vector space, prior probability models can be based on the velocity vector fields

of the deformations, which do form a vector space. Therefore, in each of these approaches

the parameters of the prior density can be inferred using the linear statistical techniques

mentioned in the previous section, namely linear averaging and PCA.

In contrast to active contours, probabilistic deformable models are a more global

approach. Methods for describing the statistical variability of shape, such as PCA,

take into account the global variations in shape. That is, changes in the components

of variation cause changes across the entire object. This is a result of the fact that

PCA models the correlations of geometric changes in different parts of the object. Also,

statistical models of the image variability use correlations of image values at different

points on the object. This global approach has the advantage that the models of the

geometry and the image values stay consistent across the entire object. Search methods

can take steps in the model parameters, which result in global changes to the model

geometry and image intensities. Thus, probabilistic models are less likely to be attracted

to spurious image features and are more robust under low contrast or missing data. This

added power comes at the cost of more complex models and longer run times.

3.3 Medial Representations

Medial representations of objects, or m-reps, are the foundation of the deformable mod-

els approach taken in this work. This section is a review of the necessary background

in medial geometry representations and segmentation via deformable m-rep models.

The first subsection (Section 3.3.1) is an overview of the medial locus and some of its

mathematical properties. The next subsection (Section 3.3.2) describes m-reps and the
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deformable models approach based on them. The article by Pizer et al. [103] provides an

overview of the properties of the medial locus and methods for extracting the medial lo-

cus from an object. The deformable m-reps approach to image segmentation is described

by Pizer et al. [102]. A fine overview of medial techniques that goes beyond the material

covered in this section can be found in the Ph.D. dissertation of Yushkevich [131].

3.3.1 The Medial Locus

The medial locus is a means of representing the “middle” or “skeleton” of a geometric

object. Such representations have found wide use in computer vision, image analysis,

graphics, and computer aided design [8, 9, 62, 108, 119]. Psychophysical and neurophys-

iological studies have shown evidence that medial relationships play an important role

in the human visual system [6, 17, 78, 79, 84]. The medial locus was first proposed by

Blum in 1967 [10], and its properties were later studied in 2D by Blum and Nagel [11]

and in 3D by Nackman [92]. Arising from the medial locus definition is a surprisingly

rich mathematical theory that incorporates many aspects from differential geometry and

singularity theory (see, for instance, [31,46,45]).

The definition of the medial locus of a set A ⊂ Rn is based on the concept of a

maximal inscribed ball.

Definition 3.1. A maximal inscribed ball of a set A ⊂ Rn is an open ball Br(x) =

{y ∈ Rn : ‖x − y‖ < r} such that Br(x) ⊂ A, and there does not exist another ball

B′ 6= Br(x) such that Br(x) ⊂ B′ ⊂ A.

Definition 3.2. The medial locus of a set A ⊂ Rn is the closure of the set of all pairs

(x, r) ∈ Rn × R+ such that Br(x) is a maximal inscribed ball in A. The medial axis

refers to the set of positions x ∈ Rn that are centers of maximal inscribed balls in A, i.e.,

the medial axis is the image of the medial locus under the projection π : Rn×R+ → Rn.3

Several authors have used the terms medial locus, medial axis, symmetry axis, and

skeleton to mean either the medial positions or the medial position and radius tuples.

The word “axis” is somewhat misleading (but it has stuck) since it connotes a straight

line. However, as discussed below, the medial axis can have higher dimensions than a

line and can be curved. The above definition of the medial locus is valid for any set

A ⊂ Rn. However, for the real-world objects that are found in images it is convenient to

narrow the possible sets that can be considered. This leads to the following definition:

3The term medial locus is also used for other related skeletal structures. Here the terms “medial
locus” and “medial axis” will always refer to this definition given by Blum.
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Figure 3.4: A 2D object and its medial axis (left). The medial axis of a 3D object
(right). The different generic medial points are labelled (all types except the A4

1 are
present).

Definition 3.3. An object in Rn is a connected, compact, imbedded, n-dimensional

manifold with boundary.

The compactness assures that an object is a bounded region, and the fact that an

object is imbedded means that it cannot intersect itself in any way. Of course objects

from images will be either 2D or 3D. An object does not have to have a smooth boundary,

so, for example, a 2D region bounded by a polygon or a 3D region bounded by a closed

polygonal surface is an object. Also, an object does not have to be simply connected,

that is, it can have holes like an annulus in 2D or a solid doughnut in 3D.

The medial axis forms a structure known as a stratified space. It consists of a

collection of smooth manifolds of different dimensions known as strata. Medial points

that are tangent to the boundary in exactly two points make up a codimension 1 stratum.

This is referred to as the smooth part of the medial axis. For example, in 2D the

smooth parts of the medial axis are smooth curves, and in 3D the smooth parts of the

medial axis are smooth surfaces. Each connected piece of the smooth part of the medial

axis is called a branch. The remaining parts of the medial axis are the singular parts,

which form lower-dimensional strata. They consist of boundaries of the branches and

places where the branches connect. The types of generic points4 on the medial axis

4The term “generic” refers to points or features of geometry that are stable under perturbations of
that geometry. In this case a medial point is generic if it does not disappear under a small perturbation
of the object’s boundary.
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have been classified in 3D by Giblin and Kimia [45]. A point on the medial axis is

classified as an Am
k point when the resulting inscribed sphere is tangent at m distinct

points and the sphere has order k contact with the object boundary. No superscript

indicates the sphere has contact at a single point. The types of medial points that can

occur generically in 2D and 3D are (see Fig. 3.4)

1. A2
1 points are the smooth parts of the medial axis, where the sphere is tangent at

two distinct points. Points of this type form curves in 2D and surfaces in 3D.

2. A3
1 points are where two branches of the medial axis meet, and the sphere is tangent

at three distinct points on the boundary. Points of this type form points in 2D

and curves in 3D.

3. A3 points are the edges of the medial branches, where the sphere is tangent at a

single point and has the same radius of curvature as the boundary at that point.

The boundary also has a maximum of curvature at that point. Points of this type

form points in 2D and curves in 3D.

4. A1A3 points are where a branch curve (A3
1) meets an edge curve (A3) in 3D. These

points do not occur in 2D, and they form points in 3D.

5. A4
1 points are where four branch curves (A3

1) meet in 3D. These points do not occur

in 2D, and they form points in 3D.

In contrast to boundary representations, which sample the boundary of an object,

medial representations sample the medial locus of an object. These medial samples,

called medial atoms, come in two different varieties.

Definition 3.4. An n-dimensional order 0 medial atom is a pair (x, r) ∈ Rn × R+.

An order 0 medial atoms represents the position and radius of a maximal inscribed

ball at a location on the medial axis of an object. The phrase “order 0” is to distinguish

these atoms from atoms with higher order information, i.e., derivatives of position and

radius. The disadvantage of the order 0 medial atom is that it does not give enough

information to reconstruct the corresponding boundary points, i.e., the points tangent

to the sphere defined by the medial atom. This is remedied by adding first order infor-

mation to the medial atom.

Definition 3.5. An n-dimensional order 1 medial atom is a tuple (x, r, n0, n1) ∈
Rn × R+ × Sn−1 × Sn−1.
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Figure 3.5: Two representations of a 3D order 1 medial atom and the portions of the
implied boundaries associated with them. A medial atom as in Definition 3.5 as a
position, radius, and two spoke directions (left). The same medial atom as a position,
radius, frame, and object angle (right).

The order 1 medial atom (see Fig. 3.5) adds two unit length vectors, n0, n1, thought

of as two points on the unit sphere Sn−1. These two points represent the tangency points

of the boundary with the inscribed sphere. The vectors pointing from the medial locus

position to the object boundary, called spokes, are given by rn0 and rn1. Therefore, or-

der 1 medial atoms give enough information to reconstruct the corresponding boundary

points on the object, y0, y1, given by the formulas

y0 = x + rn0, y1 = x + rn1. (3.7)

The order 1 medial atom assumes that the inscribed sphere is bitangent to the

object boundary. Thus, they are valid as samples of the smooth parts of the medial

locus. Order 1 medial atoms encode the derivative information of the medial locus in

a non-obvious way. Given an object in Rn, let M be a branch of the object’s medial

axis, i.e., a smooth manifold in Rn of codimension 1, and let r : M → R+ be the radius

function on that branch. An order 1 medial atom at a point x ∈ M is given by the

tuple (x, r, n0, n1) ∈ Rn×R+×Sn−1×Sn−1. Then the positional derivative information

at x ∈ M is given by the tangent space TxM . This tangent space also has codimension

1, and as such it is uniquely determined by a single normal vector. This (unit) normal
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vector is given by

n =
n0 − n1

‖n0 − n1‖
.

The derivative information of the radius function comes in the form of the gradi-

ent vector ∇r ∈ TxM . This gradient is given by the projection of the n0 vector (or,

equivalently, the n1 vector) into the tangent space:

∇r = n0 − 〈n0, n〉 n = n1 − 〈n1, n〉 n.

Medial loci have the property that the gradient of the radius function in the smooth

strata satisfies the inequality ‖∇r‖ ≤ 1. With this restriction it can be seen that an

order 1 medial atom, defined as the tuple (x, r, n0, n1), uniquely encodes the derivative

information of the medial locus at the point x.

One contribution of this dissertation is the specification of an order 1 medial atom

as defined above (Definition 3.5). In previous papers [66,101,102] order 1 medial atoms

were given as a tuple (x, r, F, θ) ∈ R3 × R+ × SO(n)× [0, π/2) (see Fig. 3.5). In other

words, the two unit vectors, n0, n1, were replaced with a frame F ∈ SO(n) and an angle

θ ∈ [0, π/2), known as the object angle. In 3D the frame is given by three orthonormal

vectors {b,n,b⊥}, where b is the unit bisector of the spokes, n is the unit normal to

the medial axis, and b⊥ = b × n. The unit spoke directions can be derived from this

representation as

n0 = cos(θ)b + sin(θ)n n1 = cos(θ)b− sin(θ)n.

The advantages of the order 1 medial atom as defined in this dissertation over the

previous frame and object angle representation will be discussed in Chapter 5.

3.3.2 M-reps

Two major contributions of this dissertation are 1) a new method for studying statistical

shape variability using medial representations and 2) application of this method to a

deformable models approach to 3D medical image segmentation. Both the medial rep-

resentation of object geometry and the resulting deformable models framework that are

used in this dissertation are due to Pizer et al. [101,102]. These medial representations,

or m-reps, are described in this section. After an introduction to the benefits of m-reps

as models of object shape, a description of the medial representation and data structure

is given. Methods for interpolating smooth boundaries and figural-based coordinate sys-
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tems from m-rep models are outlined. Then a different twist on medial representations

called spline-based m-reps is reviewed. The section wraps up with a presentation of the

deformable m-reps approach to 3D image segmentation.

The main selling points of the m-rep method as an approach to object geometry and

deformable models are

1. M-reps are multiscale. They decompose the geometry of object collections in a

coarse-to-fine manner. Multiscale approaches to deformable models have proven to

be more robust to image problems such as noise, aliasing, and missing data. Also,

multiscale methods are capable of extending the capture range of optimization

procedures and increasing the rate of convergence.

2. M-reps have a fuzzy boundary. That is, they have a built-in boundary tolerance

that allows them to extract fine-scale boundary perturbations without creating

extra branches in the medial locus.

3. M-reps provide a figural coordinate system. This coordinate system measures dis-

tances along the medial directions of a figure and through the figure.

4. M-reps are a solid representation. Instead of just modeling the boundary, or shell,

of an object, m-reps also model the interior (and just outside the object). This

gives a means for indexing image values inside an object and also for modeling the

physical properties of the object interior.

5. M-reps directly model the medial locus of an object. Methods that extract the me-

dial locus from a boundary can be time-consuming and sensitive to perturbations

in the boundary. Also, comparing the medial structure of two similar objects is

easier when the medial locus is modeled directly because the medial branching can

be kept consistent between objects.

The medial representation decomposes complex objects into a set of figures, which

are slabs with unbranching medial locus. Each figure consists of a sheet of order 1 medial

atoms. Single figures in 2D consist of 1D curve segment of atoms, and single figures

in 3D consist of a 2D surface-with-boundary of atoms. The objects considered in this

dissertation are all 3D single figure models (see Fig. 3.6), and they are the focus of this

review. However, more complex models, i.e., models consisting of multiple figures and

models consisting of collections of objects, are briefly reviewed.

Recall that an atom on the edge of the continuous medial locus has a single spoke

with third order contact with the object boundary, i.e., an A3 point. However, a single
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Figure 3.6: Two single figure m-rep models: a kidney (left) and a hippocampus (right).

Figure 3.7: A 3D medial end atom, showing the portion of the boundary crest implied
by the atom.
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Figure 3.8: The figural coordinate directions (u, v, t, τ) demonstrated on an m-rep model
of the hippocampus. Sample order 1 medial atoms on the sheet are also shown.

point of contact can be an unstable feature for image analysis tasks. The representation

can be stabilized by restricting each edge point of the medial locus to lie along the b

vector of a medial atom shifted back from the edge curve. An end atom (see Fig. 3.7)

is a special type of order 1 medial atom that models this atom shifted back from the

edge of the medial locus. It has an extra spoke in the bisector direction, b, along which

the true edge of the medial locus lies. This extra spoke points to the crest of the implied

boundary and has length ηr, where η is a parameter in the interval [1, 1/ cos(θ)]. A value

of η = 1 gives a circular end cap, while at the other extreme a value of η = 1/ cos(θ)

gives a sharp corner.

Figural Coordinates

An m-rep sheet should be thought of as representing a continuous branch of medial

atoms with associated continuous implied boundary. This continuous sheet of medial

atoms can be parameterized by two real parameters (u, v). The choice of this parameter-

ization may depend on the need to make comparisons at corresponding points between

similar objects. In this case parameterizations that are in one-to-one correspondence

are chosen. This correspondence can be based on geometric properties of the objects,

or it can be chosen with the desire to build optimal statistical models of a population.

A full discussion of these correspondence issues is beyond the scope of this review, and

it is assumed from here on that some (u, v) parameterization for the medial locus is

given. Since each internal medial atom in a single figure implies two boundary points,

an extra parameter t ∈ {−1, 1} can be added to extend the medial coordinates to a

parameterization (u, v, t) of the implied boundary.



52

Figure 3.9: Left: the hinge arrangement of a subfigure with the subfigure on top and par-
ent figure on bottom. Right top: a protrusion subfigure. Right bottom: an indentation
subfigure. (This figure is courtesy of Qiong Han and appears in [55].)

The figural coordinates further extend the implied boundary coordinates to a param-

eterization of the space inside and just outside the m-rep figure. A figural coordinate

(see Fig. 3.8) is a tuple (u, v, t, τ), where the τ parameter gives the r-proportional

signed distance of the point in question from the surface point at (u, v, t). That is, τ is

given as the signed distance along the normal to the surface at (u, v, t) divided by the r

value at (u, v, t). This coordinate system is valid inside the entire solid represented by

the m-rep figure (i.e., each point has a unique coordinate). It is also valid outside the

figure’s boundary up to the exterior shock set of the distance function to the boundary.

