Medial Linking: Generalization of the Blum Medial Axis to Multiple Objects

Ellen Gasparovic Joint work with Jim Damon

March 18, 2011

A⊒ ▶ ∢ ∃

Multi-object complexes

• Objective: Extend medial analysis to collections of objects

- ∢ ⊒ ⊳

Outline

Classification of generic medial linking structure Applications to multi-object shape analysis Future work and open questions

1 Classification of generic medial linking structure

- Components of linking structure
- Classification results (n = 2)
- Classification results (n = 3)

2 Applications to multi-object shape analysis

- Computations on the linking structure
 - Measures of closeness
 - Measures of significance
- "Tiered" graph structure and hierarchy

3 Future work and open questions

Components of linking structure Classification results (n = 2)Classification results (n = 3)

・ロト ・日本 ・モート ・モート

Maxwell set definition of Blum medial axis

Definition

Suppose \mathcal{B} bounds a region Ω , and let ρ denote the family of distance to the boundary functions, i.e.,

$$\rho: \mathcal{B} \times \mathbb{R}^n \to \mathbb{R}, (x, u) \mapsto ||x - u||^2.$$

The **Blum medial axis** of Ω is the Maxwell set of ρ :

 $\{u \in \mathbb{R}^n : \exists x_1 \neq x_2 \in \mathcal{B} \text{ with } \rho(x_1, u) = \rho(x_2, u) \text{ an absolute min.} \}$

Components of linking structure Classification results (n = 2)Classification results (n = 3)

・ロト ・回ト ・ヨト ・ヨト

Generic local forms of medial axis (n = 2, 3)

- \mathcal{A}_1^2 : smooth curve/sheet
- \mathcal{A}_3 : edge point/curve, \mathcal{A}_1^3 : branch point/curve
- (n = 3 only) A_1A_3 : fin point, A_1^4 : 6-junction point

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロン イヨン イヨン イヨン

Definition of medial linking structure

Definition

A medial linking structure associated to a multi-object complex $\{\Omega_1, ..., \Omega_n\}$ consists of the following components:

- the collection of Blum medial axes M_i and associated radial vector fields U_i = r_iu_i;
- **2** a collection of multivalued *linking functions* $\ell_i : M_i \to \mathbb{R}^+$;
- **3** a collection of multivalued *linking vector fields* $L_i = \ell_i \mathbf{u}_i$, one for each M_i ; and
- labeled refinements S_i of the Whitney stratifications of the medial axes.

Outline

Classification of generic medial linking structure Applications to multi-object shape analysis Future work and open questions

2D linking example

Components of linking structure Classification results (n = 2)

₽.

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロン イヨン イヨン イヨン

Linking functions and vector fields

Definition

For each M_i , we define a **linking function** $\ell_i : M_i \to \mathbb{R}^+$ which is characterized by the following properties:

- ℓ_i is continuous;
- 2 ℓ_i is smooth on every stratum of S_i ; and

$$\ \, {\it 0} \ \, \ell_i(x) \geq r_i(x) \ \, {\it for \ all} \ \, x \in M_i.$$

Definition

Given a point $x \in M_i$ and a choice of unit radial vector $\mathbf{u}_i(x)$, define the **linking vector** at x as $L_i(x) = \ell_i(x)\mathbf{u}_i(x)$. The collection of all such L_i is called the **linking vector field** on M_i .

Definition of linking

Definition

Two points $x \in M_i$ and $y \in M_j$ are said to be **linked** if for some choice of linking vectors $L_i(x)$ and $L_i(y)$,

 $x+L_i(x)=y+L_j(y).$

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イヨト イヨト イヨト

Definition of linking

Definition

Two points $x \in M_i$ and $y \in M_j$ are said to be **linked** if for some choice of linking vectors $L_i(x)$ and $L_j(y)$,

Components of linking structure

Classification results (n = 2)

Classification results (n = 3)

 $x+L_i(x)=y+L_j(y).$

In the Blum case, if x ∈ M_i and y ∈ M_j are linked, the linking functions satisfy

$$\ell_i(x) - r_i(x) = \ell_j(y) - r_j(y).$$

イロト イヨト イヨト イヨト

Outline

Classification of generic medial linking structure Applications to multi-object shape analysis Future work and open questions

2D linking example

Components of linking structure Classification results (n = 2)Classification results (n = 3)

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イヨト イヨト イヨト

æ

Use of the medial axis "double"

• Want to simultaneously consider "both sides" of M

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イヨト イヨト イヨト

Use of the medial axis "double"

- Want to simultaneously consider "both sides" of M
- $\tilde{M} = \{(x, U') \in M \times \mathbb{R}^{n+1} \mid U' \text{ is a value of } U \text{ at } x\}$

イロト イヨト イヨト イヨト

Labeled refinements to Whitney stratifications of \tilde{M}_i 's

Category 1: Singular points on internal medial axes linked to points on other internal medial axes at smooth point of linking medial axis.

