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Motivation

• Given a set of corresponding Mrep models, how can we

perform a PCA on those models?

• Mrep parameters include angles and rotations, but PCA

assumes a linear model.

• Thus we need a method to linearize Mrep models.
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Groups

A group is a nonempty set G with a binary operation, ·,
that has the following properties for all a, b, c ∈ G:

• Closure: a · b ∈ G.

• Associativity: (a · b) · c = a · (b · c).

• Identity: There exists an element 1 ∈ G such that a ·1 = 1 ·a = a.

• Inverses: There exists an element a−1 ∈ G such that

a · a−1 = a−1 · a = 1.
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Abelian Groups

• Notice we don’t require the group product to be

commutative. (xy may or may not equal yx)

• When the product is commutative, the group is called

abelian.

• The group of rotations in 3D (which we are concerned

with) is nonabelian.
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Differentiable Manifolds

A topological space M is a differentiable manifold of
dimension n if it can be covered by a collection of sets
{Uα}α∈A such that

• M is Hausdorff with a countable basis.

• For each Uα there is a homeomorphism φα : M → Rn.

• If U = Uα∩Uβ is nonempty for any two indices α, β ∈ A, then the

restriction of φ−1
α φβ to φα(U) is differentiable.
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Lie Groups

A Lie group is a group G is also a differentiable manifold,

where the group operations are differentiable maps.

That is,

µ : (x, y) 7→ xy : G×G → G, and

ι : x 7→ x−1 : G → G

are differentiable maps.
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Lie Algebras

A Lie algebra is a vector space g over R, with a bilinear

mapping (X, Y ) 7→ [X, Y ] called the Lie bracket. The

Lie bracket also satisfies

[X, Y ] = −[Y, X]

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0
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The Exponential Map

• It turns out that the tangent space to the identity of a

Lie group G is a Lie algebra g.

• The exponential map, exp : g → G, provides a way to

associate tangent vectors with elements of G.

• The exponential map is a diffeomorphism from a

neighborhood of 0 into a neighborhood of 1.

• As you might guess it’s inverse is called the log map.
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Matrix Exponents

• The exponent map for L(Rn, Rn) (n× n matrices) is

exp(X) =
∞∑

k=0

1
k!

Xk.

• This series converges.
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SO(3)

• For the group of 3D rotations, SO(3), the Lie algebra is so(3),
the antisymmetric 3× 3 matrices.

• If X ∈ SO(3), then

log(X) =

 0 −vz vy

vz 0 −vx

−vy vx 0

 ,

where v is the axis of rotation and |v| is the angle.

• The Lie bracket is the cross product of these axes.
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Exponents with Rotations

• For Av ∈ so(3) the exponent map simplifies to

exp(Av) = I +
sin |v|
|v|

Av +
1− cos |v|

|v|2
A2

v

• This is easier for a quaternion representation

q = (sin(
|v|
2

)v, cos(
|v|
2

)).
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The “Correct” Way to Average Rotations

• The best way would be to minimize total geodesic distance on

SO(3).

• That is, given rotations R1, R2, ..., Rn, the average rotation R

minimizes
n∑

k=1

||Log(RT
nR)||2.

• This is not easy - requires optimization.
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The Campbell-Baker-Hausdorff Formula

• Define Lie group multiplication in logarithmic
coordinates by a mapping µ : g× g → g, such that

exp(X) exp(Y ) = exp(µ(X, Y )).

• The CBH formula is the Taylor series expansion for µ:

µ(X, Y ) = X + Y +
1
2
[X, Y ] + O(|(X, Y )|3).
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Averaging Rotations in Logarithmic
Coordinates

• We can use the log map to linearize our rotations, and then just

take averages as normal.

• The CBH Formula tells us that this is a first-order approximation

to the optimal geodesic solution.

• Notice the error is proportional to the Lie bracket (cross product).

• Thus, rotations with similar axes of rotation have low error.
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Mrep PCA

• Using the above Lie algebra technique, we can linearize the rotations

in an mrep model.

• But our parameters are still not commensurate

(rotation axes vs. positions vs. object angles).

• Two ways to fix this:

? Use correlation matrix instead of covariance matrix.

? Multiply the rotation axis and object angle by the radius.
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Mrep Data Vector

A single atom is an element m ∈ M

m = (x, r,v, θ),

M = R3 × R+ × so(3)× [0,
π

2
].

So, an m× n m-rep model is represented as an element of Mmn.

Notice that the deformations of an m-rep model form a Lie group!
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Results



17

What Lies Ahead



17

What Lies Ahead

• Does linear PCA really fit mrep model populations?



17

What Lies Ahead

• Does linear PCA really fit mrep model populations?

• How does the approximation error in the rotations affect

the analysis?



17

What Lies Ahead

• Does linear PCA really fit mrep model populations?

• How does the approximation error in the rotations affect

the analysis?

• How does this method for rotation averaging stack up

against other methods?



17

What Lies Ahead

• Does linear PCA really fit mrep model populations?

• How does the approximation error in the rotations affect

the analysis?

• How does this method for rotation averaging stack up

against other methods?