Therefore, it is valid for all of R3 when the figure is convex. An important feature of

the figural coordinate system is that the coordinates are invariant under translations,

rotations, and scalings of the object. This makes the figural coordinate system an ideal

parameterization when dealing with shape properties. Also, if one object is represented

as a deformation of the medial representation of another object, the figural coordinates

of the two objects are in one-to-one correspondence. This is useful, for example, during

segmentation in comparing image intensity values of the target image with the image

intensity values of a training image with respect to the current m-rep object.
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Multi-figure Objects and Multi-object Complexes

For objects consisting of multiple figures (see Fig. 3.9), the object’s figures are arranged

in a hierarchical fashion, i.e., a tree or directed acyclic graph (DAG). A parent figure in

the tree represents a more substantial part of the object, and a child figure represents a

protrusion or indentation of its parent figure. Protrusions are figures that add material to

an object, while indentations are figures that subtract material from an object. To make

the representation focus on the portions of the object with the major internal substance,

a child figure, also called a subfigure, is attached to its parent by a curve segment of

its edge curve, called a hinge. The resulting implied boundary subdivision surfaces

are blended using a method described in [55]. The figural coordinates of the subfigure

arrangement include the figural coordinates of the parent, the figural coordinates of

the child, and an extra blend coordinate w that parameterizes the blend area between

the parent and child. More details about the geometry and segmentation process for

multi-figure models can be found in [55].

Sometimes one wishes to represent and then segment multiple disconnected objects

at the same time. An example is the cerebral ventricles, hippocampus, and caudate

in which the structures are related but one is not a protrusion or an indentation on

another. Another example are the pair of kidneys and the liver. In the m-reps system

these can be connected by one or more links between the representations of the respective

objects, allowing the position of one figure to predict boundary positions of the other.

This matter is explained in detail in a paper covering the segmentation of multi-object

complexes [43].

Mesh-Based M-reps

In 3D a single figure object can be represented by a quadrilateral mesh mij of order

1 medial atoms (see Fig. 3.6). Atoms on the edge of the mesh are represented by

end atoms with three spokes as described above. The atoms in an m-rep mesh can be

thought of as control points implying a full continuous sheet of order 1 medial atoms.

The continuous medial locus extends beyond the end atoms to the curve of A3 atoms

osculating the crest of the implied object’s boundary. In multi-figure models the hinge

curve of a subfigure is represented as one edge of the subfigure’s quadrilateral mesh of

medial atoms.

The implied boundary of an m-rep figure is interpolated from the boundary points

(y0, y1) and corresponding normals (n0, n1) implied by the medial atoms. This also
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includes the crest points implied by the third spokes of the end atoms. The surface

interpolation used is due to Thall [123, 124] and is an extension of the Catmull-Clark

subdivision method [22]. As a result of this interpolation, each boundary point can be

associated a boundary figural coordinate (u, v, t), where the parameter t ∈ [−1, 1] is

equal to either −1 or 1 for internal atoms to distinguish between the two spoke ends.

At end atoms the t parameter transitions continuously from −1 to 1 around the crest.

Spline-Based M-reps

Yushkevich et al. [131,132] describe a medial representation built on a continuous spline

model of the medial locus of an object. This in turn implies a continuous boundary

of the object as well as a parameterization of the interior of the object. Although

spline-based m-reps have been defined in both 2D and 3D, this review concentrates

on the 3D case. The medial locus is parameterized as a pair of continuous functions

(x(u, v), r(u, v)), where x is the medial position and r is the associated radius field.

These functions are represented as b-spline surfaces. They are determined by control

points (xij, rij) : 0 ≤ i ≤ d1, 0 ≤ j ≤ d2 and given by the b-spline formulas

x(u, v) =

d1∑
i=0

d2∑
j=0

N3
i (u)N3

j (v)xij,

r(u, v) =

d1∑
i=0

d2∑
j=0

N3
i (u)N3

j (v)rij,

where N3
i are third-order b-spline basis functions (see [38]).

The control points (xij, rij) can be thought of as order 0 medial atoms. However,

order 1 medial atoms can be produced at each point in the continuous medial locus

by using the first partial derivatives xu, xv, ru, rv of the b-spline functions. The spoke

directions of the order 1 medial atoms are given by the functions

n0 = −∇r +
√

1− ‖∇r‖2 n, n1 = −∇r −
√

1− ‖∇r‖2 n,

where n = xu×xv/‖xu×xv‖ is the unit surface normal to x. The gradient of the radius

is given by the formula

∇r = [xuxv]I−1

[
ru

rv

]
,
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where I is the metric tensor on the surface x, i.e.,

I =

[
〈xu, xu〉 〈xu, xv〉
〈xu, xv〉 〈xv, xv〉

]
.

The b-spline medial locus must satisfy several constraints to ensure that it implies a

valid, non-folding boundary surfaces. First, it must satisfy the constraint that ‖∇r‖ < 1

in the interior of the medial sheet. Second, the implied boundary must be constrained

to not crease or fold by ensuring that the Jacobian of the medial-to-boundary mapping

remains positive. Finally, the medial locus must be a manifold with boundary, where

the edge curve of A3 medial atoms satisfies the constraint ‖∇r‖ = 1. This last condition

is achieved by setting the edge of the control point grid to large negative radii, while the

interior control points all have positive radii. This causes the level curve of ‖∇r‖ = 1 to

lie within the b-spline surface. The surfaces is then trimmed along this curve, resulting

in the desired edge for the medial sheet.

Segmentation via Deformable M-reps

Following the deformable models paradigm, a 3D m-rep model M is deformed into an

image I(x, y, z) by optimizing an objective function, which is defined as

F (M, I) = L(M, I) + α G(M).

The function L, the image match, measures how well the model matches the image

information, while G, the geometric typicality, gives a prior on the possible variation of

the geometry of the model. The relative importance of the two terms is weighted by

the non-negative real parameter α. The segmentation strategy described in this review

is from Pizer et al. [102] and also developed in previous papers [101, 66]. One of the

main contribution of this thesis, described later in Chapter 5, builds on this segmentation

strategy by incorporating geometric statistics. This includes using a statistical geometric

prior for the geometric typicality and using figural deformations based on the statistical

modes of variation.

This objective function is optimized in a multiscale fashion. That is, it is optimized

over a sequence of transformations that are successively finer in scale. In this review

only segmentation of single figures is considered, which includes three levels of scale:

the figural level, the medial atom level, and the dense boundary sampling level. At each

scale level the deformations are defined as transformations of the current primitives,
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either figures, medial atoms, or boundary points. The model is first initialized by the

user placing a template model into the image I using a global translation, rotation,

and scaling. At the figural level the transformation used is a similarity transformation

plus an elongation of the entire figure. More generally, the figural stage transformation

can be any operation that acts globally on the figure, such as an atom transformation

applied to each atom in the figure. At the atom level each medial atom is independently

transformed by a translation of the medial position, a 3D rotation of the frame, a scaling

of the radius, and a rotation of the object angle. In the boundary stage each boundary

point is displaced along its corresponding normal direction.

The computation of the image match term in the objective function is based on

a a template model M̂. Image values in a template image Î at a particular figural

coordinate of the template model are compared to image values in the target image I

at the corresponding figural coordinate of the candidate model. The image match term

of the objective function is computed as a correlation over a collar (±ε in the normal

direction) about the object boundary:

L(M, I) =

∫
B

∫ ε

−ε

G(t)Î (̂s + (t/r̂)n̂) I (s + (t/r)n) dt dw.

In this equation a hat (̂ ) always denotes an entity associated with the template model

M̂, and the same entities without a hat are associated with the candidate model M.

The parameter w = (u, v, t) is a figural boundary coordinate, B is the parameter domain

of the boundary coordinates. The following are functions of the boundary figural coor-

dinate w: s, ŝ are parameterizations of the boundaries, r, r̂ are the radius functions, and

n, n̂ are the boundary normals. The function Gσ is the Gaussian kernel with standard

deviation σ. The Gaussian kernel is used to weight the importance of the image match

so that features closer to the boundary are given higher weight. The values for the

collar width and Gaussian standard deviation have been set by experience to ε = 0.3

and σ = 0.15.

The geometric typicality term G consists of two terms. Each term is computed using

r-proportional squared distances. The first term, denoted by P , measures the total

amount of change in the object boundary during the current stage. The second term,

denoted by N , measures the difference between the boundary of the candidate and the

boundary of the candidate replacing the current primitive with the prediction of its

neighbors. This neighbor term enforces a local consistency between model primitives.
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The geometric typicality term is defined as

G(M) = (1− β) P (M) + β N(M),

where β ∈ [0, 1] is a weighting term. The function P measures the change in the

boundary from the previous level of scale in r-proportional terms:

P (M) = −
∫
B(M)

||s− s0||2

r2
ds,

where s0 is the initial position of the boundary at this scale level. The function N

seeks to keep primitives in the same relationship with their neighboring primitives. It

is defined as

N(M) = −
∫
B(M)

||s− s′||2

r2
ds,

where now s′ is the boundary surface of the model in which the current primitive is in

the position predicted by its neighbors. For single-figure models there is no neighbor

primitive at the figural stage. Therefore, the neighbor term is zero, i.e., β = 0, during

the figural level. For the atom scale level each medial atom’s neighbors are the adjacent

atoms in the grid (4 neighbors for internal atoms, 3 for edge atoms, and 2 for the

corner atoms). The neighbor term at the boundary scale level comes from comparing a

boundary point to the prediction by its neighbors in the boundary mesh. This prediction

is given by an average of the neighboring points.

3.4 Diffusion Tensor Imaging

The statistical methods introduced in this dissertation are shown in Chapter 6 to have

application in the statistical analysis of diffusion tensor images. This section is a review

of diffusion tensor imaging. It begins with a description of diffusion tensor imaging and

Brownian motion. Several quantitative measures derived from diffusion tensors are then

discussed. Finally, the clinical applicability of diffusion tensor imaging is reviewed, as

well as research issues such as regularization, fiber tracking, and statistical studies.

Diffusion tensor magnetic resonance imaging (DT-MRI), developed at NIH by Peter

Basser et al. [3], measures the random 3D motion of water molecules, i.e., the diffusion

of water. It produces a 3D diffusion tensor, that is, a 3× 3, symmetric, positive-definite

matrix, at each voxel of an 3D imaging volume. Recall that a matrix A is symmetric if

A = AT , and it is positive-definite if xT Ax > 0 for all nonzero vectors x. This tensor
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is the covariance in a Brownian motion model of the diffusion of water at that voxel.

In homogeneous materials water tends to diffuse isotropically, that is, equally in all

directions. For example, if a drop of dye is placed in water, it will slowly spread out

equally in all directions. However, in fibrous materials, such as skeletal muscle, cardiac

muscle, and brain white matter, water molecules tend to diffuse faster in the directions

parallel to the fibers and slower in the directions perpendicular to the fibers. Therefore,

DT-MRI can give important information about the microstructure of fibrous tissues in

the body. In brain imaging DT-MRI is used to track white matter fibers and establish

connectivity properties of the brain.

Brownian motion was first discovered by the biologist Robert Brown in 1827 [16].

He noticed that small pollen particles demonstrated a seemingly random, jittery, motion

when suspended in water. However, a mathematical model of Brownian motion was not

developed until 1905 by Albert Einstein [37]. Einstein showed that Wiener processes

provide a reasonable model of Brownian motion (although more accurate and more

complicated physical models appeared later). A Wiener process is a random process

w(t) of time t that satisfies the following two axioms:

1. w(t)− w(s) ∼ N(0, (t− s)Σ).

2. w(t) − w(s) and w(v) − w(u) are independent random variables for 0 ≤ s ≤ t ≤
u ≤ v.

For DT-MRI the Wiener process w(t) is a function giving the 3D position of a molecule

under diffusion. The axioms state that the incremental motion of a particle is governed

by a normal distribution at each point in space, and that the motion is independent of

any previous movement of the particle. The covariance Σ is a 3×3 symmetric, positive-

definite matrix, which can take different values at different locations in space. This

covariance matrix is what is measured by DT-MRI at each voxel of an image.

The quantitative measurements derived from diffusion tensors that people have used

can be roughly broken down into two categories: size and shape measurements. An

important aspect of these measurements is that they should be independent of the

laboratory coordinate system. That is, a derived measurement should be invariant to

translation and rotation of the diffusion tensor. First of all, diffusion tensors themselves

are invariant to translation (a translated diffusion tensor is the same tensor, just at

a different point). Therefore, it suffices to consider only rotational invariance. If the

coordinate system is rotated by a matrix R ∈ SO(3), a diffusion tensor D will be
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transformed to the tensor D′ by the equation

D′ = RDRT .

The eigenvalues λ1, λ2, λ3 of D are left invariant under this operation. Therefore, any

combination of the eigenvalues is an invariant measurement of the tensor D. This leads

to two measurements of the size of a diffusion tensor. The first size measurement, the

mean diffusivity is given by the average of the eigenvalues,

〈D〉 = (1/3)(λ1 + λ2 + λ3).

The second measurement of size is the determinant of the diffusion tensor, given by the

product of its eigenvalues,

det(D) = λ1λ2λ3.

Measurements of the shape of a diffusion tensor depend on the relative magnitudes

of the eigenvalues. There are two common anisotropy measures, which measure how

far the diffusion tensor is from being isotropic. They are both based on the standard

deviation of the eigenvalues of D, given by

σ(D) = (1/
√

3)
√

(λ1 − 〈D〉)2 + (λ2 − 〈D〉)2 + (λ2 − 〈D〉)2.

The first anisotropy measure, known as the relative anisotropy (RA), is given by

the ratio of the standard deviation of the eigenvalues of D with the average of the

eigenvalues, that is,

RA(D) =
σ(D)

〈D〉
.

The second anisotropy measure, known as the fractional anisotropy (FA), is similar

to the RA, except the denominator is the magnitude of the tensor under the Frobenius

matrix norm, ‖D‖ =
√

λ2
1 + λ2

2 + λ2
3. The FA is given by

FA(D) =

√
6

2

σ(D)

‖D‖
.

Diffusion tensor imaging has shown promise in several clinical studies of the brain.

See the paper by Le Bihan et al. [7] for a review. Ischemic areas of the brain, that is,

areas with decreased blood supply, in stroke patients have demonstrated lower diffusivity

[89, 110, 127]. Thus, DT-MRI could help doctors understand which areas of the brain
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have been damaged and might be salvageable in the first hours after a stroke. DT-

MRI has shown promise in diagnosing diseases such as multiple sclerosis [126, 130] and

Alzheimer’s [57, 56]. The health of the brain white matter can be assessed using the

derived measures of the diffusion tensor. The diffusivity measures tell the overall content

of water in the tissue, and the anisotropy measures indicate the health of the myelin

fibers. Also, studies have shown that DT-MRI could be used to assess the growth and

maturity of white matter in the newborn brain [93,134].

From the perspective of the image analyst, diffusion tensor images present many

new and interesting issues including visualization, regularization, fiber tracking, and

statistical analysis of diffusion tensor data. A major challenge in these applications is

that diffusion tensor images contain 6-dimensional tensors at each voxel rather than a

single value per voxel found in other modalities. Several authors have addressed the

problem of estimation and smoothing within a DT image [23,28,133].

Further insights might be had from the use of diffusion tensor imaging in intersubject

studies. Statistical brain atlases have been used in the case of scalar images to quantify

anatomical variability across patients. However, relatively little work has been done

towards constructing statistical brain atlases from diffusion tensor images. Alexander

et al. [1] describe a method for the registration of multiple DT images into a common

coordinate frame, however, they do not include a statistical analysis of the diffusion

tensor data. Previous attempts [4, 98] at statistical analysis of diffusion tensors within

a DT image are based on a Gaussian model of the linear tensor coefficients.



Chapter 4

Manifold Statistics

This chapter1 presents a novel framework for computing the statistical variability of

data on general manifolds. Principal component analysis is a standard technique for

describing the statistical variability of data in Euclidean space Rn. The method pre-

sented in this chapter, called principal geodesic analysis (PGA), is a natural extension

of principal component analysis to manifold-valued data.

In Section 4.1 we review existing definitions for the mean of manifold-valued data.

The definition of the mean used in this work is intrinsic to the geometry of the mani-

fold. In Section 4.2 we present principal geodesic analysis for describing the variability

of data on manifolds. This is based on generalizing the definition of principal com-

ponent analysis, using either the variance-maximizing or least-squares definition. We

give an algorithm for computing principal geodesic analysis as well as an algorithm for

efficiently approximating it. Finally, we demonstrate implementations of both the PGA

and approximation to PGA algorithms on the sphere S2.