Category 2: Smooth points on internal medial axes linked at singular point of linking medial axis.

Category 1/2: Singular points on internal medial axes linked at singular point of linking medial axis.

Later:

Category 3: Points on internal medial axes linked at intersection of enclosing region with linking medial axis.

Outline

Classification of generic medial linking structure Applications to multi-object shape analysis Future work and open questions

2D linking example

Components of linking structure Classification results (n = 2)Classification results (n = 3)

Components of linking structure Classification results (n = 2) Classification results (n = 3)

イロト イポト イヨト イヨト

Generic linking between distinct medial axes (n = 2)

• Collection of disjoint regions bounded by smooth curves

- 3 possibilities at a smooth curve of linking medial axis; and
- 1 possibility at a branch point of linking medial axis.

< D > < B > < B >

Generic linking between distinct medial axes (n = 2)

• Collection of disjoint regions bounded by smooth curves

List of 4 normal forms for linking structure

• 3 possibilities at a smooth curve of linking medial axis:

$$(\mathcal{A}_1^2:\mathcal{A}_1^2,\mathcal{A}_1^2),\,(\mathcal{A}_1^2:\mathcal{A}_1^3,\mathcal{A}_1^2),\,(\mathcal{A}_1^2:\mathcal{A}_3,\mathcal{A}_1^2)$$

• 1 possibility at a branch point of linking medial axis:

$$\left(\mathcal{A}_1^3:\mathcal{A}_1^2,\mathcal{A}_1^2,\mathcal{A}_1^2\right)$$

Components of linking structure Classification results (n = 2) Classification results (n = 3)

Generic self-linking (n = 2)

List of normal forms for self-linking

- 3 possibilities at a smooth curve of linking medial axis
- 1 possibility at a branch point of linking medial axis
- 1 possibility at an edge point of linking medial axis:

$$(\mathcal{A}_3:\mathcal{A}_1^2)$$

() < </p>

Components of linking structure Classification results (n = 2) Classification results (n = 3)

・ロト ・日本 ・モート ・モート

Generic self-linking (n = 2)

List of normal forms for self-linking

- 3 possibilities at a smooth curve of linking medial axis;
- 1 possibility at a branch point of linking medial axis; and
- 1 possibility at an edge point of linking medial axis.
- Brings total number of normal forms for linking structure to 5

Components of linking structure Classification results (n = 2) Classification results (n = 3)

イロト イヨト イヨト イヨト

Generic self-linking (n = 2)

List of normal forms for self-linking

- 3 possibilities at a smooth curve of linking medial axis;
- 1 possibility at a branch point of linking medial axis; and
- 1 possibility at an edge point of linking medial axis.
- Brings total number of normal forms for linking structure to 5
- Refined stratification just adds points

2D Generic Linking

Components of linking structure Classification results (n = 2) Classification results (n = 3)

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イポト イヨト イヨト

Generic linking between distinct medial axes (n = 3)

• Collection of disjoint regions bounded by smooth surfaces

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis; and
- 2 possibilities at a zero-dim'l stratum of linking medial axis.

イロト イポト イラト イラト

Generic linking between distinct medial axes (n = 3)

• Collection of disjoint regions bounded by smooth surfaces

- 8 possibilities at a smooth sheet of linking medial axis:
 - Two points on two smooth sheets
 - Point on smooth sheet, point on 1D stratum
 - Point on smooth sheet, point on 0D stratum
 - Two points of transversely intersecting 1D strata
- 3 possibilities at a branch curve of linking medial axis; and
- 2 possibilities at a zero-dim'l stratum of linking medial axis.

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イポト イヨト イヨト

Generic linking between distinct medial axes (n = 3)

• Collection of disjoint regions bounded by smooth surfaces

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis:
 - Three points on three smooth sheets
 - Two points on two smooth sheets, one point on 1D stratum
- 2 possibilities at a zero-dim'l stratum of linking medial axis.

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イポト イヨト イヨト

Generic linking between distinct medial axes (n = 3)

• Collection of disjoint regions bounded by smooth surfaces

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis; and
- 2 possibilities at a zero-dim'l stratum of linking medial axis:
 - Two (or four) points on two (or four) smooth sheets

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イヨト イヨト イヨト

Generic self-linking (n = 3)

List of normal forms for self-linking

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis;
- 2 possibilities at a zero-dim'l stratum of linking medial axis; and
- 3 possibilities at an edge curve of linking medial axis.

