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I.  Motivation

• Accurately model covariance in cross-sectional and longitudinal

 imaging studies.

 - Accurate fixed effect inference heavily dependent on proper

  covariance model specification (Muller et al. (2007)).

• Many repeated measures settings have within-subject correlation

 decreasing exponentially in time or space.

 - AR(1) model most commonly used.  Observed correlations often

  decay at a slower or faster rate than that imposed by model.

• Generalized Autoregressive (GAR) covariance model accommodates

 these decay patterns with just 3 parameters (2 for correlation structure)

 - Very attractive for HDLSS situations.
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II.  GAR Covariance Model

Consider the following general linear model for repeated measures data

with the GAR covariance structure:

C \ /3 3 3œ �" (1)

where

C3 3 3
>2 is a  vector of  observations on the  subject ,: ‚ " : 3 3 œ "ß ÞÞÞß R

"  is a  vector of fixed and unknown population parameters,; ‚ "

\3 3 is a  fixed and known design matrix corresponding to the: ‚ ;
  fixed effects, ,"

/3 3 is a  vector of random error terms.: ‚ "
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II.  GAR Covariance Model

The following assumptions are made:

/ !3 : /3
wµ R Ð ß Ñ 3 Á 3

3
D  and independent for 

Ê µ R Ð ß Ñ 3 Á 3C \3 : 3 /3
w

3
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D/3 /3à45œ e f5  
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II.  GAR Covariance Model

where

.Ð> ß > Ñ34 35   is the distance between measurement times or locations,

H   is a constant that can be specified, by default it is set to the

    maximum number of distance units,

    is the variability of the measurements at each time or5/
#

    location,

3/   is the correlation between observations separated by one

    unit of time or distanceß

$/   is the decay speed.

$/ œ !:   compound symmetric covariance model

! � � H � "$/ : within-subject decay slower than AR(1)

$/ œ H� ":  AR(1) covariance model

$/  H� ":  within-subject decay faster than AR(1)

$/ Ä∞:   approaches MA(1) covariance model
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II.  GAR Covariance Model
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II.  GAR Covariance Model
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II.  GAR Covariance Model
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II.  GAR Covariance Model

Estimation Steps

1)   is first profiled out of the log-likelihood.5/
#

 - Better convergence properties.

2)  1  and 2  partials derived to compute estimates via Newton-Raphson.=> 8.

3)  Resulting estimates then used to compute the value and variance of .5s/
#
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III.  Data Analysis Example

• DTI scans of fibers of the cortico-spinal tracts associated with motor

 functioning for 46 control neonates.

• FA values at 20 locations, 3 millimeters apart, along fiber tracts.

 - FA values can theoretically range between 0 and 1, with higher

  values representing a more mature nerve cell, but are typically

  between 0 and 0.6 for neonates.

• Covariates: location, gender, race, birth weight, gestational age at

 birth, gestational age at time of the scan.

• Hypothesis: Older neonates would have higher FA values.
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III.  Data Analysis Example

Lateral and Ventral Cortico-spinal Tracts In the Human Nervous System
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III.  Data Analysis Example

The initial full model is as follows:

C \ \ \ \ \3 ! " 3ß # $ 3ß % 3ß & 3ß ' 3ßœ � � � � � �" " " " " " "loc gab gas gen rac\#
3ßloc

               � �"( 3ß 3\ /bwt .

where

C3   FA values for 20 locations for subject , 3

\3's  covariate vectors

/ !3 : /3µ R Ð ß Ñ
3

D .

• GAR covariance model fit better than AR(1) according to AIC & BIC.

 - Other comparable structure, DE, did not converge when given

  same starting values as others.
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III.  Data Analysis Example

The final model after reduction via backward selection ( =0.10) isα

C \ \ \ /3 ! " 3ß # % 3ß 3
#
3ßœ � � � �" " " "loc gasloc .

 

Covariate Parameter Estimate P-value

Location 0.0303 0.0001

Location      0.0015 0.0001

Gestational Age at Scan 0.0137 0.0001

�

� �
�

#

• As expected, neonates who are older at the time of the scan have

 significantly higher FA values, and thus are likely to have more

 developed cortico-spinal fiber tracts.
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III.  Data Analysis Example

Predicted FA values for the neonates by location at the minimum (dashed line) and

maximum (solid line) gestational ages at the time of the scan
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III.  Data Analysis Example

Predicted FA values for the neonates by the gestational age at the time of the scan at

the first (dashed line) and middle (solid line) locations
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III.  Data Analysis Example

Predicted correlation curve for the GAR model (solid line) and worse fitting AR(1)

model (dashed line) as a function of the distance between measurements
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IV.  Kronecker Product GAR Covariance Model

• Allows modeling of data where within-subject correlation induced by

 2 factors.

 -  Spatio-temporal, 2-dimensions of m-rep, etc.

• Now have ,/ !3 > = /3 /3 /3/
#µR Ð ß œ Ò Œ ÓÑ

3 3
D > H5

 where  correlation matrix  and the  correlation matrix> ‚ > = ‚ =3 3 /3 3 3>
  have GAR structure.H/3
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IV.  Kronecker Product GAR Covariance Model

Predicted correlation curve for Log (radius) in bladder as a function of atom distance#

(OLD m-rep data)
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IV.  Kronecker Product GAR Covariance Model

Predicted correlation curve for Log (radius) in bladder as a function of distance in time#

(OLD m-rep data)
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V. Conclusions

• GAR covariance model is a flexible, parsimonious structure that

 allows for a wide range of exponentially decaying correlation patterns

  - The classic temporal covariance structures for longitudinal data are

  special cases of this model.

 - Applicable to spatial, longitudinal, and  other correlated data.

 - Good for HDLSS data.

• Kronecker product GAR covariance model allows for the modeling of

 doubly multivariate data (i.e., correlation induced by two factors).

 - Spatio-temporal, 2-dimensions of m-rep data.
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VI. Future Research

• Nonstationary GAR covariance model (variance and/or correlations

 change as a function of absolute time or distance)

 - Extremely useful in neuroimaging studies of the developing brain

  variability of brain characteristics tends to change over time.

• Triply multivariate Kronecker Product GAR structure

 - e.g., for m-reps would have D > H Fœ Ò Œ Œ Ó5# time atom feature