4.1 Means on Manifolds

The first step in extending statistical methods to manifolds is to define the notion of

a mean value. In this section we describe two different notions of means on manifolds

called intrinsic and extrinsic means, and we argue that the intrinsic mean is a preferable

definition. We then present a method for computing the intrinsic mean of a collection

of data on a manifold. Throughout this section we consider only manifolds that are

connected and have a complete Riemannian metric.

1The work presented in this chapter was done in collaboration with Dr. Sarang Joshi, Dr. Conglin
Lu, and Dr. Stephen Pizer at the University of North Carolina. This chapter contains parts of the
paper [42] and is also based on the previous papers [40,41].
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4.1.1 Intrinsic vs. Extrinsic Means

Given a set of points x1, . . . , xN ∈ Rn, the arithmetic mean x̄ = 1
N

∑N
i=1 xi is the point

that minimizes the sum-of-squared Euclidean distances to the given points, i.e.,

x̄ = arg min
x∈Rn

N∑
i=1

||x− xi||2.

Since a general manifold M may not form a vector space, the notion of an additive

mean is not necessarily valid. However, like the Euclidean case, the mean of a set

of points on M can be formulated as the point which minimizes the sum-of-squared

distances to the given points. This formulation depends on the definition of distance.

One way to define distance on M is to embed it in a Euclidean space and use the

Euclidean distance between points. This notion of distance is extrinsic to M , that is,

it depends on the ambient space and the choice of embedding. Given an embedding

Φ : M → Rn, define the extrinsic mean [53] of a collection of points x1, . . . , xN ∈ M as

µΦ = arg min
x∈M

N∑
i=1

||Φ(x)− Φ(xi)||2.

Given the above embedding of M , we can also compute the arithmetic (Euclidean)

mean of the embedded points and then project this mean onto the manifold M . This

projected mean is equivalent to the above definition of the extrinsic mean (see [116]).

Define a projection mapping π : Rn → G as

π(x) = arg min
y∈M

||Φ(y)− x||2.

Then the extrinsic mean is given by

µΦ = π
( 1

N

N∑
i=1

Φ(xi)
)
.

A more natural choice of distance is the Riemannian distance on M . This definition

of distance depends only on the intrinsic geometry of M . We now define the intrinsic

mean of a collection of points x1, . . . , xN ∈ M as the minimizer in M of the sum-of-
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squared Riemannian distances to each point. Thus the intrinsic mean is

µ = arg min
x∈M

N∑
i=1

d(x, xi)
2, (4.1)

where d(·, ·) denotes Riemannian distance on M . This is the definition of a mean value

that we use in this paper.

The idea of an intrinsic mean goes back to Fréchet [44], who defines it for a general

metric space. The properties of the intrinsic mean on a Riemannian manifold have

been studied by Karcher [67]. Moakher [88] compares the properties of the intrinsic and

extrinsic mean for the group of 3D rotations. Since the intrinsic mean is defined in (4.1)

as a minimization problem, its existence and uniqueness are not ensured. However,

Kendall [74] shows that the intrinsic mean exists and is unique if the data is well-

localized.

We argue that the intrinsic mean definition is preferable over the extrinsic mean. The

intrinsic mean is defined using only the intrinsic geometry of the manifold in question,

that is, distances that are dependent only on the Riemannian metric of the manifold.

The extrinsic mean depends on the geometry of the ambient space and the imbedding

Φ. Also, the projection of the Euclidean average back onto the manifold may not be

unique if the manifold has negative sectional curvatures.

4.1.2 Computing the Intrinsic Mean

Computation of the intrinsic mean involves solving the minimization problem in (4.1).

We will assume that our data x1, . . . , xn ∈ M lies in a sufficiently small neighborhood

so that a unique solution is guaranteed. We must minimize the sum-of-squared distance

function

f(x) =
1

2N

N∑
i=1

d(x, xi)
2.

We now describe a gradient descent algorithm, first proposed by Pennec [100], for mini-

mizing f . Using the assumption that the xi lie in a strongly convex neighborhood, i.e.,

a neighborhood U such that any two points in U are connected by a unique geodesic

contained completely within U , Karcher [67] shows that the gradient of f is

∇f(x) = − 1

N

N∑
i=1

Logx(xi).
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The gradient descent algorithm takes successive steps in the negative gradient direction.

Given a current estimate µj for the intrinsic mean, the equation for updating the mean

by taking a step in the negative gradient direction is

µj+1 = Expµj

(
τ

N

N∑
i=1

Logµj
(xi)

)
,

where τ is the step size.

Because the gradient descent algorithm only converges locally, care must be taken

in the choices of the initial estimate of the mean µ0 and the step size τ . Since the

data is assumed to be well-localized, a reasonable choice for the initial estimate µ0 is

one of the data points, say x1. The choice of τ is somewhat harder and depends on

the manifold M . Buss and Fillmore [18] prove for data on spheres, a value of τ = 1 is

sufficient. Notice that if M is a vector space, the gradient descent algorithm with τ = 1

is equivalent to linear averaging and thus converges in a single step. If M = R+, the

Lie group of positive reals under multiplication, the algorithm with τ = 1 is equivalent

to the geometric average and again converges in a single step.

In summary we have the following algorithm for computing the intrinsic mean of

manifold data:

Algorithm 4.1: Intrinsic Mean

Input: x1, . . . , xN ∈ M

Output: µ ∈ M , the intrinsic mean

µ0 = x1

Do

∆µ = τ
N

∑N
i=1 Logµj

xi

µj+1 = Expµj
(∆µ)

While ||∆µ|| > ε.

4.2 Principal Geodesic Analysis

Although averaging methods on manifolds have previously been studied, principal com-

ponent analysis has not been developed for manifolds. We present a new method called

principal geodesic analysis (PGA), a generalization of principal component analysis

to manifolds. We start with a review of PCA in Euclidean space. Consider a set of

points x1, . . . , xN ∈ Rn with zero mean. Principal component analysis seeks a sequence

of linear subspaces that best represent the variability of the data. To be more precise,
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the intent is to find an orthonormal basis {v1, . . . , vn} of Rn, which satisfies the recursive

relationship

v1 = arg max
||v||=1

N∑
i=1

(v · xi)
2, (4.2)

vk = arg max
||v||=1

N∑
i=1

k−1∑
j=1

(vj · xi)
2 + (v · xi)

2. (4.3)

In other words, the subspace Vk = span({v1, . . . , vk}) is the k-dimensional subspace

that maximizes the variance of the data projected to that subspace. The basis {vk} is

computed as the set of ordered eigenvectors of the sample covariance matrix of the data.

Now turning to manifolds, consider a set of points x1, . . . , xN on a manifold M .

Our goal is to describe the variability of the xi in a way that is analogous to PCA.

Thus we will project the data onto lower-dimensional subspaces that best represent the

variability of the data. This requires first extending three important concepts of PCA

into the manifold setting:

• Variance. Following the work of Fréchet, we define the sample variance of the

data as the expected value of the squared Riemannian distance from the mean.

• Geodesic subspaces. The lower-dimensional subspaces in PCA are linear sub-

spaces. For general manifolds we extend the concept of a linear subspace to that

of a geodesic submanifold.

• Projection. In PCA the data is projected onto linear subspaces. We define a

projection operator for geodesic submanifolds, and show how it may be efficiently

approximated.

We now develop each of these concepts in detail.

4.2.1 Variance

The variance σ2 of a real-valued random variable x with mean µ is given by the formula

σ2 = E [(x− µ)2],

where E denotes expectation. It measures the expected localization of the variable x

about the mean. When dealing with a vector-valued random variable x in Rn with mean
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µ, the variance is replaced by a covariance matrix

Σ = E [(x− µ)(x− µ)T ].

However, this definition is not valid for general manifolds again since vector space op-

erations do not exist for such spaces.

The definition of variance we use comes from Fréchet [44], who defines the variance

of a random variable in a metric space as the expected value of the squared distance

from the mean. That is, for a random variable x in a metric space with intrinsic mean

µ, the variance is given by

σ2 = E [d(µ, x)2].

Thus given data points x1, . . . , xN on a complete, connected manifold M , we define the

sample variance of the data as

σ2 =
1

N

N∑
i=1

d(µ, xi)
2 =

1

N

N∑
i=1

||Logµ(xi)||2, (4.4)

where µ is the intrinsic mean of the xi.

If M is a vector space, the variance definition in (4.4) is given by the trace of the

sample covariance matrix, i.e., the sum of its eigenvalues. It is in this sense that this

definition captures the total variation of the data.

4.2.2 Geodesic Submanifolds

The next step in generalizing PCA to manifolds is to generalize the notion of a linear

subspace. A geodesic is a curve that is locally the shortest path between points. In

this way a geodesic is the generalization of a straight line. Thus it is natural to use

a geodesic curve as the one-dimensional subspace that provides the analog of the first

principal direction in PCA.

In general if N is a submanifold of a manifold M , geodesics of N are not necessarily

geodesics of M . For instance the sphere S2 is a submanifold of R3, but its geodesics are

great circles, while geodesics of R3 are straight lines. A submanifold H of M is said to

be geodesic at x ∈ H if all geodesics of H passing through x are also geodesics of M . For

example a linear subspace of Rn is a submanifold geodesic at 0. Submanifolds geodesic

at x preserve distances to x. This is an essential property for PGA because variance

is defined as the average squared distance to the mean. Thus submanifolds geodesic at
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the mean will be the generalization of the linear subspaces of PCA.

4.2.3 Projection

The projection of a point x ∈ M onto a geodesic submanifold H of M is defined as the

point on H that is nearest to x in Riemannian distance. Thus we define the projection

operator πH : M → H as

πH(x) = arg min
y∈H

d(x, y)2. (4.5)

Since projection is defined by a minimization, there is no guarantee that the projection

of a point exists or that it is unique. However, by restricting to a small enough neighbor-

hood about the mean, we can be assured that projection is unique for any submanifold

geodesic at the mean.

4.2.4 Defining Principal Geodesic Analysis

We are now ready to define principal geodesic analysis for data x1, . . . , xN on a con-

nected, complete manifold M . Our goal, analogous to PCA, is to find a sequence of

nested geodesic submanifolds that maximize the projected variance of the data. These

submanifolds are called the principal geodesic submanifolds.

Let TµM denote the tangent space of M at the intrinsic mean µ of the xi. Let

U ⊂ TµM be a neighborhood of 0 such that projection is well-defined for all geodesic

submanifolds of Expµ(U). We assume that the data is localized enough to lie within

such a neighborhood. The principal geodesic submanifolds are defined by first con-

structing an orthonormal basis of tangent vectors v1, . . . , vn ∈ TµM that span the tan-

gent space TµM . These vectors are then used to form a sequence of nested subspaces

Vk = span({v1, . . . , vk})∩U . The principal geodesic submanifolds are the images of the

Vk under the exponential map: Hk = Expµ(Vk). The first principal direction is chosen

to maximize the projected variance along the corresponding geodesic:

v1 = arg max
||v||=1

N∑
i=1

||Logµ(πH(xi))||2, (4.6)

where H = Expµ(span({v}) ∩ U).
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The remaining principal directions are defined recursively as

vk = arg max
||v||=1

N∑
i=1

||Logµ(πH(xi))||2, (4.7)

where H = Expµ(span({v1, . . . , vk−1, v}) ∩ U).

4.2.5 An Alternative Definition of PGA

Recall from Section 3.1.3 that principal component analysis may be defined in two

different ways, both giving the same end result. Thus far, we have based the definition

of principal geodesic analysis on generalizing the variance maximization approach to

PCA. In this section we describe an alternative definition of PGA based on generalizing

the other approach to PCA, namely, the least-squares approach.

The least-squares approach to PCA of a collection of data x1, . . . , xN ∈ Rn seeks a

sequence of linear subspaces that are closest to the data in a least-squares sense. These

subspaces are generated from an orthonormal basis {v1, . . . , vn} of Rn, which satisfies

the recursive relationship

v1 = arg min
‖v‖=1

N∑
i=1

‖xi − 〈v, xi〉 v‖2,

vk = arg min
‖v‖=1

N∑
i=1

∥∥∥xi −
k−1∑
j=1

〈vj, xi〉 vj + 〈v, xi〉 v
∥∥∥2

.

In other words, the subspace Vk = span({v1, . . . , vk}) is the k-dimensional subspace that

minimizes the sum-of-squared distances to the data.

We now want to define principal geodesic analysis of data x1, . . . , xN on a manifold M

by generalizing this least-squares approach. The least-squares distance is defined using

geodesic distances on the manifold. Using the same notation as in the previous subsec-

tion, we define principal geodesic submanifolds via subspaces Vk = span({v1, . . . , vk})
of the tangent space TµM . The principal geodesic submanifolds are again given by

Hk = Expµ(Vk). The first principal direction is now chosen to minimize the sum-of-

squared distance of the data to the corresponding geodesic:

v1 = arg max
||v||=1

N∑
i=1

||Logxi
(πH(xi))||2,

where H = Expµ(span({v}) ∩ U).
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The remaining principal directions are defined recursively as

vk = arg max
||v||=1

N∑
i=1

||Logxi
(πH(xi))||2,

where H = Expµ(span({v1, . . . , vk−1, v}) ∩ U).

The only difference in these equations from the variance approach given in (4.6) and

(4.7) is that the base point for the Log is xi rather than µ.

The question immediately arises: is the least-squares approach to PGA equivalent

to the maximum variance definition? For data in Rn the two definitions are equivalent

since PGA reduces to PCA in the linear case. The question remains unsolved for more

general manifolds. This issue is discussed further in the future work section in Chapter

7.

4.2.6 Approximating Principal Geodesic Analysis

Exact computation of PGA, that is, solution of the minimizations (4.6) and (4.7), re-

quires computation of the projection operator πH . However, the projection operator

does not have a closed-form solution for general manifolds. Projection onto a geodesic

submanifold can be approximated linearly in the tangent space of M . Let H ⊂ M be

a geodesic submanifold at a point p ∈ M and x ∈ M a point to be projected onto H.

Then the projection operator is approximated by

πH(x) = arg min
y∈H

||Logx(y)||2

≈ arg min
y∈H

||Logp(x)− Logp(y)||2.

Notice that Logp(y) is simply a vector in TpH. Thus we may rewrite the approximation

in terms of tangent vectors as

Logp (πH(x)) ≈ arg min
v∈TpH

||Logp(x)− v||2.

But this is simply the minimization formula for linear projection of Logp(x) onto the

linear subspace TpH. So, if v1, . . . , vk is an orthonormal basis for TpH, the projection
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operator can be approximated by the formula

Logp (πH(x)) ≈
k∑

i=1

〈vi, Logp(x)〉. (4.8)

Analyzing the quality of the approximation to the projection formula (4.8) is difficult

for general manifolds. It is obviously gives the exact projection in the case of Rn. For

other manifolds of constant curvature, such as spheres, Sn, and hyperbolic spaces, Hn,

the projection formula can be computed exactly in closed form. This makes it possible

to get an idea of how well the linear approximation does in these cases. The error

computations for the sphere S2 are carried out at the end of this subsection as an

example.

If we use (4.8) to approximate the projection operator πH in (4.6) and (4.7), we get

v1 ≈ arg max
‖v‖=1

N∑
i=1

〈v, Logµ(xi)〉2,

vk ≈ arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

〈vj, Logµ(xi)〉2 + 〈v, Logµ(xi)〉2.

