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ABSTRACT

This paper presents a Bayesian framework for generating
inverse-consistent inter-subject large deformation transfor-
mations between two multi-modal image sets of the brain.
In this framework, the estimated transformations are gen-
erated using the maximal information about the underly-
ing neuroanatomy present in each of the different modali-
ties. This modality independent registration framework is
achieved using the Bayesian paradigm and jointly estimat-
ing the posterior densities associated with the multi-modal
image sets and the high-dimensional registration transfor-
mation mapping the two subjects. To maximally use the
information present in all the modalities, Kullback-Leibler
divergence between the estimated posteriors is minimized
to estimate the registration. Registration results for two syn-
thetic image sets of a human neuroanatomy are presented.

Key Words: Multi-modal image registration, inverse con-
sistent registration, information theory, medical image anal-
ysis, computational anatomy.

1. INTRODUCTION

With the increasing number of imaging techniques and imag-
ing sensors, multi-modal image registration has become an
active area of research in medical image analysis. Addi-
tionally, understanding anatomical variability requires ro-
bust robust high-dimensional image registration methods.
Most image registration algorithms find a mapping between
two scalar images. If the images are of different modalities,
mutual information is typically used to register them. High-
dimensional image registration in the context of mutual in-
formation and other dissimilarity measures frameworks has
been studied extensively. A thorough investigation of these
dissimilarity measures in high-dimensional image registra-
tion is presented in [1]. Although inter-subject high-dimensional
image registration has received much attention [2, 3, 4, 5],
to our knowledge, little attention has been given to using
multi-modal image sets of subjects to estimate registration
transformations. The extension of mutual information to
three or more images is not clear.

Mutual information methods for image registration are
non-model based and hence do not incorporate a priori knowl-
edge of a subject’s underlying anatomy being imaged. We
incorporate anatomical structures as a prior in a Bayesian
framework. As described in [6] we assume that the un-
derlying neuroanatomy, represented in two acquired sets of
multi-modal images, consists of N separate structures (or
classes), ci, i = 1, · · · , N . Let subject “1” be characterized
by m multi-modal images so that Ī1(y) ∈ R

m and subject
“2” be characterized by n multi-modal images Ī2(z) ∈ R

n,
where ci(·) is the class associated with spatial positions y =
[y1, y2, y3]T ∈ Ω1 and z = [z1, z2, z3]T ∈ Ω2 respectively.
For example, Ī1(y) might represent a CT image, an T1-
weighted MR image, and a PET image of a single anatomy.
Throughout this paper, we assume that, for a given subject,
the multi-modal images of that subject are co-registered.

1.1. Inverse Consistent Registration

Many registration algorithms are not inverse consistent since
their dissimilarity metrics are computed in the coordinate
system of either one of the images involved in the registra-
tion. This leads to order non-preservation of optimization
energy cost functions. In traditional techniques for image
registration solutions may be systematically biased with re-
spect to expanding and contracting regions in the transfor-
mation [7]. Inverse consistent registration is desired when
there is no preference, or believability, for one image of an-
other. Existing methods for generating inverse consistent
registration approximate inverse consistency by adding an
inverse consistency penalty to the optimization cost func-
tion. The registration frameworks formulated in these meth-
ods are not intrinsically symmetric. A method for approach-
ing this problem involving an algorithm that estimates incre-
mental transformations while approximating inverse consis-
tency constraints on each incremental transformation is pre-
sented in [8]. The approach presented in this paper is in-
trinsically inverse consistent as the registration problem is
formulated symmetrically. Therefore, no correction penaly
for consistency is required.
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2. REGISTRATION FRAMEWORK

We consider the problem of finding a mapping between im-
age sets Ī1 and Ī2 (Figure 1). That is, we would like to find
the mappings f : Ω1 → Ω2 and g : Ω2 → Ω1 where Ω1 and
Ω2 are the coordinate systems of image sets Ī1 and Ī2 re-
spectively. We introduce a new coordinate system Ω, inde-
pendent of Ω1 and Ω2. Let transformations h1 and h2 map
Ω to Ω1 and Ω2 respectively. By construction, f = h2 ◦h−1

1

and g = h1 ◦ h−1
2 . This registration method is inverse con-

sistent as f ◦ g = g ◦ f = Id, the identity map.
We apply the theory of large deformation fluid diffeo-

morphism of [9, 3] to require that the deformations h1(x)
and h2(x) be solutions to the Lagrangian o.d.e.s d

dth{1,2}(x, t) =
v{1,2}(h{1,2}(x, t), t). The transformations h1 and h2 are
generated by integrating velocity fields forward in time and
h−1

1 and h−1
2 are generated by integrating velocity fields

backward in time. The relationship between spatial locality,
velocity fields, and time is shown in Figure 2. The spatial
location y is described in terms of the forward integration of
the velocity field v starting from spatial location x, that is,
y = h(x, 1) = x +

∫ 1

0 v(h(x, τ), τ)dτ . Similarly, x can be
described in terms of integrating the reverse velocity field ṽ

starting at y, that is, x = φ(y, 1) = y +
∫ 1

0
ṽ(φ(y, τ), τ)dτ .