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イヨト イヨト イヨト

Generic self-linking (n = 3)

List of normal forms for self-linking

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis;
- 2 possibilities at a zero-dim'l stratum of linking medial axis; and

• 3 possibilities at an edge curve of linking medial axis:

- Point on a smooth sheet
- Point on a branch curve
- Point on another edge curve if surface locally a saddle

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イポト イラト イ

Generic self-linking (n = 3)

List of normal forms for self-linking

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis;
- 2 possibilities at a zero-dim'l stratum of linking medial axis; and
- 3 possibilities at an edge curve of linking medial axis.
- Brings total number of normal forms for linking structure to 16

Components of linking structure Classification results (n = 2)Classification results (n = 3)

イロト イポト イヨト イヨト

Generic self-linking (n = 3)

List of normal forms for self-linking

- 8 possibilities at a smooth sheet of linking medial axis;
- 3 possibilities at a branch curve of linking medial axis;
- 2 possibilities at a zero-dim'l stratum of linking medial axis; and
- 3 possibilities at an edge curve of linking medial axis.
- Brings total number of normal forms for linking structure to 16
- Refined stratification adds curves, points

Components of linking structure Classification results (n = 2)Classification results (n = 3)

3D generic linking

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨ

Motivating issues in multi-object shape analysis

How to capture shape/pose changes from influences of nearby objects?

- 4 How to determine close or "neighboring" regions?
- Which objects/regions are most/least significant?
- How to rigorize correspondence across instances and choice of orderings/scales?

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Our approach to these issues

• Linking structure captures individual, positional/relative geometry

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Our approach to these issues

- Linking structure captures individual, positional/relative geometry
- Candidates for measures of comparison: closeness, significance

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Our approach to these issues

- Linking structure captures individual, positional/relative geometry
- Candidates for measures of comparison: closeness, significance
- Organization/synthesis of data

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Computations on the medial axis

• Measure defined on the medial axis: $dM = \rho dV$

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Computations on the medial axis

- Measure defined on the medial axis: $dM = \rho dV$
- Compute area/volume of region Ω as integral over $ilde{M}$

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Computations on the medial axis

- Measure defined on the medial axis: $dM = \rho dV$
- Compute area/volume of region Ω as integral over $ilde{M}$

•
$$\delta = \int_0^1 \det(I - t \, r \, S_{rad}) \, dt$$

• Area $(n = 2)$ or volume $(n = 3)$ given by $\int_{\tilde{M}} \delta \cdot r \, dM$

Computations on the linking structure "Tiered" graph structure and hierarchy

0

・ 同・ ・ ヨ・

Computations on the medial axis

- Measure defined on the medial axis: $dM = \rho dV$
- Compute area/volume of region Ω as integral over $ilde{M}$

•
$$\delta = \int_0^1 \det(I - t \, r \, S_{\rm rad}) \, dt$$

• Area
$$(n = 2)$$
 or volume $(n = 3)$ given by $\int_{\tilde{M}} \delta \cdot r \ dM$

• Also, can compute integrals over portions of Ω

Computations on the linking structure "Tiered" graph structure and hierarchy

Computations on the medial axis

- Measure defined on the medial axis: $dM = \rho dV$
- Compute area/volume of region Ω as integral over $ilde{M}$

•
$$\delta = \int_0^1 \det(I - t \, r \, S_{\rm rad}) \, dt$$

• Area (n = 2) or volume (n = 3) given by $\int_{\tilde{M}} \delta \cdot r \ dM$

- $\bullet\,$ Also, can compute integrals over portions of $\Omega\,$
- Area/volume preserved under perturbations

Computations on the linking structure "Tiered" graph structure and hierarchy

Example of a closeness measure

Computations on the linking structure "Tiered" graph structure and hierarchy

Example of a closeness measure

Computations on the linking structure "Tiered" graph structure and hierarchy

・ロン ・回 と ・ ヨ と ・ ヨ と

Example of a closeness measure

• $R_{i\rightarrow j}$ = region spanned by all vectors in L_i linking M_i to M_j

Computations on the linking structure "Tiered" graph structure and hierarchy

イロン 不同と 不同と 不同と

Example of a closeness measure

- $R_{i\rightarrow j}$ = region spanned by all vectors in L_i linking M_i to M_j
- Compute its area/volume using