The above minimization problem is simply the standard principal component analysis

in TµM of the vectors Logµ(xi), which can be seen by comparing the approximations

above to the PCA equations, (4.2) and (4.3). Thus an algorithm for approximating the

PGA of data on a manifold is given by

Algorithm 4.2: Principal Geodesic Analysis

Input: x1, . . . , xN ∈ M

Output: Principal directions, vk ∈ TµM

Variances, λk ∈ R
µ = intrinsic mean of {xi} (Algorithm 4.1)

ui = Logµ(xi)

S = 1
N

∑N
i=1 uiu

T
i

{vk, λk} = eigenvectors/eigenvalues of S.

Now we demonstrate the error computations for the projection operator in the special

case of the sphere S2. Let H be a geodesic (i.e., a great circle) through a point p ∈ S2.

Given a point x ∈ S2, we wish to compute its true projection onto H and compare that

with the approximation in the tangent space TpS
2. Thus we have the spherical right

triangle as shown in Fig. 4.1. We know the hypotenuse length c = d(p, x) and the angle
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θ
µ

x

a

c

b

Figure 4.1: The spherical triangle used in the calculation of the projection operator for
S2.

θ, and we want to derive the true projection, which is given by the side length a. We

use the following two relations from the laws of spherical trigonometry:

cos c = (cos a)(cos b),

sin b

sin θ
= sin c.

Solving for a in terms of the hypotenuse c and the angle θ, we have

a = arccos

(
cos c√

1− (sin θ sin b)2

)
.

The tangent-space approximation in (4.8) is equivalent to solving for the corresponding

right triangle in R2. Using standard Euclidean trigonometry, the tangent-space approx-

imation (4.8) gives

a ≈ c cos θ.

For nearby data, i.e., small values for c, this gives a good approximation. For example,

for c < π
4

the maximum absolute error is 0.07rad. However, the error can be significant

for far away points, i.e., as c approaches π
2
.

4.3 Conclusions

In this chapter we have presented principal geodesic analysis, a new methodology for

analyzing the statistical variability of data on a manifold. We reviewed two definitions
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of a mean value on a manifold, the intrinsic and extrinsic mean, and we argued that

the intrinsic mean was preferable. Principal geodesic analysis is defined as a direct

generalization of principal component analysis using either a variance maximizing or

least-squares approach. We gave an algorithm for computing an approximation to PGA

in the tangent space to the mean.

The methods is this chapter will be applied to medial representations in Chapter 5,

with the application of using the statistics as a geometric prior in a Bayesian deformable

models segmentation method. In Chapter 6 we will apply PGA to the study of diffusion

tensor data, with the driving application to study the statistical variability diffusion

tensor images across patient populations.

There are several theoretical questions about principal geodesic analysis that remain

to be solved. They are

1. Are the two definitions for PGA, variance maximization and least-squares, equiv-

alent?

2. Is the greedy, i.e., recursive, approach the finding the vk in (4.6) and (4.7) equiv-

alent to finding each subspace Vk independently?

3. If the Vk are found independently, are they even subsets of one another, i.e., do

they satisfy Vk ⊂ Vk+1?

Another open problem is an algorithm for computing principal geodesic analysis

exactly when the projection operator is known in closed form. These issues will be

discussed further in the future work section of Chapter 7.



Chapter 5

Statistics of M-reps

In this chapter1 we apply the statistical framework presented in the previous chapter

for general manifolds to the statistical analysis of m-rep models of anatomical objects.

Throughout this chapter we use the mesh-based medial representation with order 1

medial atoms as described in Section 3.3.2. Thus the term “m-rep model” will always

refer to this type of medial representation. We first show in Section 5.1 that the space of

m-rep models containing n medial atoms is a symmetric space that we denote by M(n).

As is the case with other shape analysis methods, since we are interested in studying

the variability of shape alone, we must first align the models to a common position,

orientation, and scale. In Section 5.2 we present an m-rep alignment algorithm that

minimizes the sum-of-squared geodesic distances between models, i.e., has the desirable

property that it minimizes the same metric as is used in the definition of the mean and

principal geodesics, but over the global similarity transformations of alignment. Next the

mean and PGA algorithms are adapted to the specific case of m-rep models in Sections

5.3 and 5.4. The initial data is a set of m-rep models that have been fit to a particular

class of objects in a training set of images. Finally, in Section 5.5 we describe how the

statistical methods developed in this chapter give both an optimization parameter space

and a geometric prior in the Bayesian deformable m-reps segmentation method.

5.1 M-reps as Elements of a Symmetric Space

In this section it is shown that m-rep models can be parameterized as a symmetric

space. This formulation will open up m-reps to the statistical methods introduced in

1The work presented in this chapter was done in collaboration with Dr. Sarang Joshi, Dr. Conglin
Lu, and Dr. Stephen Pizer at the University of North Carolina. This chapter contains parts of the
paper [42] and is also based on the previous papers [40,41].
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the previous chapter, namely, manifold means and PGA. We then give formulas for

the Riemannian log and exponential maps that are required to be able to compute the

statistics described in the previous chapter. Finally, we describe the data set of 86 hip-

pocampus m-rep models that are used to demonstrate the methods that are presented

in later sections. Let Md(n) denote the space of all d-dimensional m-rep models con-

taining n (order 1) medial atoms. The focus in this chapter will be on the case d = 3,

so M(n) without a subscript will be used to denote the three-dimensional case. Recall

from Definition 3.5 that a three-dimensional order 1 medial atom is defined as a tuple

(x, r, n0, n1) ∈ R3 × R+ × S2 × S2. Recall that such an atom represents a position x

and two equal length vectors emanating from this position with length r and directions

n0, n1. Therefore, M(1) = R3 × R+ × S2 × S2 is the space of all possible order 1 me-

dial atoms. In general an m-rep model with n medial atoms is a point in the space

M(n) = M(1)n = (R3 × R+ × S2 × S2)n, i.e., the direct product of n copies of M(1).

As was shown in the background section on symmetric spaces (Section 2.5), each of

the space R3, R+, and S2 are symmetric spaces. Therefore, to show that M(n) is a

symmetric space it suffices to show that the direct product of symmetric spaces is also a

symmetric space. (This is a well-known fact of symmetric spaces, but a quick derivation

is given here all the same.)

Recall from Theorem 2.4 that the direct product of Lie groups is again a Lie group.

The direct product operation is also defined for mappings, as the next definition shows.

Definition 5.1. The direct product of a collection of maps fi : Xi → Yi, (1 ≤ i ≤ n),

where Xi, Yi are sets, is defined as the map (f1×· · ·×fn) : X1×· · ·×Xn → Y1×· · ·×Yn

given by

(f1 × · · · × fn)(x1, . . . , xn) = (f1(x1), . . . , fn(xn)).

Now, if Gi, (1 ≤ i ≤ n) are Lie groups with automorphisms φi : Gi → Gi, it is easy

to see that the product map φ1 × · · · × φn is an automorphism of G1 × · · · × Gn. The

next theorem now follows easily from Theorems 2.4 and 2.10.

Theorem 5.1. If Mi : 1 ≤ i ≤ n are symmetric spaces, then the direct product manifold

M = M1 × · · · ×Mn is also a symmetric space.

Proof. Since Mi is a symmetric space, by Theorem 2.11it can be written as the quotient

space Mi = Gi/Hi, where Gi is a connected Lie group, and Hi is a connected, compact

subgroup of Gi. Also, from Theorem 2.11 there is an involutive automorphism αi : Gi →
Gi that has fixed set Hi. The direct product G = (G1×· · ·×Gn) is a connected Lie group
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by Theorem 2.4, and the direct product H = (H1×· · ·×Hn) is a connected, compact Lie

subgroup of G. Also, the product map α = (α1×· · ·×αn) is an involutive automorphism

of G with fixed set H. Now, M is diffeomorphic to the Lie group quotient space G/H

because of the equivalence (G1/H1)×· · ·× (Gn/Hn) = (G1×· · ·×Gn)/(H1×· · ·×Hn).

Therefore, M satisfies the conditions to be a symmetric space given in Theorem 2.10.

5.1.1 The Exponential and Log Maps for M-reps

Before we can apply the statistical techniques for manifolds developed in the previous

chapter, we must define the exponential and log maps for the symmetric space M(n),

the space of m-rep models with n atoms. We begin with a discussion of the medial

atom space M(1) = R3 × R+ × S2 × S2. Let p = (0, 1, p0, p1) ∈ M(1) be the base

point, where p0 = p1 = (0, 0, 1) are the base points for the spherical components. The

tangent space for M(1) at the base point p can be identified with R8. We write a

tangent vector u ∈ TpM(1) as u = (x, ρ, v0, v1), where x ∈ R3 is the positional tangent

component, ρ ∈ R is the radius tangent component, and v0, v1 ∈ R2 are the spherical

tangent components. The exponential map for M(1) is now the direct product of the

exponential map for each component. The exponential map for R3 is simply the identity

map, for R it is the standard real exponential function, and for S2 it is the spherical

exponential map given in (2.5). Thus for M(1) we have

Expp(u) = (x, eρ, Expp0
(v0), Expp1

(v1)),

where the two Exp maps on the right-hand side are the spherical exponential maps.

Likewise, the log map of a point m = (x, r,n0,n1) is the direct product map

Logp(m) = (x, log r, Logp0
(n0), Logp1

(n1)),

where the two Log maps on the right-hand side are the spherical log maps given by

(2.6). Finally, the exponential and log maps for the m-rep model space M(n) are just

the direct products of n copies of the corresponding maps for the medial atom space

M(1). For end atoms there is an extra parameter η representing the elongation of the

bisector spoke that points to the crest (see Section 3.3.2). This is treated as another

positive real number under multiplication. Therefore, end atoms are represented as the

symmetric space R3×R+×S2×S2×R+. The exponential and log maps for these atoms

are just augmented with another copy of the corresponding map for R+.
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Figure 5.1: The surfaces of 16 of the 86 original hippocampus m-rep models.

Notice that the position, radius, and orientations are not in the same units. For the

PGA calculations in Section 4.2 we scale the radius and sphere components (and η for end

atoms) in the Riemannian metric to be commensurate with the positional components.

The scaling factor for both components is the average radius over all corresponding

medial atoms in the population. Thus the norm of the vector u = TpM(1) becomes

||u|| =
(
||x||2 + r̄2(ρ2 + ||v1||2 + ||v2||2)

) 1
2 ,

where r̄ is the average radius over all corresponding medial atoms. Using this norm and

the formula for Riemannian distance, the distance between two atoms m1,m2 ∈ M(1)

is given by

d(m1,m2) = ||Logm1
(m2)||. (5.1)

5.1.2 The Hippocampus Data Set

The results of these techniques are demonstrated on a set of 86 m-rep models of hip-

pocampi from a schizophrenia study. A subset of 16 of these models are displayed as

surfaces in Fig. 5.1. The m-rep models were automatically generated by the method

described in [120], which chooses the medial topology and sampling that is sufficient
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to represent the population of objects. The models were fit to expert segmentations of

the hippocampi from MRI data. The average distance error from the m-rep boundary

to the original segmentation boundary ranged from 0.14mm and 0.27mm with a mean

error of 0.17mm. This is well within the original MRI voxel size (0.9375mm x 0.9375mm

1.5mm). The sampling on each m-rep was 3 × 8, making each model a point on the

symmetric space M(24). Since the dimensionality of M(1) is 8, the total number of

dimensions required to represent the hippocampus models is 192.

5.2 M-rep Alignment

To globally align objects described by boundary points to a common position, orienta-

tion, and scale, the standard method is the Procrustes method [47]. Procrustes align-

ment minimizes the sum-of-squared distances between corresponding boundary points,

the same metric used in defining the mean and principal components. We now de-

velop an analogous alignment procedure based on minimizing sum-of-squared geodesic

distances on M(n), the symmetric space of m-rep objects with n atoms.

Let S = (s,R,w) denote a similarity transformation in R3 consisting of a scaling by

s ∈ R+, a rotation by R ∈ SO(3), and a translation by w ∈ R3. We define the action

of S on a medial atom m = (x, r,n0,n1) by

S ·m = S · (x, r,n0,n1) = (sR · x + w, sr,R · n0,R · n1). (5.2)

This action is the standard similarity transform of the position x, and the scaling and

rotation of the spokes are transformations about the medial position x. Now the action

of S on an m-rep object M = {mi : i = 1, . . . , n} is simply the application of S to each

of M’s medial atoms:

S ·M = {S ·mi : i = 1, . . . , n}. (5.3)

It is easy to check from the equation for the implied boundary points (3.7) that this

action of S on M also transforms the implied boundary points of M by the similarity

transformation S.

Consider a collection M1, . . . ,MN ∈ M(n) of m-rep objects to be aligned, each

consisting of n medial atoms. We write mαi to denote the ith medial atom in the αth

m-rep object. Notice that the m-rep parameters, which are positions, orientations, and

scalings, are in different units. Before we apply PGA to the m-reps, it is necessary to

make the various parameters commensurate. This is done by scaling the log rotations
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and log radii by the average radius value of the corresponding medial atoms. The

squared-distance metric between two m-rep models Mi and Mj becomes

d(Mi,Mj)
2 =

n∑
α=1

d(mαi,mαj)
2, (5.4)

where the d(·, ·) for medial atoms on the right-hand side is given by (5.1).

The m-rep alignment algorithm finds the set of similarity transforms S1, . . . ,SN that

minimize the total sum-of-squared distances between the m-rep figures:

d(S1, . . . ,SN ; M1, . . . ,MN) =
N∑

i=1

i∑
j=1

d(Si ·Mi,Sj ·Mj)
2. (5.5)

Following the algorithm for generalized Procrustes analysis for objects in R3, minimiza-

tion of (5.5) proceeds in stages:

Algorithm 5.1: M-rep Alignment

1. Translations. First, the translational part of each Si in (5.5) is minimized once

and for all by centering each m-rep model. That is, each model is translated so

that the average of it’s medial atoms’ positions is the origin.

2. Rotations and Scalings. The ith model, Mi, is aligned to the mean of the

remaining models, denoted µi. The alignment is accomplished by a gradient

descent algorithm on SO(3) × R+ to minimize d(µi,Si · Mi)
2. The gradient is

approximated numerically by a central differences scheme. This is done for each of

the N models.

3. Iterate. Step 2 is repeated until the metric (5.5) cannot be further minimized.

The result of applying the m-rep alignment algorithm to the 86 hippocampus m-rep

models is shown in Fig. 5.2. The resulting aligned figures are displayed as overlaid

medial atom centers. Since the rotation and scaling step of the alignment algorithm is

a gradient descent algorithm, it is important to find a good starting position. Thus the

alignment was initialized by first aligning the m-rep models with the Procrustes method

applied to the implied boundary points of the m-rep models.
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Figure 5.2: The 86 aligned hippocampus m-reps, shown as overlayed medial atom cen-
ters.

5.3 M-rep Averages

Algorithm 4.1 can be adapted for computing means of m-rep models by taking the

manifold to be the symmetric space M(n). Recall that the gradient descent algorithm

for the mean, Algorithm 4.1, has a parameter τ , which is the step size taken in the

downhill gradient direction. For m-reps a step size of τ = 1 is used. Since M(n) is a

direct product space, the algorithm will converge if each of the components converge.

Notice that each of the R3 and R+ components in M(n) converge in a single iteration

since they are commutative Lie groups. The step size of τ = 1 is sufficient to ensure that

the S2 components converge as well. Also, care must be taken to ensure that the data

is contained in a small enough neighborhood that the minimum in (4.1) is unique. For

the R3 and R+ components there is no restriction on the spread of the data. However,

for the S2 components the data must lie within a neighborhood of radius π
2

(see [18]),

i.e., within an open hemisphere. This is a reasonable assumption for the aligned m-rep

models, whose spoke directions for corresponding atoms are fairly localized, and we have

not experienced in practice any models that do not fall within such constraints. We now

have the following algorithm for computing the intrinsic mean of a collection of m-rep

models:
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Figure 5.3: The surface of the mean hippocampus m-rep.

