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Goal: Develop a methodology for generating 
realistic synthetic medical images AND the 
attendant “ground truth” segmentations for 
objects of interest.

Why: Segmentation method evaluation.

How: Build and sample probability 
distribution of shape.
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New images via 
deformation of template 
geometry and image.
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Legal images represent 
statistical variation of 
shape over a training set.
Image quality as in a 
clinical setting.
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RegistrationRegistrationRegistration

Registration – Composition of Two Transformations
Linear – MIRIT, Frederik Maes

Affine transformation, 12 dof
Non-linear–Deformation Diffeomorphism, Joshi

For all It , It ≅ Ht(I0) and St ≅ Ht(S0)

Registration Registration –– Composition of Two TransformationsComposition of Two Transformations
Linear Linear –– MIRIT,MIRIT, Frederik MaesFrederik Maes

Affine transformation, 12Affine transformation, 12 dofdof
NonNon--linearlinear––DeformationDeformation DiffeomorphismDiffeomorphism, Joshi, Joshi

For all For all IItt , , IItt ≅≅ HHtt((II00) and ) and SStt ≅≅ HHtt((SS00))
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Ht is locally correlated

Fiducial point choice via 
greedy iterative algorithm

Ht
' determined by Joshi 

Landmark Deformation 
Diffeomorphism 

The Idea: Decrease 
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FPM Generation AlgorithmFPM Generation AlgorithmFPM Generation Algorithm

1. Initialize {Fm} with a few geometrically salient points on S0;

2. Apply the training warp function Ht on {Fm} to get the warped
fiducial points: Fm,t = Ht(Fm);

3. Reconstruct the diffeomorphic warp field H't for the entire image 
volume based on the displacements {Fm,t – Fm};

4. For each training case t, locate the point pt on the surface of S0
that yields the largest discrepancy between Ht and H't;

5. Find most discrepant point p over the point set {pt} established 
from all training cases. Add p to the fiducial point set;

6. Return to step 2 until a pre-defined optimization criterion has 
been reached.
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A locally accurate warp via FPM landmarksA locally accurate warp via FPM landmarksA locally accurate warp via FPM landmarks

Volume overlap
optimization
criterion tracks
mean warp
discrepancy

Under 100 fiducial
points, of
thousands on
surface

Volume overlapVolume overlap
optimizationoptimization
criterion trackscriterion tracks
mean warpmean warp
discrepancydiscrepancy

Under 100 Under 100 fiducialfiducial
points, ofpoints, of
thousands onthousands on
surfacesurface

ATLASATLAS WARPWARP TRAININGTRAINING
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Human Kidney ExampleHuman Kidney ExampleHuman Kidney Example

36 clinical CT 
images in the 
training set

Monotonic 
Optimization

88 fiducial points 
sufficiently mimick 
inter-human rater 
results (94% volume 
overlap)

36 clinical CT 36 clinical CT 
images in the images in the 
training settraining set

Monotonic Monotonic 
OptimizationOptimization

88 88 fiducial fiducial points points 
sufficiently sufficiently mimick mimick 
interinter--human rater human rater 
results (94% volume results (94% volume 
overlap)overlap)
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Positional 
correspondence is via 
the H' interpolated from 
the displacements at the 
fiducial points
The correspondence 
makes this 
representation suitable 
for statistical analysis
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Statistical Analysis of the Geometry RepresentationStatistical Analysis of the Geometry RepresentationStatistical Analysis of the Geometry Representation

James Chen
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Principal Components Analysis of the FPM 
Displacements
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Points in 3M-d space
Analyze deviation from mean

Example: first seven modes of 
FPM cover 88% of the total 
variation.

Points in 3MPoints in 3M--d spaced space
Analyze deviation from meanAnalyze deviation from mean

Example: Example: first seven modes of 
FPM cover 88% of the total 
variation.
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Modes of Variation – Human KidneyModes of Variation Modes of Variation –– Human KidneyHuman Kidney
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Generating Samples of Image Intensity PatternsGenerating Samples of Image Intensity PatternsGenerating Samples of Image Intensity Patterns
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