٠

$$\int_0^1 \det(I - t\,\ell_i\,S_{\mathsf{rad}})\,dt$$

Computations on the linking structure "Tiered" graph structure and hierarchy

A (10) > (10)

Example of a closeness measure

- $R_{i \rightarrow j}$ = region spanned by all vectors in L_i linking M_i to M_j
- Compute its area/volume using

$$\int_0^1 \det(I - t\,\ell_i\,S_{\mathsf{rad}})\,dt$$

• Possible closeness measure is

$$\frac{\operatorname{vol}(\Omega_i \cap R_{i \to j}) + \operatorname{vol}(\Omega_j \cap R_{j \to i})}{\operatorname{vol}(R_{i \to j}) + \operatorname{vol}(R_{j \to i})}$$

• Gives number between 0 and 1

Computations on the linking structure "Tiered" graph structure and hierarchy

Example of a closeness measure

Computations on the linking structure "Tiered" graph structure and hierarchy

Multi-object example to keep in mind

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Another candidate for a closeness measure

• Ratio of radial function to linking function

Computations on the linking structure "Tiered" graph structure and hierarchy

< 🗇 > < 🖃 >

Another candidate for a closeness measure

- Ratio of radial function to linking function
- Yields measure in mathematical sense

$$\frac{r}{\ell} dV$$

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Global measure of significance

• Volume of object/part of object as measure of significance

Computations on the linking structure "Tiered" graph structure and hierarchy

・ロト ・回ト ・ヨト

Global measure of significance

Volume of object/part of object as measure of significance
 (n = 2)

Area
$$(\Omega) = \int_{\tilde{M}} r \, dM - \frac{1}{2} \int_{\tilde{M}} r^2 \kappa_r \, dM$$

$$Volume(\Omega) = \int_{\tilde{M}} r \, dM - \int_{\tilde{M}} r^2 H_{rad} \, dM + \frac{1}{3} \int_{\tilde{M}} r^3 \, K_{rad} \, dM$$

Computations on the linking structure "Tiered" graph structure and hierarchy

3

Candidate for a significance measure

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イヨト イヨト イヨト

Candidate for a significance measure

• R_i = linking region; spanned by all vectors in L_i

Computations on the linking structure "Tiered" graph structure and hierarchy

- 4 同 2 4 日 2 4 日 2

Candidate for a significance measure

- R_i = linking region; spanned by all vectors in L_i
- Candidate for significance measure is

Computations on the linking structure "Tiered" graph structure and hierarchy

A (1) < A (1) </p>

Candidate for a significance measure

- R_i = linking region; spanned by all vectors in L_i
- Candidate for significance measure is

$$\frac{\mathsf{vol}(\Omega_i \cap R_i)}{\mathsf{vol}(R_i)}$$

• Continuous under small generic perturbations of objects

Computations on the linking structure "Tiered" graph structure and hierarchy

3

Candidate for a significance measure

Computations on the linking structure "Tiered" graph structure and hierarchy

Candidate for a significance measure

Computations on the linking structure "Tiered" graph structure and hierarchy

Simple illustration

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Graph-theoretic analysis of comparison measures

• Vertices, edges weighted by significance, closeness measures

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Graph-theoretic analysis of comparison measures

- Vertices, edges weighted by significance, closeness measures
- Weights yield "height functions" on graph induce different levels to extract orderings among objects

Computations on the linking structure "Tiered" graph structure and hierarchy

イロト イポト イヨト イヨト

Graph-theoretic analysis of comparison measures

- Vertices, edges weighted by significance, closeness measures
- Weights yield "height functions" on graph induce different levels to extract orderings among objects
- Stability result for graph structure

In the future...

Closure

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

In the future ...

- Closure
- Deformations of objects

・ロト ・回ト ・ヨト ・ヨト

æ

In the future ...

- Closure
- Deformations of objects
- Presence of tumors, objects within objects

<->
</>
</>
</>
</>
</l>

æ

_∢ ≣ ≯

In the future ...

- Closure
- Deformations of objects
- Presence of tumors, objects within objects
- Indirect linking

▲ □ ► < □ ►</p>

_∢ ≣ ≯

In the future ...

- Closure
- Deformations of objects
- Presence of tumors, objects within objects
- Indirect linking
- "X-factor"

(4日) (日)

- ∢ ≣ ▶

More on the "X-factor"

• Segmentation of organs with insufficient boundary intensity

イロト イヨト イヨト イヨト

More on the "X-factor"

• Segmentation of organs with insufficient boundary intensity

• Additional discrete function on graph

・ロト ・回ト ・ヨト