Algorithm 5.2: M-rep Mean

Input: M1, . . . ,MN ∈M(n), m-rep models

Output: µ ∈M(n), the intrinsic mean

µ0 = M1

Do

∆µ = 1
N

∑N
i=1 Logµj

Mi

µj+1 = Expµj
(∆µ)

While ||∆µ|| > ε.

Fig. 5.3 shows the surface of the resulting intrinsic mean of the 86 aligned hippocam-

pus m-rep models computed by Algorithm 5.2. The maximum difference in the rotation

angle from the mean in either of the S2 components was 0.1276 for the entire data set.

Thus the data falls well within a neighborhood of radius π
2

as required.

One might be tempted to simplify the statistical computations by treating a medial

atom as three points in R3: the center point x, and the two implied boundary points

y0,y1. With this linear representation, the symmetric space mean algorithm involving

geodesic computations is replaced by a simpler linear average. However, linear averaging

produces invalid medial atoms. To demonstrate this, we computed a linear average of

the atoms at a corresponding location in the hippocampus mesh across the population.

This average was compared to the symmetric space average described in this paper. The

resulting two medial atoms are shown in Fig. 5.4. The symmetric space mean is a valid

medial atom, while the linear average is not because the two spoke vectors do not have

equal length. The ratio of the two spoke lengths in the linear average is 1.2 to 1.



81

(a) (b)

Figure 5.4: The resulting average of corresponding medial atoms in the hippocampus
models using (a) symmetric space averaging and (b) linear averaging. Notice that the
linear average is not a valid medial atom as the two spokes do not have equal length.

5.4 M-rep PGA

The PGA algorithm for m-rep models is a direct adaptation of Algorithm 4.2. The

only concern is to check that the data is localized enough for the projection operator

to be unique. That is, we must determine the neighborhood U used in (4.6) and (4.7).

Again there is no restriction on the R3 and R+ components. For S2 components it is

also sufficient to consider a neighborhood with radius π
2
. Therefore, there are no further

constraints on the data than those discussed for the mean. Also, we can expect the

projection operator to be well-approximated in the tangent space, given the discussion

of the error in Section 4.2.3 and the fact that the data lie within 0.1276 rad. from the

mean. Finally, the computation of the PGA of a collection of m-rep models is given by

Algorithm 5.3: M-rep PGA

Input: M-rep models, M1, . . . ,MN ∈M(n)

Output: Principal directions, vk ∈ TµM(n)

Variances, λk ∈ R
µ = intrinsic mean of {Mi} (Algorithm 5.2)

ui = Logµ(Mi)

S = 1
N

∑N
i=1 uiu

T
i

{vk, λk} = eigenvectors/eigenvalues of S.
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Figure 5.5: The first three PGA modes of variation for the hippocampus m-reps. From
left to right are the PGA deformations for −3, −1.5, 1.5, and 3 times

√
λi.

Analogous to linear PCA models, we may choose a subset of the principal directions

vk that is sufficient to describe the variability of the m-rep shape space. New m-rep

models may be generated within this subspace of typical objects. Given a set of real

coefficients α = (α1, . . . , αd), we generate a new m-rep model by

M(α) = Expµ

( d∑
k=1

αkvk

)
, (5.6)

where αk is chosen to be within [−3
√

λk, 3
√

λk].

The m-rep PGA algorithm was applied to the aligned hippocampus data set. Fig.

5.5 displays the first three modes of variation as the implied boundaries of the m-reps

generated from PGA coefficients αk = −3
√

λk,−1.5
√

λk, 0, 1.5
√

λk, 3
√

λk. A plot of the

eigenvalues and their cumulative sums is given in Fig. 5.6. The first 30 modes capture

95 percent of the total variability, which is a significant reduction from the original 192

dimensions of the hippocampus m-rep model.

In this statistical analysis of the hippocampus, the resulting mean model (Fig. 5.3)

and the models generated from the PGA (Fig. 5.5) qualitatively look like hippocampi.

Also, the generated models are legal m-reps, that is, they produce valid meshes of medial
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Figure 5.6: A plot of the eigenvalues from the modes of variation and their cumulative
sums.

atoms and smooth, non-folding implied boundaries. The mean and PGA algorithms have

also been applied to populations of m-rep models of the kidney, prostate, heart, and liver.

In our experience so far, we have found that the mean and PGA methods described in

this chapter generate legal m-rep models when the input models are legal. While we

do not have quantitative results to say that these methods produce legal models, our

experiments indicate that they produce valid results for real-world data.

5.5 PGA in Deformable M-reps Segmentation

In this section we describe how the method of principal geodesic analysis on m-reps that

has been developed in this chapter can be used in a Bayesian deformable models seg-

mentation method based on m-reps. Recall from Section 3.3.2 that m-reps segmentation

proceeds in several stages corresponding to different levels of scale. In this section we

focus on the figure stage of the optimization of a single figure model. Principal geodesic

analysis will be used in two aspects of the segmentation process:

1. The principal geodesic components are used as a parameter space generating global

deformations of the m-rep figure.

2. The geodesic Mahalanobis distance is used as the geometric prior term in the

Bayesian objective function.

In the segmentation problem we are given an image I, and we want to fit an m-

rep model to a particular object in the image. A statistical m-rep model is trained

on a population of known objects of the same class. The training proceeds by fitting
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a set of m-rep models to binary segmentations of objects from similar images. Next a

mean m-rep model µ and a principal geodesic analysis are computed as described above.

The principal geodesic analysis results in a set of principal directions vk ∈ TµM(n) and

variances λk. The first d principal directions are chosen depending on the desired amount

of variation that is desired.

5.5.1 Principal Geodesic Deformations

The mean model µ is used as the initial model in the optimization. It is placed within

the image by the user applying a translation, rotation, and scale. As described in the

background section on m-reps (Section 3.3.2), the figure stage proceeds by deforming the

model by global transformations to optimize the objective function. The difference is

that we now use the principal geodesics as the global deformations of the model. This is

achieved by optimizing over parameters c = (c1, . . . , cd) that generate deformed versions

of the mean model given by

M(c) = S · Expµ

(
d∑

i=1

ck vk

)
.

Here S represents the user-defined similarity transform used to place the mean model

into the image. Care must be taken in the order that the similarity transform is ap-

plied with respect to the PGA transformations. The two operations do not commute,

and since the principal directions are defined as tangent vectors to the mean model, it

does not make sense to apply them to a transformed version of the mean. Therefore,

the similarity transform must be applied after the principal geodesic deformation. An

alternative would be to apply the similarity transform to the mean and also apply the

derivative mapping of the similarity transform to the principal directions (since they are

after all tangent vectors). Then the vk can be replaced by the transformed vectors, and

the similarity transform need not be applied during the optimization.

5.5.2 PGA-Based Geometric Prior

The next part of using principal geodesic analysis in the deformable m-reps segmenta-

tion is to use the geodesic Mahalanobis distance as a geometric prior in the objective

function. Recall from Section 3.3.2 that the posterior objective function used for m-reps
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segmentation is given by

F (M(c), I) = L(M(c), I) + α G(M(c)),

where L is the image match term and G is the geometric typicality. In the Bayesian

setting this objective function F with α = 1 can be seen as a log posterior probability

density, where the image match L is a log likelihood probability and the geometric

typicality G is a log prior probability.

We focus on the geometric typicality term G. We define this term to be the squared

geodesic Mahalanobis distance, which is proportional to the log prior probability

G(M(c)) =
d∑

i=1

c2
k

λk

∝ log(p(M(c)).

The probability distribution p can be constructed as a truncated Gaussian distri-

bution in the tangent space to the intrinsic mean, µ ∈ M(n). If U ⊂ TµM(n) is the

neighborhood in which PGA is well-defined (recall Section 4.2.4), then p is given by

p(M) =
1

V (U)(2π)
n
2 |Σ| 12

exp

(
−1

2
Logµ(M)T Σ−1 Logµ(M)

)
,

where V (U) denotes the normalization factor based on the neighborhood U to make p

integrate to 1 and Σ is the covariance matrix approximated in Algorithm 5.3. It should

be stressed that this distribution is not a Gaussian distribution on the manifold M(n)

as defined in [61] (recall Section 3.1.4). That is, the density p is not a fundamental

solution to the heat equation on M(n). Also, the intrinsic mean and the covariance

matrix that are derived from the training data are not maximum-likelihood estimates

of the density parameters. It is not clear that a Gaussian distribution is the correct

model, and further research is required to investigate possible probability models and

the estimation of their parameters.

The statistical segmentation method presented in this section has been implemented

as a part of Pablo [102], the deformable m-reps segmentation tool developed at UNC. A

study carried out by Rao et al. [105] compared deformable m-rep and human segmenta-

tions of kidneys from CT. The m-rep segmentation process used was the one presented

in this section. The training set for the geometry statistics included 53 models of the

right kidney and 51 models of the left kidney (left and right kidneys were trained as

two separate groups). The target images to be segmented were 12 CT images of the



86

kidneys (left and right). Human segmentations were carried out by manual slice-by-

slice contour outlining by two different raters. The statistical m-rep segmentation gave

reasonable results that compared favorably with the human segmentations. The mean

surface separations between the human and m-rep segmentations were sub-voxel. The

differences between the human and m-rep segmentations were slightly larger than the

differences between the two human segmentations. However, the experiment was biased

towards this result since the humans used a slice-based segmentation while the m-reps

segmentation was a smooth 3D model.

5.6 Conclusions

In this chapter we demonstrated how statistical m-rep shape models can be built using

the mean and PGA methods presented in the previous chapter. We first showed that

m-rep models are elements of a symmetric space and gave formulas for the Riemannian

log and exponential map. We then developed an alignment method for m-rep models

analogous to the Procrustes alignment method for point set shape models, except that

the m-rep alignment method is based on a least-squares approach using geodesic dis-

tances on M(n). Finally, we adapted the mean and PGA algorithms to the m-rep case.

These methods were demonstrated on a set of 86 hippocampus m-rep models fit from

expert binary segmentations.

The work of this chapter brings up several questions that remain to be answered:

1. Following an analogous construction (see Section 3.1) that is used to build Kendall’s

shape spaces, Σk
n = (Rnk −{0})/Sim(n), a medial shape space can be constructed

as the quotient M(n)/Sim(3). In other words, the medial shape space is the space

created by identifying m-rep models that are different by only a similarity trans-

form. An open problem is to classify the topology and Riemannian structure of

these medial shape spaces.

2. The work in this chapter used the tangent space approximation to principal geodesic

analysis. It would be preferable to solve for the projection operator explicitly

and find the true principal geodesic analysis. In addition, averages and princi-

pal geodesic analysis could be computed on the medial shape space M(n)/Sim(3)

rather than on aligned models in the space M(n).

3. A thorough validation of the segmentation method using PGA is ongoing. It is

designed to test whether the statistical segmentation method has advantages over
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a method without geometry statistics. This is measured in both advantages in

segmentation accuracy and in the speed of the segmentation.

4. The methods presented in this chapter were for single-figure objects. This could

be extended to multi-figure models and multi-object complexes. The challenge for

multi-figure models is to allow only variations that preserve the hinge relationship

of a child figure with its parent. Care must be taken in the multi-object situation

to prevent adjacent objects from intersecting in the PGA deformations.

These issues will be discussed further in the future work section in Chapter 7.
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Chapter 6

Statistics of Diffusion Tensors

As discussed in the background chapter (Section 3.4) diffusion tensor magnetic reso-

nance imaging (DT-MRI) is emerging as an important tool in medical image analysis

of the brain. However, relatively little work has been done on producing statistics of

diffusion tensors. A main difficulty is that the space of diffusion tensors, i.e., the space of

symmetric, positive-definite matrices, does not form a vector space. Therefore, standard

linear statistical techniques do not apply. This chapter1 presents new methods for the

statistical analysis of diffusion tensors.

We demonstrate that the space of diffusion tensors is more naturally described as a

Riemannian symmetric space, rather than a linear space. Applying the ideas presented

in Chapter 4 to this space, we develop new methods for averaging and describing the

variability of diffusion tensor data. It is shown that these statistics preserve natural

properties of the diffusion tensors, most importantly the positive-definiteness, that are

not preserved by linear statistics. The framework presented in this chapter should be

useful in the registration of diffusion tensor images, the smoothing of diffusion tensor

images, the production of statistical atlases from diffusion tensor data, and the quan-

tification of the anatomical variability caused by disease.

In Section 6.1 we show why the space of diffusion tensors is not a linear space and

how linear statistical methods such as PCA break down in this space. In Section 6.2 we

formulate the space of diffusion tensors as a Riemannian symmetric space. Section 6.3

presents the methods for averaging and principal geodesic analysis of diffusion tensors.

Finally, Section 6.5 develops several new methods based on the symmetric space formu-

lation of diffusion tensors that are essential for building statistical atlases of diffusion

1The work presented in this chapter was done in collaboration with Dr. Sarang Joshi at the Uni-
versity of North Carolina. This chapter is an expanded version of the paper [39].



90

tensor images. These methods include (1) a new similarity measure for comparing diffu-

sion tensors, (2) a method for interpolating diffusion tensors, and (3) a new anisotropy

measure.

6.1 The Space of Diffusion Tensors

Recall that a real n×n matrix A is symmetric if A = AT and positive-definite if xT Ax > 0

for all nonzero x ∈ Rn. We denote the space of all n × n symmetric, positive-definite

matrices as PD(n). The tensors in DT-MRI are thus elements of PD(3). The space

PD(n) forms a convex subset of Rn2
. One can define a linear average of N positive-

definite, symmetric matrices A1, . . . , AN as µ = 1
N

∑N
i=1 Ai. This definition minimizes

the Euclidean metric on Rn2
. Since PD(n) is convex, µ lies within PD(n). However,

linear averages do not interpolate natural properties. The linear average of matrices of

the same determinant can result in a matrix with a larger determinant. Second order

statistics are even more problematic. The standard principal component analysis is

invalid because the straight lines defined by the modes of variation do not stay within

the space PD(n). In other words, linear PCA does not preserve the positive-definiteness

of diffusion tensors. The reason for such difficulties is that space PD(n), although a

subset of a vector space, is not a vector space; for example, the negation of a positive-

definite matrix is not positive-definite.

In this chapter we derive a more natural metric on the space of diffusion tensors,

PD(n), by viewing it not simply as a subset of Rn2
, but rather as a Riemannian symmet-

ric space. Following Fréchet [44], we define the average as the minimum mean squared

error estimator under this metric. We apply the method of principal geodesic analysis

developed in Chapter 4 to describe the variability of diffusion tensor data. In this frame-

work the modes of variation are represented as flows along geodesic curves, i.e., shortest

paths under the Riemannian metric. These geodesic curves, unlike the straight lines of

Rn2
, are completely contained within PD(n), so they preserve the positive-definiteness.

To illustrate these issues, consider the space PD(2), the 2 × 2 symmetric, positive-

definite matrices. A matrix A ∈ PD(2) is of the form

A =

(
a b

b c

)
, ac− b2 > 0, a > 0.

If we consider the matrix A as a point (a, b, c) ∈ R3, then the above conditions describe

the interior of a cone as shown in Fig. 6.1. The two labeled points are p0 = (1, 0, 7), p1 =
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Figure 6.1: The space PD(2), showing the geodesic γ and the straight line l between
the two points p0 and p1.

(7, 0, 1). The straight line l between the two points, i.e., the geodesic in Rn2
, does not

remain contained within the space PD(2). The curve γ is the geodesic between the

two points when PD(2) is considered as a Riemannian symmetric space. This geodesic

lies completely within PD(2). We chose PD(2) as an example since it can be easily

visualized, but the same phenomenon occurs for general PD(n), i.e., n > 2.

