Multivariate Longitudinal Statistics for Neonatal-Pediatric Brain Tissue Development

Christine Xu

Goal

The goal is to jointly study the growth patterns of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes segmented from longitudinal brain MR images of neonatal-pediatric data from birth to 2 years of age.

Related Work

Cross-sectional studies on age differencesRegression analysis to study growth

Age Plot of Cross-sectional Studies

Regression

- Markov-Gauss assumption: independence of all data points, homoscadastic
 - not suitable for longitudinal data
- Is regression suitable for growth studies?
 - Yes and no
 - Remember: the true hidden population growth trajectory should be the average of all individual growth trajectories.

Subjects and Datasets

- 41 neonatal/pediatric subjects that have baseline and follow-up MR scans at around age 0, 1, and 2.
- Time axis: number of months since birth
- Atlas-based expectation maximization segmentation method for tissue segmentation
- Volumes of three brain tissue in cm³

Longitudinal changes of MR images of one child

GM

WM

CSF

Property 1: Correlation

- Positive correlation between repeated measurements
- The value of correlation depends on the distance in time
 - Closer in time, larger correlation
 - Further in time, smaller correlation
- Correlations different for different children
 - Different measuring schedules

Property 2: Irregularity

• Given n_i repeated measurements of the ith child $\begin{pmatrix} y_{i1} \end{pmatrix}$

$$y_i = \begin{pmatrix} y_{i2} \\ \vdots \\ y_{in_i} \end{pmatrix}$$

 $n_i {\neq} n_j ?$

Child movement during scan?

Miss an appointment?

Have different time points?

Irregular Data Set

Uneven sampling of time axis

Property 3: Multiple Responses

What about more than one response, e.g. WM, GM, CSF?

$$y_{CSF,i} = \begin{pmatrix} y_{CSF,i1} \\ y_{CSF,i2} \\ \vdots \\ y_{CSF,in_{i1}} \end{pmatrix} \qquad y_{GM,i} = \begin{pmatrix} y_{GM,i1} \\ y_{GM,i2} \\ \vdots \\ y_{GM,in_{i2}} \end{pmatrix} \qquad y_{WM,i} = \begin{pmatrix} y_{WM,i1} \\ y_{WM,i2} \\ \vdots \\ y_{WM,in_{i3}} \end{pmatrix}$$

Use multivariate longitudinal analysis to jointly study growth pattern of multiple responses.

Linear Mixed Model

- Study the growth pattern of a single response
- Two-level model
 - Individual level: unique trajectory for each individual
 - Population level: average of parameters characterizing individual trajectories

Individual Level

 $y_{ij} = \beta_{0i} + \beta_{1i}t_{ij} + \beta_{2i}t_{ij}^2 + e_{ij}$ i: child, j: time point

No matter how many measurement time points each individual have, or how close or far apart the measurements are, the number of parameters used (β_{0i}, β_{1i}, β_{2i}) to characterize the trajectory is always the same.

Population Level

Individual intercepts and slopes varying around a "centered" average intercept β₀ and slope β₁:

$$\begin{pmatrix} \boldsymbol{\beta}_{0i} \\ \boldsymbol{\beta}_{1i} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \end{pmatrix} + \begin{pmatrix} \boldsymbol{b}_{0i} \\ \boldsymbol{b}_{1i} \end{pmatrix}$$

 b_{0i} , b_{1i} are *random effects*: how the intercept and slope for the ith subject deviate from the mean values

Linear Mixed Model

Simple substitution, we get:
 y_{ij} = β₀ + β₁t_{ij} + β₂t²_{ij} + b_{0i} + b_{1i}t_{ij} + e_{ij}
 We assume:

$$\begin{pmatrix} b_{0i} \\ b_{1i} \end{pmatrix} \sim N_2(0,D) \qquad D = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$$

 $e_{ij} \sim N(0,\sigma^2)$

Linear Mixed Model

 Variance/covariance between two repeated measurements for subject i is:

 $\operatorname{cov}(y_{ij}, y_{ik}) = \sigma_{11} + \sigma_{21}t_{ij} + \sigma_{12}t_{ik} + \sigma_{22}t_{ij}t_{ik}$

If j and k are far apart in time, the correlation is smaller than that if they are close to each other.
If j=k:

 $\operatorname{var}(y_{ij}) = \sigma_{11} + 2\sigma_{12}t_{ij} + \sigma_{22}t_{ij}^{2} + \sigma^{2}$ Increasing variance of y_{ij} over time

Joint Modeling of Mixed Model

$$y_{ij,CSF} = \beta_{0,CSF} + \beta_{1,CSF}t_{ij} + \beta_{2,CSF}t_{ij}^{2} + b_{0i,CSF} + b_{1i,CSF}t_{ij} + e_{ij,CSF}$$
$$y_{ij,GM} = \beta_{0,GM} + \beta_{1,GM}t_{ij} + \beta_{2,GM}t_{ij}^{2} + b_{0i,GM} + b_{1i,GM}t_{ij} + e_{ij,GM}$$
$$y_{ij,WM} = \beta_{0,WM} + \beta_{1,WM}t_{ij} + \beta_{2,WM}t_{ij}^{2} + b_{0i,WM} + b_{1i,WM}t_{ij} + e_{ij,WM}$$

Impose a joint multivariate distribution on the joint random effects, so the growth patterns of the three tissue volumes are associated

$$\begin{pmatrix} b_{0i,CSF} \\ b_{0i,GM} \\ b_{0i,WM} \\ b_{1i,CSF} \\ b_{1i,GM} \\ b_{1i,WM} \end{pmatrix} \sim N_6(0,D)$$

Parametric Growth Curves

volume in cm³

Parametric Growth Curves

Parameters	$\beta_{0,CSF}$	$\beta_{1,CSF}$	$\beta_{2,CSF}$	β _{0,GM}	$\beta_{1,GM}$	$\beta_{2,GM}$	$\beta_{0,WM}$	$\beta_{1,WM}$	$\beta_{2,WM}$
Estimate	54.7	5.8	-0.15	208	45.9	-0.95	164.7	8.9	-0.15
Pr> t	**	**	**	**	**	**	**	**	**

- Statistics also showed the slopes of all three tissues are significantly different from each other: GM>WM>CSF
- All three quadratic terms were tested to be significant
- Quadratic terms of WM, CSF were tested to be not statistically different from each other

Confidence Intervals

95% confidence interval of growth curves

Confidence Intervals

 Inter-individual variance increases over time for all three tissue types

Standard deviation	neonates	1 yr old	2 yrs old
CSF	11.88	27.27	27.57
GM	28.28	61.70	87.45
WM	20.42	58.5	38.12

Individual Correlation Matrix

Different individual correlation matrix

- different size
- different value
- Multiple responses
 - correlation within tissues over time
 - correlation between tissues

Individual Correlation Matrix

 9x9 correlation matrix for one child who had 3 MR scans in the first two years of life. The scans were taken at month 0.7, 13.4, 24.2.

Estimated Correlation Matrix for case 0106									
Row	CSF_0	CSF_1	CSF_2	GM_0	GM_1	GM_2	WM_0	WM_1	WM_2
CSF_0	1.00	0.45	0.31	0.87	0.56	0.38	0.56	0.34	0.22
CSF_1		1.00	0.95	0.44	0.53	0.48	0.27	0.18	0.12
CSF_2			1.00	0.27	0.45	0.44	0.16	0.12	0.09
GM_0				1.00	0.59	0.41	0.48	0.29	0.19
GM_1					1.00	0.94	0.30	0.28	0.23
GM_2						1.00	0.20	0.23	0.21
WM_0							1.00	0.30	0.22
WM_1								1.00	0.84
WM_2									1.00

Growth Velocity

Take the derivatives of parametric growth curve functions

Growth Velocity

- The speed of growing decreases over time for all three tissues
- The growth speed of GM is much larger than those of CSF and WM for the first 2 years, but it also decreases faster.
 - GM: significant growth, slow down over time
 - CSF, WM: significant growth, less dramatic compared to GM

Conclusion

- Applied a joint modeling schema of mixed model to neonatal/pediatric brain tissue data;
- Obtained growth curves as a quadratic function of time;
- Computed confidence bands of growth trajectories;
- Computed correlation within and between different brain tissues;
- Studied the growth patterns of all brain tissues; GM fastest;
- The first multivariate longitudinal analysis of brain tissue for the early developing brain.