From this figure we note that v(h(x, t), t) = −ṽ(φ(y, 1 −
t), 1 − t) and, hence, ||Lv(x), t)||2 = ||Lṽ(y), 1 − t)||2
fwhere L = α∇2 + β∇ · ∇ + γ is the Navier-Stokes oper-
ator.

Given a distance metric, D, and a regularization opera-
tor L, the optimal transformations for h1 and h2 are found
by estimating the velocity fields v1 and v2 following the
minimization

v̂1, v̂2 = argmin
v1,v2

∫
Ω

D(Ī1(h1(x)), Ī2(h2(x)))dx

+
∫ 1

0

∫
Ω

||Lv1(x)||2dxdt

+
∫ 1

0

∫
Ω

||Lv2(x)||2dxdt (1)

where h{1,2}(x) = x +
∫ 1

0 v{1,2}(h{1,2}(x, t), t)dt. The
second and third terms are the fluid regularization whose
combination is symmetric by the preceding argument. For
the traditional single modality mapping problem a squared
error dissimilarity metric is used as described in [10].

2.1. Bayesian Framework

The framework is based on the assumption that human brain
anatomy consists of finitely enumerable structures such as
grey matter (GM), white matter (WM), and cerebrospinal
fluid (CSF). These structures present with varying radio-
metric intensity values across disparate image modalities.
Given multi-modal image sets representing two studies, we

fΩ1 Ω2

Ω

Ī1 Ī2

h1 h2

g

Fig. 1. Registration Framework

x = φ(y, 1)

y = h(x, 1)

v(x, 0)

ṽ(y, 0)

Fig. 2. Velocity Field

jointly estimate, for each subject, the posterior distributions
associated with each of the structures along with the diffeo-
morphic high-dimensional registration map that relates the
coordinate spaces of the two subjects. The Kullback-Leibler
divergence is used as a metric for the posterior densities to
estimate the transformation. The use of the posterior proba-
bility densities provides an image intensity independent ap-
proach to image registration.

From the multi-modal images Ī1 and Ī2, for each class
ci we jointly estimate the posterior distributions p1(x) =
p(ci(h1(x))|Ī1) and p2(x) = p(ci(h2(x))|Ī2) along with
the registration maps h1(x) and h2(x), that map the inde-
pendent coordinate space Ω ⊂ R

3, into the space of subject
“1”, Ω1 ⊂ R

3, and subject “2”, Ω2 ⊂ R
3, respectively.

This method is independent of the choice of the number of
images comprising each image set. Optimal inter-subject
multi-modal image registration is estimated by an alternat-
ing iterative algorithm which is motivated by an expectation
maximization method used in [11, 12]. Our algorithm inter-
leaves the estimation of the posteriors associated with sub-
jects “1” and “2” and the estimation of the registration maps
h1 : Ω → Ω1 and h2 : Ω → Ω2.

Following [12], for each class ci the associate data like-
lihood, p(Ī{1,2}(x)|ci(x), µi, Σi), is modeled as a normal
distribution with mean, µi, and covariance, Σi. Given the
transformations h1 and h2 and the current estimates µi and
Σi for both image sets, the posterior densities of the two
subjects “1” and “2” are associated with the independent co-
ordinate pdf pΩ

i by using Bayes’s Rule with pΩ
i as the prior

for both posteriors p1(x) and p2(x). Having defined the
posteriors, the parameters µi and Σi are updated by their ex-
pected values. We are currently investigating the use parzen
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windowing as a replacement for the Gaussian models as de-
scribed in [13].

2.2. Registration

As a measure of dissimilarity between two probability den-
sity functions pΩ(x) and p{1,2}(x), the Kullback-Leibler di-
vergence (relative entropy),

DKL(pΩ(x), p{1,2}(x)) =
c∑

i=1

pΩ
i (x) log

pΩ
i (x)

p{1,2}(x)
,

is used. From an in formation theoretic viewpoint [14], this
dissimilarity can be interpreted as the inefficiency of assum-
ing that p{1,2}(x) is true when pΩ(x) is true. That is, if we
have a model expressed as a probability density p{1,2}(x),
we can then measure how far an observation, also expressed
as a probability density, pΩ(x), deviates from p{1,2}(x) us-
ing Kullback-Leibler divergence.

At a given point x ∈ Ω the dissimilarity between im-
age sets Ī1(x) and Ī2(x) is measured by the dissimilarity
between the posterior densities modeling them, p1(x) and
p2(x). We thus define the following dissimilarity metric is
used to drive the registration

D(p1(x), p2(x)) = argmin
pΩ(x)

[
DKL(pΩ(x), p1(x))

+DKL(pΩ(x), p2(x))
]
. (2)

From Equation 2, D(p1(x), p2(x)) = D(p2(x), p1(x)). For
known transformations h1 and h2 the probability density
function in the independent coordinate system, pΩ(x), that
minimizes the dissimilarity measure above is the normal-
ized geometric mean

pΩ
i (x) =

(p1
i (x)p2

i (x))
1
2

(p1
1(x)p2

1(x))
1
2 + (p1

2(x)p2
2(x))

1
2
.

