Hierarchical Statistical Modeling of Boundary Image Profiles

Sean Ho Department of Computer Science University of North Carolina, Chapel Hill, NC, USA

Supported by NIH-NCI P01 CA47982.

Bayesian image segmentation

Model-based segmentation

Shape typicality ("prior")	Model-to-image match
Shape	Image
representation	representation
PDM, SPHARM, M-	Global (no corresp.)
rep, level-set, etc.	Local (req. corresp.)
Probabilistic model	Probabilistic model
 Likelihood of a given shape 	 Fit of a given shape in a given image

Example: corpus callosum

Automatic segmentation Shape rep: 2D Fourier (Staib et al) Image rep: 1D profiles normal to boundary (Cootes et al) Each profile independent of its neighbors 100 profiles => 100 separate PCAs (movie)

Some examples of related work

Snakes: gradient magnitude
 Also region-based inside/outside snakes
 Template matching, correlation
 ASM/SPHARM: independent profiles
 AAM: hierarchical over whole image

Object-intrinsic coordinates

Use SPHARM parameterization to sample image in collar around object boundary

Profiles in normalized coords

Along-boundary direction

Across-boundary model

Driving Questions

fine sampling necessary?
pyramid
object specific
how do we deal with noise?
would like to blur along boundary
local statistical model

Along-boundary model

Gaussian profile pyramid

Laplacian profile pyramid

_

■ ∂/∂σ

Laplacian, local differences

$\blacksquare \partial/\partial\sigma \ \partial/\partial u$

Profiles in 3D

Use SPHARM parameter space of unit sphere
 Recursive subdivision with icosahedron
 0th level: 20 profiles

- 1st level: 20*4 profiles
- 1-way Markov chain

Profiles along 1 object in 3D

All profiles

Inside

Profiles along red meridian line

Profiles around 1 hippocampus

Profiles: at 1 point on boundary

I corresponding point on population of 10 hippocampi

Step-edge visibleMore variability outside

At another point on boundary

Large variability across subjects Mean profile nearly flat: low confidence

10

15

20

Current / ongoing work

SPHARM segmentation framework: Standard ASM-like independent profiles New hierarchical along-boundary model New statistical model (local PCA, MRF) Testbed in 2D with 71 corpora callosa Testbed in 3D with: 90 caudates (L/R) 90 hippocampi (L/R)

Profile Pyram

- Average of 20
- multiscale along boundary
- Image match model for segmentation