6.2 The Geometry of PD(n)

In this section we show that the space of diffusion tensors, PD(n), can be formulated

as a Riemannian symmetric space. This leads to equations for computing geodesics

that will be essential in defining the statistical methods for diffusion tensors. The

differential geometry of diffusion tensors has also been used in [23], where the diffusion

tensor smoothing was constrained along geodesic curves. The fact that PD(n) is a

symmetric space has been known for some time. In fact, Cartan accomplished a complete

classification of the possible symmetric spaces in two papers in 1926 and 1927 [19, 20].

A review of symmetric spaces can be found in [15,58].

Recall from Theorem 2.8 that a symmetric space is a connected Riemannian manifold

M such that for each x ∈ M there is an isometry σx that reverses all geodesics through

the point x. We will show that the space PD(n) is a Riemannian symmetric space by

constructing a transitive Lie group action on it. This leads to a natural Riemannian
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metric on PD(n) that is invariant under the group action. The equations for computing

geodesics are then derived from the action of one-parameter subgroups.

6.2.1 The Lie Group Action on PD(n)

Consider the Lie group of all n × n real matrices with positive determinant, denoted

GL+(n). This group acts on PD(n) via

φ : GL+(n)× PD(n) → PD(n)

φ(g, p) = gpgT . (6.1)

We will sometimes write the group action as g · p = φ(g, p).

We will show that this action satisfies the conditions in Theorem 2.10 for PD(n) to

be a symmetric space, namely,

1. The action φ is transitive.

2. The Lie group GL+(n) is connected.

3. The resulting isotropy subgroup is compact.

4. There is an involutive automorphism of GL+(n) leaving the isotropy subgroup

fixed.

We prove each of these conditions in turn.

(1) Recall that the group action φ is transitive if for any two points p, q ∈ PD(n), there

exists an element g ∈ GL+(n) such that q = φ(g, p). Let In denote the n × n identity

matrix. Given a matrix p ∈ PD(n) let p = UΛUT be the SVD of p. Then p can be

written as the product p = ggT , where g ∈ GL+(n) is given by g = UΛ(1/2). There-

fore, In = φ(g−1, p). Now write q = hhT for h ∈ GL+(n). Then q = hφ(g−1, p)hT =

φ(h, φ(g−1, p)) = φ(hg−1, p), which shows that φ is transitive. In other words, the space

PD(n) is a homogeneous space.

(2) Let g1, g2 be two matrices in GL+(n). To show that GL+(n) is connected, we show

that there is a continuous path in GL+(n) connecting g1 and g2. Let g1 = U1Λ1V1

and g2 = U2Λ2V2 be singular value decompositions with Ui, Vi ∈ SO(n). We can safely

assume that the matrices Λi have positive diagonal entries. If Λi has negative entries,
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we can write gi = UiΛ̃iṼi, where Λ̃i = ΛiRi, Ṽi = RiVi, and Ri is the diagonal rotation

matrix with −1 in the entries corresponding to negative values in the Λi and +1 in the

other entries. Consider the paths ci : [0, 1] → GL+(n) for i = 1, 2 given by

ci(s) = exp(s log Ui) Λs
i exp(s log Vi).

These are continuous paths from ci(0) = In to ci(1) = gi. Now consider the path

c : [0, 1] → GL+(n) given by

c(s) = c1(1− s) c2(s).

This path is continuous with c(0) = g1 and c(1) = g2. Furthermore, for any s ∈ [0, 1]

we have

det(c(s)) = det(Λ
(1−s)
1 Λs

2) = det(g1)
(1−s) det(g2)

s > 0.

This shows that the path c lies completely within GL+(n), so GL+(n) is connected.

(3) The isotropy subgroup of In under φ is the set of all matrices g ∈ GL+(n) that

satisfy φ(g, In) = In. Thus, the isotropy subgroup is given by SO(n) = {g ∈ GL+(n) :

ggT = In}, the space of n × n rotation matrices. This is a compact Lie subgroup of

GL+(n) as was mentioned in the background section on Lie groups (Section 2.4).

(4) The mapping α : GL+(n) → GL+(n) given by α(g) = (g−1)T is an involutive auto-

morphism that leaves SO(n) fixed.

Therefore, the space of diffusion tensors, PD(n), is a symmetric space and equivalent

to the quotient space GL+(n)/SO(n). An intuitive way to view this quotient is to think

of the polar decomposition, which decomposes a matrix g ∈ GL+(n) as g = pu, where

p ∈ PD(n) and u ∈ SO(n). Thus, the diffusion tensor space PD(n) ∼= GL+(n)/SO(n)

comes from “dividing out” the rotational component in the polar decomposition of

GL+(n).

6.2.2 The Invariant Metric on PD(n)

The space of diffusion tensors, PD(n), has a Riemannian metric that is invariant under

the GL+(n) action, which follows from the fact that the isotropy subgroup SO(n) is

connected and compact (recall Theorem 2.9).



94

The tangent space of PD(n) at the identity matrix can be identified with the space

of n × n symmetric matrices, Sym(n). Since the group action φg : s 7→ gsgT is linear,

its derivative map, denoted dφg, is given by dφg(X) = gXgT . If X ∈ Sym(n), it is easy

to see that dφg(X) is again a symmetric matrix. Thus the tangent space at any point

p ∈ PD(n) is also identifiable with Sym(n). If X, Y ∈ Sym(n) represent two tangent

vectors at p ∈ PD(n), where p = ggT , g ∈ GL+(n), then the Riemannian metric at p is

given by the inner product

〈X, Y 〉p = tr(g−1Xp−1Y (g−1)T ).

Finally, the mapping σIn(p) = p−1 is an isometry that reverses geodesics of PD(n) at

the identity, and this turns PD(n) into a symmetric space.

6.2.3 Computing Geodesics

Geodesics on a symmetric space are easily derived via the group action (see [58] for

details). Let p be a point on PD(n) and X a tangent vector at p. There is a unique

geodesic, γ, with initial point γ(0) = p and tangent vector γ′(0) = X. To derive an

equation for such a geodesic, we begin with the special case where the initial point p is

the n× n identity matrix, In, and the tangent vector X is diagonal. Then the geodesic

is given by

γ(t) = exp(tX),

where exp is the matrix exponential map given by the infinite series

exp(X) =
∞∑

k=0

1

k!
Xk.

For the diagonal matrix X with entries xi, the matrix exponential is simply the diagonal

matrix with entries exi .

Now for the general case consider the geodesic γ starting at an arbitrary point

p ∈ PD(n) with arbitrary tangent vector X ∈ Sym(n). We will use the group action

to map this configuration into the special case described above, i.e., with initial point

at the identity and a diagonal tangent vector. Since the group action is an isometry,

geodesics and distances are preserved. Let p = ggT , where g ∈ GL+(n). Then the action

φg−1 maps p to In. The tangent vector is mapped via the corresponding tangent map

to Y = dφg−1(X) = g−1X(g−1)T . Now we may write Y = vΣvT , where v is a rotation
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matrix and Σ is diagonal. The group action φv−1 diagonalizes the tangent vector while

leaving In fixed. We can now use the procedure above to compute the geodesic γ̃ with

initial point γ̃(0) = In and tangent vector γ̃′(0) = Σ. Finally, the result is mapped back

to the original configuration by the inverse group action, φgv. That is,

γ(t) = φgv(γ̃(t)) = (gv) exp(tΣ)(gv)T .

If we flow to t = 1 along the geodesic γ we get the Riemannian exponential map at

p. That is,

Expp(X) = γ(1).

In summary we have

Algorithm 6.1: Riemannian Exponential Map

Input: Initial point p ∈ PD(n).

Tangent vector X ∈ Sym(n).

Output: Expp(X)

Let p = uΛuT (u ∈ SO(n), Λ diagonal)

g = u
√

Λ

Y = g−1X(g−1)T

Let Y = vΣvT (v ∈ SO(n), Σ diagonal)

Expp(X) = (gv) exp(Σ)(gv)T

An important property of the geodesics in PD(n) under this metric is that they are

infinitely extendible, i.e., the geodesic γ(t) is defined for −∞ < t < ∞. This follows

from the fact that all symmetric spaces are complete (Theorem 2.8). Again, Fig. 6.1

demonstrates that the symmetric space geodesic γ remains within PD(2) for all t. In

contrast the straight line l quickly leaves the space PD(2).

The map Expp has an inverse, called the Riemannian log map and denoted Logp. It

maps a point x ∈ PD(n) to the unique tangent vector at p that is the initial velocity

of the unique geodesic γ with γ(0) = p and γ(1) = x. Using a similar diagonalization

procedure, the log map is computed by
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Algorithm 6.2: Riemannian Log Map

Input: Initial point p ∈ PD(n).

End point x ∈ PD(n).

Output: Logp(x)

Let p = uΛuT (u ∈ SO(n), Λ diagonal)

g = u
√

Λ

y = g−1x(g−1)T

Let y = vΣvT (v ∈ SO(n), Σ diagonal)

Logp(x) = (gv) log(Σ)(gv)T

Using the notation of Algorithm 6.2, geodesic distance between the diffusion tensors

p, x ∈ PD(n) is computed by

d(p, x) = ||Logp(x)||p = tr(log(Σ)2). (6.2)

6.3 Statistics of Diffusion Tensors

Having formulated the geometry of diffusion tensors as a symmetric space, we now

develop methods for computing statistics in this nonlinear space. The algorithms for

computing the mean and PGA will be direct adaptations of the algorithms described

in Chapter 4 to the space PD(n). The computations for the log and exponent maps

described in the previous section will be instrumental in these statistical methods.

6.3.1 Averages of Diffusion Tensors

Again we define the intrinsic mean of a set of diffusion tensors p1, . . . , pN ∈ PD(n) as

the diffusion tensor that minimizes the sum-of-squared distance to the pi. That is, the

intrinsic mean is given by

µ = arg min
p∈PD(N)

N∑
i=1

d(p, pi)
2. (6.3)

Again let ρA denote the sum-of-squared distance function for the set of points A =

{p1, . . . , pN}, that is,

ρA(p) =
1

2N

N∑
i=1

d(p, pi)
2.
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Recall that the gradient of ρ can be computed as

∇ρA(p) = − 1

N

N∑
i=1

Logp(pi)

when the data lie in a strongly convex neighborhood. In fact, the entire space PD(n) is

strongly convex; that is, any two points can be connected by a unique geodesic curve.

This fact follows from the curvature properties of PD(n) (it has everywhere non-positive

sectional curvature). Therefore, the minimization problem for the intrinsic mean (6.3)

has a unique solution. The gradient descent algorithm for computing the mean of

diffusion tensors, which is a direct adaptation of Algorithm 4.1, is given by

Algorithm 6.3: Intrinsic Mean of Diffusion Tensors

Input: p1, . . . , pN ∈ PD(n)

Output: µ ∈ PD(n), the intrinsic mean

µ0 = I

Do

Xi = 1
N

∑N
k=1 Logµi

(pk)

µi+1 = Expµi
(Xi)

While ||Xi|| > ε.

6.3.2 Principal Geodesic Analysis of Diffusion Tensors

We are now ready to define principal geodesic analysis for diffusion tensor data p1, . . . , pN ∈
PD(n). Our goal, analogous to PCA, is to find a sequence of nested geodesic sub-

manifolds that maximize the projected variance of the data, according to the defining

equations (4.6) and (4.7) presented in Chapter 4. We must again determine under what

conditions the projection operator (4.5) for the space PD(n) is unique. That is, we must

determine the neighborhood U used in the PGA equations (4.6) and (4.7). Actually,

since PD(n) has non-positive sectional curvature, the projection operator is well-defined

for the entire space U = PD(n).

We will use the tangent space approximation to the projection operator. That is,

we will adapt Algorithm 4.2 for the tangent space approximation to PGA, giving the

following algorithm on PD(n):
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Algorithm 6.4: PGA of Diffusion Tensors

Input: p1, . . . , pN ∈ PD(n)

Output: Principal directions, vk ∈ Sym(n)

Variances, λk ∈ R
µ = intrinsic mean of {pi} (Algorithm 6.3)

xi = Logµ(pi)

S = 1
N

∑N
i=1 xix

T
i (treating the xi as column vectors)

{vk, λk} = eigenvectors/eigenvalues of S.

A new diffusion tensor p can now be generated from the PGA by the formula p =

Expµ

(∑d
k=1 αkvk

)
, where the αk ∈ R are the coefficients of the modes of variation.

6.4 Properties of PGA on PD(n)

We now demonstrate that PGA on the symmetric space PD(n) preserves certain impor-

tant properties of the diffusion tensor data, namely the properties of positive-definiteness,

determinant, and orientation. This makes the symmetric space formulation an attrac-

tive approach for the statistical analysis of diffusion tensor images. We have already

mentioned that, in contrast to linear PCA, symmetric space PGA preserves positive-

definiteness. That is, the principal geodesics are completely contained within PD(n),

and any matrix generated by the principal geodesics will be positive-definite.

The next two properties we consider are the determinant and orientation. Consider

a collection of diffusion tensors that all have the same determinant D. We wish to show

that the resulting average and any tensor generated by the principal geodesic analysis

will also have determinant D. To show this we first look at the subset of PD(n) of

matrices with determinant D, that is, the subset PD = {p ∈ PD(n) : det(p) = D}.
This subset is a totally geodesic submanifold, meaning that any geodesic within PD

is a geodesic of the full space PD(n). Recall in Chapter 4 we discussed submanifolds

geodesic at a point p, i.e., submanifolds whose geodesics passing through p were also

geodesics of the ambient manifold. This is different from totally geodesic submanifolds,

which are submanifolds geodesic at every point. Now, the fact that PD is totally geodesic

implies that the averaging process in Algorithm 6.3 will remain in PD if all the data

lies in PD. Also, the principal directions vk in the PGA will lie in the tangent subspace

TµPD. Thus any diffusion tensor generated by the principal geodesics will remain in the

space PD.
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Figure 6.2: The first two modes of variation of the simulated data: (left) using the
symmetric space PGA, and (right) using linear PCA. Units are in standard deviations.
The boxes labelled “Not Valid” indicate that the tensor was not positive-definite, i.e.,
it had negative eigenvalues.

The same argument may be applied to show that symmetric space averaging and

PGA preserve the orientation of diffusion tensors. In fact, the subset of all diffusion

tensors having the same orientation is also a totally geodesic submanifold, and the same

reasoning applies. Unlike the positive-definiteness and determinant, orientations are

also preserved by linear averaging and PCA.

To demonstrate these properties, we simulated random 3D diffusion tensors and com-

puted both their linear and symmetric space statistics. We first tested the determinant

preservation by generating 100 random 3D diffusion tensors with determinant 1. To do

this we first generated 100 random 3 × 3 symmetric matrices, with entries distributed

according to a normal distribution, N(0, 1
2
). Then, we took the matrix exponential of

these random symmetric matrices, thus making them positive-definite diffusion tensors.

Finally, we normalized the random diffusion tensors to have determinant 1 by dividing

each tensor by the cube root of its determinant. We then computed the linear average

and PCA and symmetric space average and PGA of the simulated tensors. The results

are shown in Fig. 6.2 as the diffusion tensors generated by the first two modes of vari-

ation. The linear PCA generated invalid diffusion tensors, i.e., tensors with negative

eigenvalues, at +2 standard deviations in both the first and second modes. All of the

diffusion tensors generated by the symmetric space PGA have determinant 1. The linear
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mean demonstrates the “swelling” effect of linear averaging. It has determinant 2.70,

and the linear PCA tensors within ±2 standard deviations have determinants ranging

from −2.80 to 2.82. The negative determinants came from the tensors that were not

positive-definite. Therefore, we see that the symmetric space PGA has preserved the

positive-definiteness and the determinant, while the linear PCA has preserved neither.