Thus, the dissimilarity metric can be expressed wholly in
terms not involving the independent coordinate system. Af-
ter substituting this value for pΩ into Equation 2 we obtain
the following dissimilarity for position x ∈ Ω

D(p1(x), p2(x)) = −2 log
c∑

i=1

(p1
i (h1(x)|Ī1)p2

i (h2(x)|Ī2))
1
2 .

With this result we re-write the minimization problem stated
in Equation 1 as follows

v̂1, v̂2 = argmin
v1,v2

∫
Ω

log
c∑

i=1

(p1
i (h1(x)|Ī1)p2

i (h2(x)|Ī2))
1
2 dx

+
∫ 1

0

∫
Ω

||Lv1(x)||2dxdt

+
∫ 1

0

∫
Ω

||Lv2(x)||2dxdt

2.3. Implementation

Following Christensen’s greedy algorithm for propagating
templates [15], we compute the variation for h1 of the aver-
age D(p1(x), p2(x)) term

∂

∂h1

1
|Ω|

∫
Ω

D(p1(x), p2(x))dx =

− 1
|Ω|

∫
Ω

∑c
j=1

(
p2

j(x)

p1
j(x)

) 1
2 ∇p1

j |Tcj(h1(x))∑c
k=1(p

1
k(x)p2

k(x))
1
2

dx.

In a similar manner the variation for h2 is computed. The
velocity fields v{1,2} at each iteration are updated by solving
the p.d.es.,

Lv{1,2}(x, t) =
∂

∂h{1,2}

1
|Ω|

∫
Ω

D(p1(x), p2(x))dx.

The forward and backward integration is described as
follows. At time t the transformations h{1,2} are described
as

h{1,2}(x, t + δ) = h{1,2}(x, t) +
∫ t+δ

t

v{1,2}(h{1,2}(x, τ), τ)dτ

≈ h{1,2}(x, t) + δv{1,2}(h{1,2}(x, t), t)

for small δ. At iteration k of the algorithm, the transforma-
tions h{1,2} become the telescoping compositions h{1,2} =
h1
{1,2} ◦ h2

{1,2} ◦ · · · ◦ hk
{1,2}. At time t the inverse transfor-

mations h−1
{1,2} are described as

h−1
{1,2}(y, t) = h−1

{1,2}(y −
∫ t−δ

t

v{1,2}(y, τ)dτ, t − δ)

≈ h−1
{1,2}(y − δv{1,2}(y, t), t − δ)

for small δ. At iteration k of the algorithm, the transforma-
tions h−1

{1,2} become the telescoping compositions h−1
{1,2} =

h−1,k
{1,2} ◦ h−1,k−1

{1,2} ◦ · · · ◦ h−1,1
{1,2}.

3. RESULTS

To evaluate the performance of this algorithm we constructed
two synthetic image sets comprised of images from four
modalities produced by Montreal Neurological Institute’s
McConnell Brain Imaging Centre’s BrainWeb simulated brain
database [16, 17], Ī1 ={Proton Density, T1-weighted (Spoiled
FLASH) MR} and Ī2 ={T1-weighted (spin echo) MR, T2-
weighted MR}. The second image set, Ī2 was subjected to
an artificial sinusoidal transformation (Figure 3).

In order to evaluate the inverse consistency property the
algorithm was applied with image sets Ī1 and Ī2 producing
transformations f : Ω1 → Ω2 and g : Ω2 → Ω1. The
compositions f ◦ g and g ◦ f were then computed (Fig-
ure 4). Qualitative inspection of the regular grid under the
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Fig. 3. Sample image sets: Derived from the BrainWeb sim-
ulated brain database, the two images two images on the left
represent a proton-density MR image and T1-weighted MR
image constituting image setĪ1. The two images on the right
represent deformed versions of a fictitious image and a T2-
weighted MR image constituting image set Ī2.

Fig. 4. Estimate mappings: The first two images repre-
sent a regular grid under the estimated f : ΩA → ΩB and
g : ΩB → ΩA, transformations respectively. The last two
images represent the composite transformations f ◦ g and
g ◦ f respectively.

composite transformations f ◦ g and g ◦ f shows that the
registration is inverse consistent. Quantitatively, the norms
||f ◦ g − Id|| and ||g ◦ f − Id||, where Id represents the
identity map, achieve maximums of approximately 0.2 pix-
els. As the original formulation is symmetric, the error can
be be made arbitrarily small by reducing the step size δ in
the discrete approximation. This also indicates inverse con-
sistency. The algorithm was run for 100 iterations. The final
transformed image sets are show in Figure 5.
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Fig. 5. Transformed image sets: The first two images repre-
sent the image set Ī1 under the estimated mapping f and the
last two images represent the image set Ī2 under the map-
ping g.
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