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Population Simulation Requires Statistical
Profiling of Shape

Goal: Develop a methodology for generating
realistic synthetic medical images AND the
attendant “ground truth” segmentations for
objects of interest.

Why: Segmentation method evaluation.

How: Build and sample probability
distribution of shape.




Basic Idea

New 1mages via
deformation of template
geometry and 1image.

Characteristics

Legal images represent
statistical variation of
shape over a training set.
Image quality as in a
clinical setting.
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Registration

Registration — Composition of Two Transformations
Linear — MIRIT, Frederik Maes

Affine transformation, 12 dof

Non-linear—Deformation Diffeomorphism, Joshi

Forall 7, =H(/)) and S, = H(S,)

Image Warp by
Fluid Deformation




Consequence of an Erroneous H,
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Generatlng the Statistics of H,

§ Template: I, S,

§ Trammg: {7}

Registration

S
: I.=H(I,)

(enerate FPM

Analyze {H}
via PCA on
{FPM
displacements
to yield
Pr{FPM)

Template

transformation

H = H-H

5,1

Generate
random
i b
H,: Sample
Pr{FPM) and
interpolate

Synthetic
images from
template 7,

I, =H, (1)

S, =8, =
H.S‘(Sﬂ)

Synthetic
images from
template 1,

I,s' - H.S‘(I ﬂ)
Ss — HS(Sﬂ)

James Cherél



Fiducial Point Model

H, 1s locally correlated

Fiducial point choice via
greedy 1terative algorithm

H, determined by Joshi
[Landmark Deformation
Diffeomorphism

The Idea: Decrease

T_INU ZZ| H,(x)= H,(x)




FPM Generation Algorithm

Initialize {F, } with a few geometrically salient points on S,

Apply the training warp function H, on {F } to get the warped
fiducial points: ¥, ,= H(F);

Reconstruct the diffeomorphic warp field H', for the entire image
volume based on the displacements {F, ,— F, };

For each training case t, locate the point p, on the surface of §,,
that yields the largest discrepancy between H, and H';

Find most discrepant point p over the point set {p } established
from all training cases. Add p to the fiducial point set;

Return to step 2 until a pre-defined optimization criterion has
been reached.




A locally accurate warp via FPM landmarks

Volume overlap
optimization
criterion tracks
mean warp
discrepancy

Warped Image
and
Under 100 fiducial Warped Segmentation
points, of
thousands on
surface

ATLAS WARP TRAINING




Human Kidney Example

36 clinical CT
images in the

. <Closest Surface Distance>
training set

<Ht-H't Surface Distance>

<Volume Overlap>

Monotonic
Optimization

88 fiducial points
sufficiently mimick
inter-human rater
results (94% volume ¥t ) : 0 .
OVeI'lap) Fiducial Points
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Fiducial Point Model Is an Object Representatior
with Positional Correspondence

Positional
correspondence 1s via
the H' interpolated from
the displacements at the
fiducial points

The correspondence
makes this
representation suitable
for statistical analysis




Statistical Anal '
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Principal Components Analysis of the FPM
Displacements
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—— Component Coverage

— Accumulative Coverage

Points in 3M-d space
Analyze deviation from mean

Example: first seven modes of
FPM cover 88% of the total
variation.
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Modes of Variation — Human Kidney
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Generatm Samles of Ima
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Synthesis of CT images of kidney region
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Miscellaneous
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