Next we tested the orientation preservation by generating 100 random, axis-aligned,

3D diffusion tensors. This was done by generating 3 random eigenvalues for each matrix,

corresponding to the x, y, and z axes. The eigenvalues were chosen from a log-normal

distribution with log mean 0 and log standard deviation 0.5. Next we generated a

random orientation u ∈ SO(3) and applied it to all of the axis-aligned matrices by the

map p 7→ upuT . Thus each of the diffusion tensors in our test set had eigenvectors equal

to the columns of the rotation matrix u. We computed both the symmetric space and

linear statistics of the data. As was expected, both methods preserved the orientations.

However, the linear PCA again generated tensors that were not positive-definite.

6.5 New Methods: Comparison Metric, Interpola-

tion, and Anisotropy

In this section we present several novel methods for the analysis of diffusion tensors

based on the symmetric space formulation of PD(n) presented earlier. As mentioned at

the beginning of this chapter, a primary application of the statistical methods presented

above is for inter-subject studies of diffusion tensor data. To make such studies possible,

images of different patients need to be registered into a common coordinate system for

direct comparison. The first two methods in this section are intended to be used as

part of a registration method for diffusion tensor images. The third method is a new

anisotropy measure based on the differential geometry of the symmetric space PD(n).

An algorithm for diffusion tensor image registration requires three important tools:

(1) a method for warping a diffusion tensor image, (2) a method for resampling the

warped diffusion tensor image, i.e., an interpolation method for diffusion tensors, and

(3) a comparison metric for computing how close two diffusion tensor images are to

one another. Warping diffusion tensor images is nontrivial because it is not obvious

how a warp of space should affect the shape and orientation of a tensor. Alexander et

al. [1] describe several strategies for warping diffusion tensor images. We focus on items

(2) and (3) and present new methods for interpolating and comparing diffusion tensors

based on the symmetric space formulation of PD(n). We begin with the comparison
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γ(0) = p γ(0.25) γ(0.5) γ(0.75)0 γ(1) = p1

Figure 6.3: An example of geodesic interpolation of two diffusion tensors. First, two
diffusion tensors p0 and p1 were chosen randomly. The diffusion tensors at times 0.25, 0.5,
and 0.75 were generated along the unique geodesic segment γ between p0 and p1.

metric.

6.5.1 Comparison Metric

We propose a new comparison metric for diffusion tensors defined as the geodesic dis-

tance between two tensors. That is, given two diffusion tensors p1, p2 ∈ PD(3) the error

metric between them is given by

E(p1, p2) = d(p1, p2),

where the distance d is the geodesic distance given by (6.2). For two diffusion tensor

images I1, I2 : Ω → PD(3), where Ω ⊂ R3 is the image domain, the error metric is given

by

E(I1, I2) =

(∫
Ω

d(I1(x), I2(x))2dx

) 1
2

.

Alexander et al. [1] have proposed comparing diffusion tensors based on the angular

difference between their principal directions. This difference is then weighted by the

relative anisotropy to give higher weight to the more anisotropic tensors. We argue that

the geodesic error metric presented here takes into account both the orientation and

the anisotropy. In addition, the geodesic error metric is consistent with the proposed

statistical methods; that is, it is based on geodesic distance on PD(n) as are the mean

and PGA methods presented above.

6.5.2 Diffusion Tensor Interpolation

The most basic method for resampling a warped image is a nearest neighbor approach.

Another possibility is to use trilinear interpolation of the linear tensor coefficients. The
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tensor interpolation method that we propose is based on the symmetric space averaging

method developed in Section 6.3. First, consider the case of two diffusion tensors p1, p2 ∈
PD(n). We would like an interpolation method given by a continuous curve c : [0, 1] →
PD(n) satisfying c(0) = p1 and c(1) = p2. Given the symmetric space formulation for

PD(n) presented above, an obvious choice for c is the unique geodesic curve segment

between p1 and p2. This geodesic interpolation is demonstrated between two randomly

chosen diffusion tensors in Fig. 6.3. Geodesic interpolation can be seen as a direct

generalization of linear interpolation for scalar or vector data.

Now for 3D images of diffusion tensors an interpolation method can be thought of as

a smooth function in a cube, where the tensor values to be interpolated are given at the

corners of the cube. In other words, we want a smooth function f : [0, 1]3 → PD(n),

where the values f(i, j, k) : i, j, k ∈ {0, 1} are specified. It is tempting to first create

f using “tri-geodesic” interpolation, that is, by repeated geodesic interpolation in the

three coordinate directions. However, unlike linear interpolation, geodesic interpolation

of diffusion tensors does not commute. Therefore, a “tri-geodesic” interpolation would

be dependent on the order in which the coordinate interpolations were made. A bet-

ter method for interpolating diffusion tensors in three dimensions is using a weighted

geodesic average.

Weighted averaging of data on an sphere Sn has been studied by Buss and Fillmore

[18]. We follow their approach, extending the definition of weighted averages to diffusion

tensors. Given a set of diffusion tensors p1, . . . , pN ∈ PD(n) and a set of weights

w1, . . . , wN ∈ R, consider the weighted sum-of-squared distances function

ρ(p; p1, . . . , pN ; w1, . . . , wN) =
1

N

N∑
i=1

wid(p, pi)
2.

Given a set of non-negative real weights w1, . . . , wN with sum equal to 1, the weighted

average of the pi with respect to the weights wi is defined as a minimum of the weighted

sum-of-squared distances function, i.e.,

Avg(p1, . . . , pN ; w1, . . . , wN) = arg min
p∈PD(n)

ρ(p; p1, . . . , pN ; w1, . . . , wN). (6.4)

The intrinsic mean definition given in Chapter 4 is equivalent to weighted average def-

inition with all weights set to wi = (1/N). For vector-valued data v1, . . . , vN ∈ Rn the
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weighted average is given by the weighted sum

Avg(v1, . . . , vN ; w1, . . . , wN) =
N∑

i=1

wivi.

For diffusion tensor data the weighted average can be computed using a generaliza-

tion of the intrinsic mean algorithm (Algorithm 6.3). The gradient of the sum-of-squared

distances function is given by

∇ρ(p; p1, . . . , pN ; w1, . . . , wN) = −
N∑

i=1

wi Logp(pi).

Therefore, the gradient descent algorithm for finding the weighted average of a set of

diffusion tensors is given by

Algorithm 6.5: Weighted Average of Diffusion Tensors

Input: p1, . . . , pN ∈ PD(n) and weights w1, . . . , wN ∈ R
Output: µ ∈ PD(n), the weighted average

µ0 = I

Do

Xi = 1
N

∑N
k=1 wi Logµi

(pk)

µi+1 = Expµi
(Xi)

While ||Xi|| > ε.

We will replace the cumbersome Avg with the more convenient notation

�
N∑

i=1

wi · pi = Avg(p1, . . . , pN ; w1, . . . , wN).

The circle around the summation sign is intended to remind the reader that this is a

weighted average of nonlinear data and not a linear sum.

Returning to the problem of finding an interpolating function for diffusion tensors

in a volume image, we want to define our interpolating function f : [0, 1]3 → PD(n),

where the values at the corners are given. Let A = {0, 1}3, and let α = (α1, α2, α3) ∈ A

be a multi-index for the eight corners of the unit cube. Let pα ∈ PD(n) be a set of

diffusion tensors given at the corners of the unit cube. We define the geodesic weighted
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interpolation of the pα as the function f : [0, 1]3 → PD(n) via a weighted average

f(x1, x2, x3) = �
∑
α∈A

wα(x1, x2, x3) · pα, (6.5)

where the wα : [0, 1]3 → R are weight functions on the unit cube. These weight functions

should satisfy the following properties:

1. For a corner index β the weights should give wα(β) = 1 if α = β and zero otherwise.

This ensures that the function f indeed interpolates the corner values.

2. The weights should be chosen so that along any edge of the unit cube the inter-

polation function f gives a one-dimensional geodesic interpolation.

3. The interpolation function should be the same on each face of the unit cube, and

it should depend only on the four corners of that face.

4. The weight function should be chosen so that the interpolation function f :

[0, 1]3 → PD(n) given by (6.5) is a continuous function.

We define a set of weight functions by the polynomials

wα(x1, x2, x3) =
3∏

i=1

(
1− αi + (−1)1−αixi

)
.

It is straightforward to check that these weights satisfy properties 1-3. The reader

can check that these polynomials in fact give the standard tri-linear interpolation of

scalar data vα : α ∈ A on the unit cube via the interpolating function

f(x1, x2, x3) =
∑
α∈A

wα(x1, x2, x3)vα.

Therefore, the diffusion tensor interpolation function (6.5) is a direct generalization of

tri-linear interpolation for scalar data.

The continuity of the interpolation function (property 4) follows as a corollary of

the next theorem. This theorem follows the analogous theorem for weighted averages of

spherical data shown by Buss and Fillmore [18] (see Theorem 6).

Theorem 6.1. The weighted average function Avg : PD(n)N ×RN → PD(n) given by

(6.4) is a C∞ function.



105

Proof. This theorem is a direct application of the Implicit Function Theorem. The

weighted average function Avg maps a set of diffusion tensors and weights to a root of

the gradient of the sum-of-squared distance function, ∇ρ. Let p1, . . . , pN ∈ PD(n) and

w1, . . . , wN ∈ R be a set of diffusion tensors and non-negative weights. The function ∇ρ

is a C∞ function of the points p1, . . . , pN and the weights w1, . . . , wN , and its Jacobian

matrix is given by the Hessian matrix H of ρ. According to Karcher [67], the Hessian

H is positive-definite because PD(n) has nonpositive sectional curvatures. Therefore, it

is nonsingular, and ∇ρ satisfies the conditions of the Implicit Function Theorem, which

now says that there must be an open neighborhood of (p1, . . . , pN ; w1, . . . , wN) in which

Avg is a C∞ mapping.

Corollary 6.2. The interpolation function f : [0, 1]3 → PD(n) given by (6.5) is a C∞

function.

Proof. Since the function f is a composition of the weight functions wα and the weighted

average function Avg, the fact that f is C∞ follows from Theorem 6.1 and the fact that

the wα are polynomials.

The weighted geodesic interpolation function is well-defined for any initial diffusion

tensor values pα, and it does not depend on any arbitrary choice of ordering as did the

“tri-geodesic” method. Another important property of weighted geodesic interpolation

is that it preserves determinants and orientations of the initial data. That is, if the pα

all have the same determinant (respectively, orientation), then any tensor interpolated

by 6.5 will also have the same determinant (orientation). This follows from the same

argument given in the previous section to show that the intrinsic mean preserves these

properties. That is, if the data lie in the same totally geodesic submanifold (the subman-

ifold representing diffusion tensors with the same determinant or the same orientation),

the weighted average of the data will lie in the same submanifold. Since the weighted

geodesic interpolation is defined via weighted averages, it follows that it also preserves

determinants and orientations.

6.5.3 Geodesic Anisotropy Measure

We now develop a new anisotropy measure for diffusion tensors based on the geodesic

distance on the symmetric space PD(3). Anisotropy is intuitively a measure of how far

away a diffusion tensor is from being isotropic. Therefore, a natural measurement of the

anisotropy of a diffusion tensor p ∈ PD(3) is the geodesic distance between p and the
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GA(0) = 0 GA(0.25) = 0.40 GA(0.5) = 0.79 GA(0.75) = 1.19 GA(1) = 1.58

Figure 6.4: The geodesic anisotropy values for a sequence of diffusion tensors. The GA
values are displayed as a function of t: GA(t) = GA(γ(t)).

closest isotropic diffusion tensor. It turns out that the nearest isotropic diffusion tensor

to p is the one with the same determinant as p, i.e., the matrix det(p)
1
3 · I3. Thus we

define the geodesic anisotropy as

GA(p) = d(det(p)
1
3 · I3, p). (6.6)

To better understand the meaning of the geodesic anisotropy, it helps to write an

explicit equation for it. Let λi denote the eigenvalues of p, and let log λ denote the

average of the logs of the eigenvalues. The geodesic anisotropy of p can be written as

GA(p) = d(det(p)
1
3 · I3, p)

= d(I3,
1

det(p)
1
3

· p)

=

(
3∑

i=1

∥∥∥ log

(
λi

(λ1λ2λ3)
1
3

)∥∥∥2
) 1

2

=

(
3∑

i=1

‖ log(λi)− log λ‖2

) 1
2

.

The second line follows from the invariance of distance on PD(n) under the group

action of GL+(n). This shows that the geodesic anisotropy is equivalent to the standard

deviation of the log of the eigenvalues (times a scale factor). This is similar to how

the fractional anisotropy is defined via the standard deviation of the eigenvalues, which

are treated as linear entities. The GA is consistent with the thinking of PD(n) as a

symmetric space, where the eigenvalues are treated as multiplicative entities rather than

linear ones.

An example of the GA values for a sequence of diffusion tensors is shown in Fig 6.4.

The diffusion tensors were generated along a geodesic starting at the identity matrix.
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The sequence is given by the formula

γ(t) = ExpI3 tX, where X =

 1 0.5 0

0.5 1 0

0 0 0

 .

The particular direction X for the geodesic was chosen for simplicity and so that the

tensors would get increasingly more anisotropic.

6.6 Conclusions

In this chapter we showed how the statistical methods of averaging and principal geodesic

analysis can be applied to study diffusion tensor data. We began by showing that the

space of diffusion tensors PD(n) is a symmetric space, and we gave the formulas for the

Riemannian log and exponential map. We then adapted the mean and principal geodesic

analysis algorithms from Chapter 4 to the space PD(n). We showed that these statis-

tical operations preserve natural properties of the diffusion tensor including positive-

definiteness, determinant, and orientation. This is in contrast to linear statistical meth-

ods, i.e., linear averages and PCA, which do not preserve the positive-definiteness or

the determinant. We presented several new methods for analyzing diffusion tensor data

based on the symmetric space formulation. These include (1) a new comparison metric

that could be used as a metric to optimize in a registration method for diffusion tensor

images, (2) a new interpolation method based on weighted averaging that is a natural

extension of trilinear interpolation of scalar images, and (3) a new anisotropy measure

for diffusion tensors that is given by the distance of a diffusion tensor from the nearest

isotropic tensor.

The work in this chapter provides tools for analyzing diffusion tensor data, but there

is more work to be done in order to bring these methods into use:

1. A registration procedure for diffusion tensor images can be developed using the

interpolation method and the comparison metric presented in this chapter. The

transformations of the diffusion tensor images could be based on previous regis-

tration methods such as that of Alexander et al. [1], or new methods could be

developed for transforming one diffusion tensor image into another.

2. The principal geodesic analysis of diffusion tensor data presented in this chapter

uses the tangent space approximation to PGA. Perhaps better statistics would
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result from a method that computes the exact PGA, which would require that the

projection operator on PD(n) be solved explicitly.

3. The driving problem of this work is to make possible the statistical studies of

diffusion tensor images across patient populations. This first requires that a regis-

tration method for diffusion tensor images be developed as described above. Then

the statistical methods developed in this chapter could be used to describe the

variability of the diffusion tensor images.

This issues will be discussed further in the future work section of Chapter 7.



Chapter 7

Discussion and Future Work

This chapter reviews and discusses the contributions of this dissertation in Section 7.1.

This is followed by a discussion in Section 7.2 of future work, including unsolved theo-

retical questions, goals for future research, and possible new areas of application of the

presented methods.

7.1 Summary of Contributions

This section revisits the thesis and claims laid out in Chapter 1 and presented in Chap-

ters 4,5, and 6. Each contribution is restated along with a discussion of how it was

accomplished in this dissertation.

1. A novel theory called principal geodesic analysis has been developed as a natural

generalization of principal component analysis for describing the statistical vari-

ability of geometric data that are parameterized as curved manifolds. This gener-

alization is natural in the sense that it uses only intrinsic distances and geodesics

in the data space.

Principal geodesic analysis was introduced in Chapter 4. The underlying philos-

ophy in this theory is that statistics of manifold-valued data should be intrinsic

measurements. In other words, statistics should rely only on the intrinsic geome-

try of the manifold, namely, geometry that can be derived from the Riemannian

metric, including geodesic curves and distances. The definition of a mean value

that is used is from Fréchet [44] and is defined as the point that minimizes the

expected value of the sum-of-squared distance function. Again, the distances used

are intrinsic to the manifold, i.e., geodesic distances.
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The definition of principal geodesic analysis was a direct generalization of princi-

pal component analysis to the manifold case. In other words, if the data lies in

a linear manifold, i.e., Rn, principal geodesic analysis reduces to principal com-

ponent analysis. Principal geodesic analysis was defined via a sequence of nested

submanifolds generated by the Riemannian exponential map at the mean. These

geodesic submanifolds were chosen to maximize the variance of the data projected

onto the submanifold. The important property of the geodesic submanifolds was

that they preserve the intrinsic notion of geodesic distance from the mean. An al-

ternative definition of principal geodesic analysis was given that instead minimized

the sum-of-squared geodesic distances from the submanifolds to the data.

An algorithm for the computation of a tangent space approximation to principal

geodesic analysis was given. This algorithm used the Riemannian log map to

map the data into the tangent space to the mean. Then a principal component

analysis was computed in the tangent space, and the resulting principal directions

were mapped back into the manifold to give the approximate principal geodesic

submanifolds. Though this approximation algorithm does its computations in the

tangent space, the modes of variation are mapped back to valid points on the

manifold.

2. It has been shown that medial representations of shape, or m-reps, can be formu-

lated as elements of a Riemannian symmetric space and that the variability of a

population of m-rep objects can be efficiently computed using principal geodesic

analysis.

In Chapter 5 it was shown that an order 1 medial atom can be parameterized

as a point on a Riemannian symmetric space M(1). It then followed that m-rep

meshes containing n order 1 medial atoms can be represented as the symmetric

space M(n), which is the direct product of n copies of M(1). The intrinsic

definitions for the mean and principal geodesic analysis were applied to the space

M(n). This led to the development of algorithms for computing the mean and

the principal geodesic analysis of a collection of m-rep models.

3. A new method for aligning m-reps to a common position, orientation and scale has

been developed and demonstrated. It generalizes the Procrustes alignment method

for aligning linear representations of shape. It proceeds by minimizing the sum-of-

square geodesic distances between corresponding atoms in medial models.
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The m-rep alignment method presented in Chapter 5 was developed as a general-

ization of the Procrustes alignment algorithm for point set shape models. Keeping

with the philosophy of this dissertation, the m-rep alignment was defined via in-

trinsic distances on the m-rep symmetric space M(n). Alignment was achieved by

minimizing sum-of-squared geodesic distances between m-rep models with respect

to translation, rotation, and scale of the models.

4. A method for maximum posterior segmentation of 3D medical images via de-

formable m-reps models using principal geodesic analysis has been developed. The

optimization of the objective function in the segmentation uses the principal geodesic

modes of variation as a parameter space. A geometric prior based on principal

geodesic analysis has been developed and incorporated into a Bayesian objective

function.

Principal geodesic analysis was incorporated into a deformable m-reps model seg-

mentation method in Chapter 5. The first aspect of this approach was to use the

geodesic modes of variation as a method for deforming the initial mean model.

The optimization of the posterior objective function can thus proceed by optimiz-

ing over the components in the principal geodesic analysis. The second aspect of

this approach was to use the geodesic Mahalanobis distance as the geometric prior

term in the objective function.

5. It has been shown that diffusion tensors can be treated as data in a Riemannian

symmetric space and that the variability of diffusion tensor data can be described

using principal geodesic analysis.

It was shown in Chapter 6 that diffusion tensors, i.e., symmetric, positive-definite

matrices, are elements of a Riemannian symmetric space. It was argued that

the symmetric space formulation of diffusion tensors is preferred to treating them

as a linear space. This is because the Riemannian metric is complete in the

symmetric space formulation and not in the linear case, which causes geodesics in

the symmetric space to extend indefinitely while the geodesics in the linear case,

i.e., straight lines, “fall off” the space.

The intrinsic definitions for the mean and principal geodesic analysis were applied

the symmetric space PD(n) of n × n diffusion tensors, with the case n = 3 rep-

resenting the tensors of DT-MRI. It was shown that the mean and the principal

geodesic analysis preserved three important properties of the diffusion tensor: the
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positive-definiteness, the determinant, and the orientation. A linear PCA, treating

the diffusion tensor space as a subset of the linear vector space Rn2
, was shown to

not preserve the positive-definiteness or the determinant (although it does preserve

the orientation).

6. New methods for comparing the similarity of diffusion tensor images, interpolating

diffusion tensors, and measuring the anisotropy of diffusion tensors have been

developed using the symmetric space formulation of the space of diffusion tensors.

Chapter 6 developed several new methods for analyzing diffusion tensor data based

on the geometry of the symmetric space of diffusion tensors. These methods

were designed for the applications of registration of diffusion tensor images and

intersubject statistical studies of DT-MRI. The first method was a comparison

metric for two diffusion tensor images based on the geodesic distances between

corresponding diffusion tensors. This metric treated the difference between two

images as an image of tangent vectors to PD(n), and the metric was just the L2

norm of this difference.

The second method was a new interpolation scheme for 3D diffusion tensor images.

It was shown that a naive generalization of trilinear interpolation does not work

for geodesic interpolation because it matters what order the interpolation in x, y,

and z is carried out. An algorithm treating interpolation as a weighted averaging

was developed that was not dependent on order. This algorithm was shown to be

a natural generalization of trilinear interpolation of scalar data.

The third method was a new anisotropy measure for diffusion tensors defined as

the geodesic distance of a tensor from the closest isotropic tensor. It was shown

that this measurement could be computed in closed form as the standard deviation

of the log of the eigenvalues of the diffusion tensor. This approach to anisotropy

keeps with the idea of using intrinsic geometric measurements to analyze manifold

data.

Finally, the thesis statement presented in Chapter 1 is revisited.

Thesis: Principal geodesic analysis is a natural generalization of principal component

analysis for describing the statistical variability of geometric data that are parameter-

ized as curved manifolds. Such manifolds include medial representations of shape and

diffusion tensors. Principal geodesic analysis can be used to parameterize the shape vari-

ability of a population of m-rep models. The resulting probabilities can be effectively used
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as a statistical geometric prior in a deformable m-rep model segmentation of 3D medical

images.

The first claim showed that principal geodesic analysis is a natural way to analyze

the variability of manifold data. The important property that was stressed is that all

computations involve intrinsic geometric properties of the underlying manifold. Also,

the statistical definitions are all natural generalizations of linear methods, so linear av-

erages and PCA are special cases of manifold averages and PGA, with Rn being the

particular manifold. Claims 2 and 3 showed that shape analysis of medial representa-

tions is possible using principal geodesic analysis, and claim 4 applied the statistical

methods as a geometric prior in deformable m-rep segmentation. It was shown in claims

5 and 6 that diffusion tensors are preferably treated as a nonlinear Riemannian sym-

metric space and that statistical analysis of diffusion tensors is made possible with the

averaging and PGA methods presented in this dissertation. The final conclusion is that

certain geometric entities, including m-reps and diffusion tensors, are best represented

as points on a nonlinear manifold and that principal geodesic analysis is an effective way

of describing the variability of these entities.

7.2 Future Work

This section proposes several extensions to the current work and possibilities for future

research. Some of these ideas were alluded to in Chapters 4, 5, and 6. It is divided into

four sections: Section 7.2.1 describes open theoretical questions about PGA, Sections

7.2.2 and 7.2.3 proposes several extensions and future research involving the statistical

analysis of m-reps and DT-MRI, and Section 7.2.4 discusses other application areas

outside of m-rep and DT-MRI that may benefit from the statistical methods presented

in this dissertation.

7.2.1 Theoretical Questions

Three major questions in the theory of principal geodesic analysis remain to be answered.

These questions were alluded to in Chapter 4.

1. Is the maximum variance definition of PGA equivalent to the least-squares defi-

nition? Principal component analysis can be defined as the linear subspaces that either

maximize the variance of the projected data or minimize the sum-of-squared distance to

the data (see Section 3.1.3). These two definitions result in the same linear subspaces
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because of the Pythagorean theorem. The Pythagorean law does not hold for right tri-

angles on general manifolds. Therefore, it does not seem promising that the maximum

variance and the least-squares definitions will coincide for general manifolds.

There is some hope in special cases such as spheres Sn, which have constant positive

curvature, and hyperbolic spaces Hn, which have constant negative curvature. These

spaces come with a variant of the Pythagorean theorem for a right triangle with side

lengths a, b, and hypotenuse c. On spheres the trigonometry for right triangles leads to

the identity

(cos a)(cos b) = cos c,

and on hyperbolic spaces the identity becomes

(cosh a)(cosh b) = cosh c.

A Taylor series expansion for cos and cosh in the two formulas above shows that

up to the second-order terms the above equations are just the standard Pythagorean

formula a2 + b2 = c2. In other words, the Pythagorean theorem holds infinitesimally.

It might be possible using these trigonometric laws to show that the two definitions for

PGA are equivalent, or at least show that the difference between the two answers is very

small.

2. Is the recursive approach equivalent to finding each principal geodesic submanifold

independently? Recall that PGA was defined as a recursive procedure finding a sequence

of orthonormal vectors v1, . . . , vd in the tangent space to the mean value, TµM . These

vectors defined subspaces of the tangent space Vk = span({v1, . . . , vk}), which in turn

defined the principal geodesic submanifolds Hk = Expµ(Vk ∩ U). However, one could

imagine rather defining each Vk independently as a minimization problem over all k-

dimensional subspaces of TµM . Either definition leads to the same result for PCA in

linear spaces. Again, the proof relies on the Pythagorean property of Euclidean space.

Therefore, the same comments from the previous question apply. It might be possible

to use the constant curvature trigonometric laws to show that these two conditions are

equal (or close to equal), but it is unlikely that this is true for general manifolds.

3. If each principal geodesic submanifold is found independently, are they nested?

This is equivalent to asking if the generating subspaces of the tangent space are nested,

i.e., Vk ⊂ Vk+1. Of course if the answer to question 2 is “yes”, the geodesic submanifolds

will be nested. However, it is possible for the answer to question 2 to be “no” and for the

geodesic submanifolds to still be nested. If the principal geodesic submanifolds are not
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nested, then a full k-frame would need to be generated and saved to define each subspace

Vk. Things become easier with the nesting property because only one additional vector

needs to be added to build Vk from the previous subspace Vk−1; i.e., only one vector

needs to be saved per subspace.

7.2.2 M-rep Extensions

For m-rep models the PGA algorithm used was a tangent space approximation (see

Chapter 5). It should be possible to compute the PGA exactly according to the recursive

definition given in Chapter 4. This requires that the projection operator be solved

either explicitly or as a minimization problem. If it can be solved explicitly and its

derivatives computed, then a gradient descent algorithm could be developed. For the

first principal direction this would be a minimization over all possible unit vectors in

the tangent space TµM , which is the sphere Sn. For the remaining principal directions,

vk, the minimization is over all unit vectors orthogonal to the previous ones, which is a

minimization over the lower-dimensional spheres Sn−k+1.

Another area for future work is extending the statistical analysis of m-reps beyond

just the global figure stage. M-reps are multiscale representations of geometry, and the

scale levels of multiple objects, multiple figures, individual atoms, and dense boundary

points are not handled in this dissertation. The work of Lu et al. [80] is a first step

defining the geometry statistics for these scale levels. The basic idea is to treat the

geometric statistics in a Markov random field framework where the deformation at each

scale level is a residual from the deformation at the previous (next coarsest) scale level.

The statistical model is based on statistics of residues in the shape across scales and

between neighbor primitives defined at the current scale level.

The effectiveness of PGA in the deformable m-reps segmentation process needs to

be further validated. An experiment testing the difference in segmentations using PGA

versus segmentations without PGA is currently being designed. It is expected that PGA

in the figure stage will bring the model closer to the correct segmentation, making the

changes necessary in the atom stage and boundary displacement stage much smaller.

This should both improve the quality of the segmentation and reduce the time spent

in the more expensive atom stage. There is also more work to be done to make the

segmentation process a true posterior optimization. For this to be the case, the image

match measure must be a true likelihood probability p(I|M).

As mentioned at the end of Chapter 5, a medial shape space can be constructed sim-

ilar to how the Kendall point set shape space is constructed. This would be the quotient
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space identifying all m-rep models that are equivalent up to a similarity transformation,

i.e., the space M(n)/Sim(n). This space, like Kendall’s shape space Σk
n discussed in

Section 3.1, is a stratified set (a manifold with singularities). The smooth parts of this

space correspond to medial meshes that are not degenerate. It is future research to

characterize this space fully, both the topology of the space and the Riemannian metric

in the smooth part. This would then allow the mean and PGA computations to be

carried out directly in the medial shape space, rather than on aligned m-rep models in

the space M(n).

7.2.3 Future Diffusion Tensor Work

Several methods that were presented in Chapter 6, including the DTI comparison metric

and the interpolation method, were meant as pieces to a DT-MRI registration method.

A missing piece of a registration method for DT-MRI is a method for warping diffusion

tensor images. This is not a trivial matter, as a warp of the space also should change

the underlying diffusion tensors. It is not clear exactly how this should be done. The

best approach to the warping problem so far has been proposed by Alexander [1]. It

should be interesting to see if the symmetric space formulation leads to further insights

on how diffusion tensors should be warped and registered.

The geodesic anisotropy measure needs to be investigated further to see whether it

is useful in a clinical setting. It can be compared with other anisotropy metrics such as

the fractional anisotropy, relative anisotropy, and volume ratio. While it seems that the

geodesic anisotropy has more intrinsic geometric meaning than these other measures, it

remains to be seen whether that translates into any practical use.

Finally, the statistical methods for diffusion tensor imaging need to be tested on

real data. After a working registration method has been produced, this will allow

comparisons of diffusion tensor images across patients. This might help in understanding

the normal variability in brain connectivity and in fiber microstructure that is inherent

in populations. It also could lead to a better understanding of how brain connectivity

changes during brain development and how diseases affect the fiber structure. Also,

statistical analysis of diffusion tensor data within the same patient may be useful in

highlighting possible problem areas in brain connectivity due to pathology.
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7.2.4 Other Application Areas

The statistical methods presented in Chapter 4 for computing the statistical variability

of manifold-valued data should have far-reaching applications in several scientific fields.

Manifold data, especially geometric entities such as Lie groups and symmetric spaces,

can be found everywhere. As mentioned earlier, translations, rotations, scalings, and

affine transformations are all examples of Lie groups. Examples of symmetric spaces

include directional data, hyperplanes, frames, and positive-definite symmetric matrices.

The statistical framework presented in this dissertation can handle all of these cases.

Also, principal geodesic analysis can be used for non-statistical applications such as

dimensionality reduction of large data sets.

There are several different fields that might benefit from PGA. Computer vision

applications typically require analysis of geometric transformations (i.e., Lie groups).

These include camera transformations which might be as simple as rotations or more

complex affine transformations or projectivities. Also, analysis of geometric primitives in

an image, such as points, direction fields, and frames could benefit from PGA. Robotics

and control theory are often concerned with geometric transformations such as rigid

motions of parts, representable as the Lie group SE(3). Molecular biology is often

concerned with the geometric configuration of DNA and protein molecules (again using

multiple copies of SE(3)).

This dissertation shows the power of analyzing geometric entities that lie on a curved

manifold using the intrinsic geometry of that manifold. Principal geodesic analysis is a

new method for computing statistical variability on manifolds that uses intrinsic notions

of distance to naturally generalize PCA of linear data. Principal geodesic analysis is

an exciting approach to statistical analysis on manifolds because it has many practical

applications to excite the engineer as well as many unanswered questions to excite the

theoretician.
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